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Abstract. Applying the classical Banach fixed point theorem we prove that a set-valued function

with bounded diameter satisfying a linear functional inclusion admits a unique selection fulfilling
the corresponding functional equation. We also adopt the method of the proof for investigating the

Hyers-Ulam stability of some functional equations.
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1. Introduction

Let X, Y be real vector spaces and D ⊂ X a convex set. A set-valued function
F : D → n(Y ), where n(Y ) denote the family of all nonempty subsets of Y , is said to
be convex if

αF (x) + (1− α)F (y) ⊂ F (αx+ (1− α)y), x, y ∈ D, α ∈ [0, 1].

If

1

2
F (x) +

1

2
F (y) ⊂ F (

x+ y

2
), x, y ∈ D,

the set-valued function F is called midconvex or Jensen convex. A. Smajdor and W.
Smajdor proved, that if Y is a topological vector space and F : X → n(Y ) is a convex
set-valued function with compact values, then there exists an affine selection of F .
They have also observed that, if F is midconvex set-valued function, then for every
y0 ∈ F (0) there exists an additive function a : X → Y such that X 3 x 7→ y0 +a(x) ∈
Y is a selection of F (see Theorem 3 and 4 in [13]). Similar results, but in particular
case, were earlier obtained by K. Nikodem in [7].
Some theorems, for set-valued functions satisfying more general inclusions were proved
by K. Nikodem and D. Popa in [8]. M. Piszczek in [9] proved the following result. Let
K be a convex cone in a vector space X, i.e. αK+βK ⊂ K for every α, β ≥ 0, (Y, ‖·‖)
a Banach space and a, b, p, q > 0. Consider a set-valued function F : K → n(Y ) such
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that F (x) is convex and closed for each x ∈ K and sup{diamF (x), x ∈ K} < +∞,
where

diamF (x) = sup{‖y1 − y2‖, y1, y2 ∈ F (x)}.
If

pF (x) + qF (y) ⊂ F (ax+ by), x, y ∈ K,
then

(1) if p+q < 1, there exists a unique selection f : K → Y of F satisfying equation
pf(x) + qf(y) = f(ax+ by), x, y ∈ K,

(2) if p+ q > 1, F is single-valued.

D. Popa in [12] investigated the existence of selections satisfying a certain functional
equation for a set-valued function F : X → n(Y ) such that

F (x)♦F (y) ⊂ F (x ∗ y), x, y ∈ X,

where (X, ∗), (Y,♦) are square-symmetric grupoids.
Recently D. Inoan and D. Popa in [5] proved the existence of selections of a set-

valued function F : G→ n(Y ) fulfilling the inclusion

(1− p)F (x) + pF (y) ⊂ F (x ∗ y) + C, x, y ∈ G,

where (G, ∗) is a grupoid with a bisymmetric operation and Y is a Banach space.

2. The main theorems

Let K be a nonempty set and (Y, %) a metric space. The diameter of the set
A ∈ n(Y ) is given by formula diamA = sup{%(a, b) : a, b ∈ A}. Consider a set-valued
function F : K → n(Y ). A function f : K → Y is a selection of the set-valued function
F iff f(x) ∈ F (x), x ∈ K. Let

Sel(F ) := {f : K → Y : f(x) ∈ F (x), x ∈ K}.

It is easy to check that if sup{diam(F (x)), x ∈ K} < +∞, then the functional

d(f, g) := sup{%(f(x), g(x)), x ∈ K} < +∞, f, g ∈ Sel(F )

is a metric in Sel(F ). Obviously, the convergence in the space (Sel(F ), d) is the uni-
form convergence on the set K. Moreover if (Y, %) is complete and F (x) ∈ cl(Y ), x ∈
K (where cl(Y ) denotes the family of all closed members of n(Y )), then (Sel(F ), d)
is complete (see [4], ch. 11).

Theorem 2.1. Let α ∈ (−1, 1), p, q > 0 and K be a subset of a real vector space
X such that 0 ∈ K and K ⊂ pK. Assume that (Y, ‖ · ‖) is a real Banach space and
F : K → cl(Y ) a set-valued function with bounded diameter, i.e.

sup{diamF (x), x ∈ K} = M < +∞.

