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Abstract. Applying the classical Banach fixed point theorem we prove that a set-valued function
with bounded diameter satisfying a linear functional inclusion admits a unique selection fulfilling
the corresponding functional equation. We also adopt the method of the proof for investigating the
Hyers-Ulam stability of some functional equations.
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1. INTRODUCTION

Let X, Y be real vector spaces and D C X a convex set. A set-valued function
F: D — n(Y), where n(Y) denote the family of all nonempty subsets of Y is said to
be conver if

aF(2) + (1 - )F(y) C Flaz+(1—a)y), z,y€D, a€0,1).
If

1 1 T+y
—F —F F(—=
SF(@) + 5F(y) € F(55

the set-valued function F' is called midconvex or Jensen conver. A. Smajdor and W.
Smajdor proved, that if Y is a topological vector space and F': X — n(Y) is a convex
set-valued function with compact values, then there exists an affine selection of F.
They have also observed that, if F' is midconvex set-valued function, then for every
yo € F(0) there exists an additive function a: X — Y such that X 5 z — yo+a(z) €
Y is a selection of F' (see Theorem 3 and 4 in [13]). Similar results, but in particular
case, were earlier obtained by K. Nikodem in [7].

Some theorems, for set-valued functions satisfying more general inclusions were proved
by K. Nikodem and D. Popa in [8]. M. Piszczek in [9] proved the following result. Let
K be a convex cone in a vector space X, i.e. aK+8K C K for every o, 8 > 0, (Y, ]/
a Banach space and a, b, p, ¢ > 0. Consider a set-valued function F': K — n(Y") such

), x,y€D,
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that F'(z) is convex and closed for each x € K and sup{diamF(z), z € K} < 400,
where

diamF(z) = sup{|ly1 — v2|l, v1,92 € F(x)}.
If
pF(z)+qF(y) C Flax +by), =,y € K,
then

(1) if p4+q < 1, there exists a unique selection f: K — Y of F satisfying equation

pf(x) +aqf(y) = flaz +by), z,y € K,
(2) if p+ ¢ > 1, F is single-valued.

D. Popa in [12] investigated the existence of selections satisfying a certain functional
equation for a set-valued function F': X — n(Y') such that

F(x)0F(y) C F(z*y), =,y€X,

where (X, %), (Y, ) are square-symmetric grupoids.
Recently D. Inoan and D. Popa in [5] proved the existence of selections of a set-
valued function F': G — n(Y) fulfilling the inclusion

(1-p)F(z) +pF(y) C F(xxy)+C, x,y€G,

where (G, *) is a grupoid with a bisymmetric operation and Y is a Banach space.

2. THE MAIN THEOREMS

Let K be a nonempty set and (Y, ) a metric space. The diameter of the set
A € n(Y) is given by formula diamA = sup{g(a,b) : a,b € A}. Consider a set-valued
function F': K — n(Y). A function f: K — Y is a selection of the set-valued function
Fiff f(z) € F(x), v € K. Let

Sel(F):={f: K —>Y: f(z) € F(x), z € K}.
It is easy to check that if sup{diam(F'(z)), = € K} < 400, then the functional

d(f,g) = sup{e(f(z),g()), € K} < 400, f,g€ Sel(F)

is a metric in Sel(F'). Obviously, the convergence in the space (Sel(F),d) is the uni-
form convergence on the set K. Moreover if (Y, g) is complete and F(z) € cl(Y), x €
K (where cl(Y) denotes the family of all closed members of n(Y")), then (Sel(F),d)
is complete (see [4], ch. 11).

Theorem 2.1. Let a € (—1,1), p,q > 0 and K be a subset of a real vector space
X such that 0 € K and K C pK. Assume that (Y, || -||) is a real Banach space and
F: K — c(Y) a set-valued function with bounded diameter, i.e.

sup{diamF'(z), x € K} = M < +o0.
If
aF(x)+(1—-a)F(y) C Flpzx+qy), z,y€ K, pr+qy€ K, (2.1)
then there exists a unique function f: K —Y such that

af(x)+ (1 -a)f(y) = fpr+qy), z,yeK, pr+qyeK
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and
f(z)+F(0) C F(z), z € K.
Proof. Fix a € F(0) and define a set-valued function G: K — ¢l(Y') by formula
G(z)=F(z)—a, x € K.
Obviously, 0 € G(0), diamG(x) = diamF(z) < M, x € K and
aG(z) + (1 -a)G(y) C G(pr +qy), z,y€ K, pr+qy€ K. (2:2)
Indeed, fix 2,y € K such that pz + qy € K. By (2.1),
aG(z) + (1 - a)G(y) = aF(z) + (1 - a)F(y) —a C F(pr + qy) — a = G(pr + qy).
Setting y = 0 and replacing « by  in (2.2), we get

aG (Z) +(1—a)G(0) C G(z), z€K.