If

αF (x) + (1− α)F (y) ⊂ F (px+ qy), x, y ∈ K, px+ qy ∈ K, (2.1)

then there exists a unique function f : K → Y such that

αf(x) + (1− α)f(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K
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and

f(x) + F (0) ⊂ F (x), x ∈ K.

Proof. Fix a ∈ F (0) and define a set-valued function G : K → cl(Y ) by formula

G(x) = F (x)− a, x ∈ K.

Obviously, 0 ∈ G(0), diamG(x) = diamF (x) ≤M, x ∈ K and

αG(x) + (1− α)G(y) ⊂ G(px+ qy), x, y ∈ K, px+ qy ∈ K. (2.2)

Indeed, fix x, y ∈ K such that px+ qy ∈ K. By (2.1),

αG(x) + (1− α)G(y) = αF (x) + (1− α)F (y)− a ⊂ F (px+ qy)− a = G(px+ qy).

Setting y = 0 and replacing x by x
p in (2.2), we get

αG

(
x

p

)
+ (1− α)G(0) ⊂ G(x), x ∈ K.

Hence

αG

(
x

p

)
⊂ G(x), x ∈ K. (2.3)

Let

T (g)(x) := αg

(
x

p

)
, x ∈ K, g ∈ Sel(G).

By (2.3), T (g) ∈ Sel(G), g ∈ Sel(G). Moreover for every g1, g2 ∈ Sel(G)

d(T (g1), T (g2)) = |α| sup

{
‖g1

(
x

p

)
− g2

(
x

p

)
‖, x ∈ K

}
≤ |α|d(g1, g2).

Thus T : Sel(G)→ Sel(G) is contractive in the complete metric space (Sel(G), d), so
by the Banach theorem, it has a unique fixed point ga and lim

n→∞
Tn(g) = ga for each

g ∈ Sel(G). Hence ga : K → Y is a unique selection of the set-valued function G such
that

ga(x) = αga

(
x

p

)
, x ∈ K. (2.4)

In particular, ga(0) = 0 and ga(x) + a ∈ F (x), x ∈ K. Fix now g ∈ Sel(G) and
x, y ∈ K such that px+ qy ∈ K. By (2.2),

αg(x) + (1− α)g(y), g(px+ qy) ∈ G(px+ qy), x, y ∈ K, px+ qy ∈ K.

Hence

‖αg(x) + (1− α)g(y)− g(px+ qy)‖ ≤ diamG(px+ qy) ≤M.

Thus for each x, y ∈ K such that px+ qy ∈ K,

‖αT 0(g)(x) + (1− α)T 0(g)(y)− T 0(g)(px+ qy)‖ ≤ |α|0M.

Fix now n ≥ 0 and assume, that

‖αTn(g)(x) + (1− α)Tn(g)(y)− Tn(g)(px+ qy)‖ ≤ |α|nM
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for all x, y ∈ K with px + qy ∈ K. Let x, y ∈ K and px + qy ∈ K. Then x
p ,

y
p ∈ K

and pxp + q yp ∈ K. Hence

‖αTn+1(g)(x) + (1− α)Tn+1(g)(y)− Tn+1(g)(px+ qy)‖

= |α| · ‖αTn(g)
(
x
p

)
+ (1− α)Tn(g)(yp )− Tn(g)(pxp + q yp )‖

≤ |α|n+1M.

It follows that for every x, y ∈ K such that px+ qy ∈ K and each n ≥ 0,

‖αTn(g)(x) + (1− α)Tn(g)(y)− Tn(g)(px+ qy)‖ ≤ |α|nM.

Letting n→∞ we obtain

αga(x) + (1− α)ga(y) = ga(px+ qy), x, y ∈ K, px+ qy ∈ K.

We have proved, that for every a ∈ F (0) there exists a unique function ga : K → Y
such that ga(x) + a ∈ F (x), x ∈ K and

αga

(
x

p

)
= ga(x), x ∈ K.