Hence
aG (x) CcG(z), z€eK. (2.3)
p
Let
T(g9)(x) :==ag <2) , e K, ge Sel(G).
By (2.3), T'(g) € Sel(G), g € Sel(G). Moreover for every g1, g2 € Sel(G)
x

(), 7(a2)) = lalswp {on (£) =02 (£) 1, & € K} < alaton. ).

Thus T': Sel(G) — Sel(G) is contractive in the complete metric space (Sel(G),d), so
by the Banach theorem, it has a unique fixed point g, and lim T™(g) = g, for each
n—oo

g € Sel(G). Hence g,: K — Y is a unique selection of the set-valued function G such
that

9a(2) = aga (;) ,zeK. (2.4)

In particular, g,(0) = 0 and g,(z) + a € F(z), = € K. Fix now g € Sel(G) and
x,y € K such that px + qy € K. By (2.2),

ag(z) + (1 —a)g(y), g(pz +qy) € Gpz + qy), v,y € K, pr+qy € K.
Hence
lag(z) + (1 —a)g(y) — g(pr + qy)|| < diamG(px + qy) < M.
Thus for each x,y € K such that pz 4+ qy € K,
1aT%(g)(x) + (1 — a)T(9)(y) — T°(9)(px + qu)|| < |a|®M.

Fix now n > 0 and assume, that

[aT™(g)(x) + (1 = a)T"(g)(y) — T"(9)(pz + qy)|| < |a|" M
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for all z,y € K with px +qy € K. Let 2,y € K and px 4+ qy € K. Then %,% e K
andp%qtq%EK. Hence

[T (g)(2) + (1 = )T (g)(y) — T (9)(pz + qy)|
= Jal - aT"(9) (£) + (1 = )T"(g)() — T"(9)(p% + L)
< |a|" M.
It follows that for every x,y € K such that px + qy € K and each n > 0,
laT™(g)(z) + (L = )T (g)(y) = T"(9)(pz + qy)|| < |o]" M.
Letting n — oo we obtain

aga(z) + (1= @)ga(y) = ga(pr +qy), z,y € K, pr+qy € K.

We have proved, that for every a € F(0) there exists a unique function ¢g,: K — Y
such that g (z) +a € F(z), x € K and

x
Qagq <p) =g.(z), z € K.

Moreover,
aga(r) + (1 = @)ga(y) = ga(pz + qv), 2,y € K pr+qy € K.

For the end of the proof fix a;, as € F(0). From what has already been proved, there
exist functions g1, g2: K — Y such that g;(2) +a; € F(z) and agi(}) = gi(z), v € K,
i =1,2. Consequently, for all z € K,

lg1(z) — g2(2)|| < diamF(z) + [|ay — az|| < diamF(z) + diamF(0) < 2.
Hence
lg1(z) = g2(2)|| < 2]a’M, z € K.
Assume, that for fixed n > 0
l91(z) = g2(2)|| < 2[a|"M, z € K
and fix z € K. Then 7 € K and

x x
lon(e) = (ol =lollon (2) = 0x ()1 < 20,
Thus, for every for z € K,
lg1(z) = g2(@)|| < 2|a|"M, n =0,

what clearly forces

g1(x) = g2(), z € K.
It follows that there exists a unique function f: K — Y such that

af(@)+ (1 -a)f(y) = flpr+ay), zyeK, pr+qyeK

and
f(z)+ F(0) C F(x), z € K. O
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Remark 2.2. Let a,8 # 0 and p,q > 0. Assume that X and Y are real vector
spaces and K is a convex cone in X. If f: K — Y satisfies the equation

af(@)+Bf(y) = flpx+qy), z,yeK
and f(0) =0, then f is additive, i.e.
fl@)+fly) =fle+y), zyek.
The proof is immediate.