Moreover,

αga(x) + (1− α)ga(y) = ga(px+ qy), x, y ∈ K px+ qy ∈ K.

For the end of the proof fix a1, a2 ∈ F (0). From what has already been proved, there
exist functions g1, g2 : K → Y such that gi(x)+ai ∈ F (x) and αgi(

x
p ) = gi(x), x ∈ K,

i = 1, 2. Consequently, for all x ∈ K,

‖g1(x)− g2(x)‖ ≤ diamF (x) + ‖a1 − a2‖ ≤ diamF (x) + diamF (0) ≤ 2M.

Hence

‖g1(x)− g2(x)‖ ≤ 2|α|0M, x ∈ K.
Assume, that for fixed n ≥ 0

‖g1(x)− g2(x)‖ ≤ 2|α|nM, x ∈ K

and fix x ∈ K. Then x
p ∈ K and

‖g1(x)− g2(x)‖ = |α|‖g1

(
x

p

)
− g2

(
x

p

)
‖ ≤ 2|α|n+1M.

Thus, for every for x ∈ K,

‖g1(x)− g2(x)‖ ≤ 2|α|nM, n ≥ 0,

what clearly forces

g1(x) = g2(x), x ∈ K.
It follows that there exists a unique function f : K → Y such that

αf(x) + (1− α)f(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K

and

f(x) + F (0) ⊂ F (x), x ∈ K. �
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Remark 2.2. Let α, β 6= 0 and p, q > 0. Assume that X and Y are real vector
spaces and K is a convex cone in X. If f : K → Y satisfies the equation

αf(x) + βf(y) = f(px+ qy), x, y ∈ K

and f(0) = 0, then f is additive, i.e.

f(x) + f(y) = f(x+ y), x, y ∈ K.

The proof is immediate.

Corollary 2.3. Let α ∈ (−1, 2) \ {0, 1}, p, q > 0. Assume that K is a convex cone
in a real vector space X, (Y, ‖ ·‖) a real Banach space and F : K → cl(Y ) a set-valued
function with the bounded diameter. If

αF (x) + (1− α)F (y) ⊂ F (px+ qy), x, y ∈ K,

then there exists a unique function f : K → Y such that

f(x) + F (0) ⊂ F (x), x ∈ K

and

αf(x) + (1− α)f(y) = f(px+ qy), x, y ∈ K.
The function f is additive.

Proof. Since K is a convex cone and p, q are positive numbers,

K ⊂ pK and K ⊂ qK.

If α ∈ (−1, 1), then by Theorem 2.1, there exists exactly one function f : K → Y
satisfying the equation

αf(x) + (1− α)f(y) = f(px+ qy), x, y ∈ K

and such that

f(x) + F (0) ⊂ F (x), x ∈ K.
In particular, f(0) + F (0) ⊂ F (0), it follows that nf(0) + F (0) ⊂ F (0) for every
positive integer n. The set F (0) is nonempty and bounded, and so f(0) = 0. If
α ∈ (1, 2), then 1−α ∈ (−1, 0), so it is enough to change variables in Theorem 2.1. �

Example 2.4. Let K = [0,+∞) and F : K → cl(R) be given by

F (x) =

[
1, 3− 1

x+ 1

]
, x ∈ K.

The set-valued function F is convex i.e.

αF (x) + (1− α)F (y) ⊂ F (αx+ (1− α)y), x, y ∈ K, α ∈ (0, 1)

and diamF (x) ≤ 2, x ∈ K. The function K 3 x 7→ f(x) = 0 ∈ R is additive and

f(x) + F (0) = [1, 2] ⊂ F (x), x ∈ K.
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Example 2.5. Let K = [0,+∞) and F : K → cl(R) be a set-valued function defined
by

F (x) = [x+ 1, x+ 2] = x+ [1, 2], x ∈ K.
Then F is convex and f(x) = x, x ∈ K is an additive function such that

f(x) + F (0) = x+ [1, 2] ⊂ F (x), x ∈ K.