Corollary 2.3. Let o € (—1,2)\ {0,1}, p,q > 0. Assume that K is a convex cone
in a real vector space X, (Y, ||]|) a real Banach space and F: K — cl(Y) a set-valued
function with the bounded diameter. If

aF(z)+ (1 -a)F(y) C F(pz +qy), z,y€ K,
then there exists a unique function f: K — 'Y such that
flz)+ F(0) C F(x), € K
and

af(@)+ (1 -a)f(y) = fpr +qy), =yekK
The function f is additive.

Proof. Since K is a convex cone and p, q are positive numbers,
K CpK and K C¢K.

If « € (—1,1), then by Theorem 2.1, there exists exactly one function f: K — Y
satisfying the equation

af(x) +(1-a)f(y) = flpr+qy), zyeK
and such that
f(z)+ F(0) C F(z), z € K.

In particular, f(0) + F(0) C F(0), it follows that nf(0) + F(0) C F(0) for every
positive integer n. The set F(0) is nonempty and bounded, and so f(0) = 0. If
€ (1,2), then 1 —a € (—1,0), so it is enough to change variables in Theorem 2.1. [J

Example 2.4. Let K = [0,4+00) and F: K — cl(R) be given by
1
F(z) = {1,3 x—l—l] , v € K.
The set-valued function F is convex i.e.
aF(z)+(1—-—a)F(y) C Flax+ (1 —a)y), z,y € K, a € (0,1)
and diamF'(z) <2, z € K. The function K 5 x — f(z) =0 € R is additive and
f(@)+ F(0)=[1,2] C F(x), v € K.
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Example 2.5. Let K = [0, +00) and F': K — cl(R) be a set-valued function defined
by

Flz)=x+1lLz+2=2+][1,2], z € K.
Then F' is convex and f(x) =z, € K is an additive function such that

f@)+ FO)=z+][1,2] C F(z), = € K.

Theorem 2.6. Let o € (—1,1), p>1,q> 0, K be a convex cone in a real normed
space (X, | - 1) and (Y, | -||) a real Banach space. Assume that F: K — cl(Y) is a
set-valued function such that

K>z — diamF(z) € [0,+00)
maps bounded subsets of K onto bounded. If
aF(z)+(1—a)F(y) C F(pz +qy), x,y€ K,
then there exists a unique function f: K =Y such that
fl@)+ F(0) C F(z), € K
and fulfilling the functional equation
af(x)+(1-a)f(y) = flpz+aqy), z,yeK.
Moreover, f is an additive function.
Proof. For every n > 1 define
K, ={z€eK: |z| <n}
and a set-valued function F,,: K — cl(Y) by
F,(z) = F(x), z € K,.
Then K,, C pK,, and
aF,(z) + (1 = a)F,(y) C Fu(pr +qy), @,y € Ky, pr+qy € Kp.

Moreover
sup{diamF, (z), z € K,,} < +o0.
By Theorem 2.1, there exists a unique function f,,: K,, — Y such that
afa(@)+ (1 —a)fuly) = falpr+qy), @,y € Ky, pr+qye K,  (2.5)
and
fulz)+ F(0) C F(z), z € K,.

Since

Frii(z) = Fu(z), © € Ky,
by the uniqueness of the function f,,, we have

frt1(z) = fu(2), T € K.
It follows that the function f: K — Y given by

f(x) = fu(2), © € Ky
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is defined properly. Obviously f(z)+ F(0) C F(z), « € K. For the end fix z,y € K.
There z,y, px + qy € K, for n big enough. Since f(z) = f.(z), = € K,, and by (2.5),
af(x)+ 1 —a)f(y) = flpr +qy).

By Remark 2.2, f must be additive. O

3. STABILITY RESULTS

In this section we first present an application of the method used in the proof of
Theorem 1 to the investigation of the Hyers-Ulam stability of the functional equation

af(@)+ 1 —a)f(y) = fpz + qy). (3.1)
The above equation is a particular case of general linear equation
af(@)+Bf(y) +v=flpz+qy+r),

where f maps a vector space into a Banach space. The general linear equation was
considered by several authors (see for example [1, 6, 10]), however they verified the
cases ¥ = 0 and r = 0 or investigated the stability under some additional assumptions
like @ + 8 # 1 in [2]. Further information can be found in [3, 11].