Theorem 2.6. Let α ∈ (−1, 1), p ≥ 1, q > 0, K be a convex cone in a real normed
space (X, ‖ · ‖) and (Y, ‖ · ‖) a real Banach space. Assume that F : K → cl(Y ) is a
set-valued function such that

K 3 x 7→ diamF (x) ∈ [0,+∞)

maps bounded subsets of K onto bounded. If

αF (x) + (1− α)F (y) ⊂ F (px+ qy), x, y ∈ K,

then there exists a unique function f : K → Y such that

f(x) + F (0) ⊂ F (x), x ∈ K

and fulfilling the functional equation

αf(x) + (1− α)f(y) = f(px+ qy), x, y ∈ K.

Moreover, f is an additive function.

Proof. For every n ≥ 1 define

Kn := {x ∈ K : ‖x‖ ≤ n}

and a set-valued function Fn : K → cl(Y ) by

Fn(x) = F (x), x ∈ Kn.

Then Kn ⊂ pKn and

αFn(x) + (1− α)Fn(y) ⊂ Fn(px+ qy), x, y ∈ Kn, px+ qy ∈ Kn.

Moreover

sup{diamFn(x), x ∈ Kn} < +∞.
By Theorem 2.1, there exists a unique function fn : Kn → Y such that

αfn(x) + (1− α)fn(y) = fn(px+ qy), x, y ∈ Kn, px+ qy ∈ Kn (2.5)

and

fn(x) + F (0) ⊂ F (x), x ∈ Kn.

Since

Fn+1(x) = Fn(x), x ∈ Kn,

by the uniqueness of the function fn, we have

fn+1(x) = fn(x), x ∈ Kn.

It follows that the function f : K → Y given by

f(x) = fn(x), x ∈ Kn
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is defined properly. Obviously f(x) + F (0) ⊂ F (x), x ∈ K. For the end fix x, y ∈ K.
There x, y, px+ qy ∈ Kn for n big enough. Since f(x) = fn(x), x ∈ Kn and by (2.5),

αf(x) + (1− α)f(y) = f(px+ qy).

By Remark 2.2, f must be additive. �

3. Stability results

In this section we first present an application of the method used in the proof of
Theorem 1 to the investigation of the Hyers-Ulam stability of the functional equation

αf(x) + (1− α)f(y) = f(px+ qy). (3.1)

The above equation is a particular case of general linear equation

αf(x) + βf(y) + γ = f(px+ qy + r),

where f maps a vector space into a Banach space. The general linear equation was
considered by several authors (see for example [1, 6, 10]), however they verified the
cases γ = 0 and r = 0 or investigated the stability under some additional assumptions
like α+ β 6= 1 in [2]. Further information can be found in [3, 11].

Theorem 3.1. Let K be a convex cone in a vector space X, (Y, ‖·‖) be a real Banach
space and α ∈ (0, 1), p, q > 0 and ε > 0. If a function f : K → Y satisfies

‖αf(x) + (1− α)f(y)− f(px+ qy)‖ ≤ ε, x, y ∈ K,
then there exists a unique function f0 : K → Y fulfilling the condition

‖f(x)− f0(x)− f(0)‖ ≤ ε

1− α
, x ∈ K

and the functional equation

αf0(x) + (1− α)f0(y) = f0(px+ qy), x, y ∈ K.
Moreover, f0 is an additive function.

Proof. Let g : K → Y be given by g(x) = f(x)− f(0), x ∈ K. Then g(0) = 0 and

‖αg(x) + (1− α)g(y)− g(px+ qy)‖ ≤ ε, x, y ∈ K. (3.2)

Hence, for all x, y ∈ K
αg(x) + (1− α)g(y) ∈ g(px+ qy) +Bε, (3.3)

where Bε denotes the closed ball B(0, ε). Setting y = 0 and replacing x by x
p in (3.3)

we obtain

αg

(
x

p

)
∈ g(x) +Bε, x ∈ K.

Thus, for all x ∈ K

αg

(
x

p

)
+

α

1− α
Bε ⊂ g(x) +Bε +

α

1− α
Bε = g(x) +

1

1− α
Bε.

Define a set-valued function G : K → cl(Y ) as follows

G(x) = g(x) +
1

1− α
Bε, x ∈ K.
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Then

αG

(
x

p

)
⊂ G(x), x ∈ K

and diamG(x) = 2ε
1−α , x ∈ K. The idea of the proof is the same as before so we only

give a sketch. The function T : Sel(G)→ Sel(G) given by

T (h)(x) := αh

(
x

p

)
, x ∈ K, h ∈ Sel(G).

is contraction with the constant α. By the Banach theorem, there exists the unique
function f0 ∈ Sel(G) such that

f0(px) = αf0(x), x ∈ K
and lim

n→∞
Tn(g) = f0. By the definition of G,

‖g(x)− f0(x)‖ ≤ ε

1− α
, x ∈ K.

Since g satisfies (3.2),

‖αT (g)(x) + (1− α)T (g)(y)− T (g)(px+ qy)‖ ≤ αε
for all x, y ∈ K. Proceeding by induction, we get

‖αTn(g)(x) + (1− α)Tn(g)(y)− Tn(g)(px+ qy)‖ ≤ αnε
for every x, y ∈ K and n ≥ 1. It follows that

αf0(x) + (1− α)f0(y) = f0(px+ qy), x, y ∈ K.
Since f0(0) = 0, f0 is additive, by Remark 2.2. Thus f0 is the unique additive function
such that αf0(x) + (1− α)f0(y) = f0(px+ qy), x, y ∈ K and

‖f(x)− f0(x)− f(0)‖ ≤ ε

1− α
, x ∈ K. �

Now we apply Theorem 2.6 to the proof of Rassias stability of functional equation
(3.1).

Theorem 3.2. Let K be a convex cone in a real normed space (X, ‖ · ‖), (Y, ‖ · ‖) be
a real Banach space and α ∈ (0, 1), p ≥ 1, q > 0. Consider the function ε : K ×K →
[0,∞) such that

ε(x, 0) = ε(0, x), x ∈ K, (3.4)

ε(x, y) + αε(x, 0) + (1− α)ε(0, y) ≤ ε(px+ qy, 0), x, y ∈ K (3.5)

and the function x 7→ ε(x, 0) is bounded on every bounded subset of K.
If a function f : K → Y satisfies

‖αf(x) + (1− α)f(y)− f(px+ qy)‖ ≤ ε(x, y), x, y ∈ K,
then there exists a unique function f0 : K → Y fulfilling the condition

‖f(x)− f0(x)− f(0)‖ ≤ ε(x, 0), x ∈ K
and the functional equation

αf0(x) + (1− α)f0(y) = f0(px+ qy), x, y ∈ K.
Moreover, f0 is an additive function.



SELECTIONS OF GENERALIZED CONVEX SET-VALUED FUNCTIONS 383

Proof. Let g : K → Y be given by g(x) = f(x) − f(0), x ∈ K and F (x) := g(x) +
ε(x, 0)B, x ∈ K, where B is the closed unit ball. By (3.5), ε(0, 0) = 0. Hence
F (0) = {0} and

αF (x) + (1− α)F (y)

= [αg(x) + (1− α)g(y)] + αε(x, 0)B + (1− α)ε(0, y)B

⊂ g(px+ qy) + ε(x, y)B + αε(x, 0)B + (1− α)ε(0, y)B

⊂ g(px+ qy) + ε(px+ qy, 0)B

= F (px+ qy).

According to Theorem 2.6 there exists a unique function f0 : K → Y fulfilling
equation (3.1) such that

f0(x) ∈ F (x) = g(x) + ε(x, 0)B, x ∈ K.
Function f0 is additive. This completes the proof. �

Example 3.3. Let K = [0,∞), p, q ≥ 1, α ∈ (0, 1) and ε(x, y) = xs + ys, x, y ∈ K,
where s ≥ 1 is such a number that 2 − qs ≤ α ≤ ps − 1. Conditions (3.4),(3.5) hold
and Theorem 3.2 may be used.

References

[1] C. Badea, The general linear equation is stable, Nonlinear Funct. Anal. Appl., 10(2005), 155-

164.
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