Theorem 3.1. Let K be a convex cone in a vector space X, (Y, ||-||) be a real Banach
space and o € (0,1), p,g > 0 and € > 0. If a function f: K — Y satisfies

laf(z)+ A —a)f(y) — flpr+ay)ll <e, xy€K,
then there exists a unique function fo: K — 'Y fulfilling the condition

€
I£(@) = folz) = fFO) < ;= 2 €K
and the functional equation

afo(r) + (1 —a)fo(y) = folpr +qy), z,y€ K.

Moreover, fo is an additive function.
Proof. Let g: K — Y be given by g(z) = f(z) — f(0), € K. Then g(0) =0 and

lag(z) + (1 —a)g(y) —gpz +qy)|| <e, .y € K. (3.2)
Hence, for all z,y € K

ag(z) + (1 - a)g(y) € g(pz + qy) + B, (3:3)
where B, denotes the closed ball B(0,¢). Setting y = 0 and replacing by 7 in (3.3)
we obtain

ag (;) € g(x) + Be,x € K.
Thus, for all z € K
x «@ o 1
ag (p) + EBE C g(x) + BE + EBE = g(l‘) + EBE.

Define a set-valued function G: K — cl(Y") as follows

G(z) =g(x) + B., € K.

11—«
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Then
oG (;) CG(z), e K

and diamG(z) = 2, z € K. The idea of the proof is the same as before so we only

give a sketch. The function T': Sel(G) — Sel(G) given by
T(h)(z) == ah (x> , z€ K, he Sel(G).
p

is contraction with the constant a. By the Banach theorem, there exists the unique
function fy € Sel(G) such that

folpz) = afo(x), z€ K
and lim T"(g) = fo. By the definition of G,

n—oo
lg(x) = fola)l| < T = € K.
Since g satisfies (3.2),

leT(g)(z) + (1 = )T(9)(y) = T(9)(pr + qu)l| < ae
for all z,y € K. Proceeding by induction, we get

[T (g)(z) + (1 = a)T™(g)(y) — T"(9)(pz + qy)|| < a™e
for every z,y € K and n > 1. It follows that

Oéfo(ﬂ?) + (1 - a)fO(y) = fo(pl” + qy)7 T,y € K.
Since fo(0) = 0, fp is additive, by Remark 2.2. Thus fj is the unique additive function
such that afo(z) + (1 — a) fo(y) = fo(pz + qv), =,y € K and

€
||f($)—f0(33)—f(0>||§ma reK. U
Now we apply Theorem 2.6 to the proof of Rassias stability of functional equation
(3.1).
Theorem 3.2. Let K be a convex cone in a real normed space (X, || -1), (Y] -1]) be
a real Banach space and o € (0,1), p > 1,q > 0. Consider the function e: K x K —
[0,00) such that
e(x,0) =¢(0,x), z € K, (3.4)
e(x,y) + ag(z,0) + (1 — a)e(0,y) < e(pr + qy,0), z,y € K (3.5)
and the function x — e(x,0) is bounded on every bounded subset of K.
If a function f: K =Y satisfies
laf(z)+ (1 —a)f(y) — fpz+aqy)ll < e(z,y), =z,y€K,
then there exists a unique function fo: K — 'Y fulfilling the condition
1 (@) = fo(x) = FO)| < e(x,0), v € K

and the functional equation

afo(z) + (1 —a)foly) = folpr +qy), =,yekK.

Moreover, fo is an additive function.
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Proof. Let g: K — Y be given by g(z) = f(z) — f(0), x € K and F(z) := g(z) +
e(z,0)B, © € K, where B is the closed unit ball. By (3.5), £(0,0) = 0. Hence
F(0) = {0} and
aF(z)+ (1 - a)F(y)
= [ag(@) + (1 - a)g(y)] + as(z,0)B+ (1 — a)e(0,y) B
9(pz + qy) +&(x,y) B + ae(z,0)B + (1 — a)e(0,y) B
9(pz + qy) + (pz + ¢y,0)B
= Flpz+qy).
According to Theorem 2.6 there exists a unique function fy : K — Y fulfilling
equation (3.1) such that

fo(z) € F(z) = g(x) + e(z,0)B, = € K.
Function fj is additive. This completes the proof. U

-
-

Example 3.3. Let K = [0,00), p,q > 1, a € (0,1) and &(z,y) = z° +v°, =,y € K,
where s > 1 is such a number that 2 — ¢° < a < p® — 1. Conditions (3.4),(3.5) hold
and Theorem 3.2 may be used.
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