SELECTIONS OF GENERALIZED CONVEX SET-VALUED FUNCTIONS WITH BOUNDED DIAMETER

ANDRZEJ SMAJDOR* AND JOANNA SZCZAWIŃSKA**
*Institute of Mathematics, Pedagogical University, Podchorążych 2
PL-30-084 Kraków, Poland
E-mail: asmajdor@up.krakow.pl
** Institute of Mathematics, Pedagogical University, Podchorążych 2
PL-30-084 Kraków, Poland
E-mail: jszczaw@up.krakow.pl

Abstract

Applying the classical Banach fixed point theorem we prove that a set-valued function with bounded diameter satisfying a linear functional inclusion admits a unique selection fulfilling the corresponding functional equation. We also adopt the method of the proof for investigating the Hyers-Ulam stability of some functional equations. Key Words and Phrases: Subadditive set-valued function, stability, fixed point. 2010 Mathematics Subject Classification: 54C65, 28B20, 47H10, 39B82.

1. Introduction

Let X, Y be real vector spaces and $D \subset X$ a convex set. A set-valued function $F: D \rightarrow n(Y)$, where $n(Y)$ denote the family of all nonempty subsets of Y, is said to be convex if

$$
\alpha F(x)+(1-\alpha) F(y) \subset F(\alpha x+(1-\alpha) y), \quad x, y \in D, \alpha \in[0,1] .
$$

If

$$
\frac{1}{2} F(x)+\frac{1}{2} F(y) \subset F\left(\frac{x+y}{2}\right), \quad x, y \in D,
$$

the set-valued function F is called midconvex or Jensen convex. A. Smajdor and W. Smajdor proved, that if Y is a topological vector space and $F: X \rightarrow n(Y)$ is a convex set-valued function with compact values, then there exists an affine selection of F. They have also observed that, if F is midconvex set-valued function, then for every $y_{0} \in F(0)$ there exists an additive function $a: X \rightarrow Y$ such that $X \ni x \mapsto y_{0}+a(x) \in$ Y is a selection of F (see Theorem 3 and 4 in [13]). Similar results, but in particular case, were earlier obtained by K. Nikodem in [7].
Some theorems, for set-valued functions satisfying more general inclusions were proved by K. Nikodem and D. Popa in [8]. M. Piszczek in [9] proved the following result. Let K be a convex cone in a vector space X, i.e. $\alpha K+\beta K \subset K$ for every $\alpha, \beta \geq 0,(Y,\|\cdot\|)$ a Banach space and $a, b, p, q>0$. Consider a set-valued function $F: K \rightarrow n(Y)$ such
that $F(x)$ is convex and closed for each $x \in K$ and $\sup \{\operatorname{diam} F(x), x \in K\}<+\infty$, where

$$
\operatorname{diam} F(x)=\sup \left\{\left\|y_{1}-y_{2}\right\|, y_{1}, y_{2} \in F(x)\right\}
$$

If

$$
p F(x)+q F(y) \subset F(a x+b y), \quad x, y \in K
$$

then
(1) if $p+q<1$, there exists a unique selection $f: K \rightarrow Y$ of F satisfying equation $p f(x)+q f(y)=f(a x+b y), x, y \in K$,
(2) if $p+q>1, F$ is single-valued.
D. Popa in [12] investigated the existence of selections satisfying a certain functional equation for a set-valued function $F: X \rightarrow n(Y)$ such that

$$
F(x) \diamond F(y) \subset F(x * y), \quad x, y \in X
$$

where $(X, *),(Y, \diamond)$ are square-symmetric grupoids.
Recently D. Inoan and D. Popa in [5] proved the existence of selections of a setvalued function $F: G \rightarrow n(Y)$ fulfilling the inclusion

$$
(1-p) F(x)+p F(y) \subset F(x * y)+C, \quad x, y \in G,
$$

where $(G, *)$ is a grupoid with a bisymmetric operation and Y is a Banach space.

2. The main theorems

Let K be a nonempty set and (Y, ϱ) a metric space. The diameter of the set $A \in n(Y)$ is given by formula $\operatorname{diam} A=\sup \{\varrho(a, b): a, b \in A\}$. Consider a set-valued function $F: K \rightarrow n(Y)$. A function $f: K \rightarrow Y$ is a selection of the set-valued function F iff $f(x) \in F(x), x \in K$. Let

$$
\operatorname{Sel}(F):=\{f: K \rightarrow Y: f(x) \in F(x), x \in K\} .
$$

It is easy to check that if $\sup \{\operatorname{diam}(F(x)), x \in K\}<+\infty$, then the functional

$$
d(f, g):=\sup \{\varrho(f(x), g(x)), x \in K\}<+\infty, \quad f, g \in \operatorname{Sel}(F)
$$

is a metric in $\operatorname{Sel}(F)$. Obviously, the convergence in the space $(\operatorname{Sel}(F), d)$ is the uniform convergence on the set K. Moreover if (Y, ϱ) is complete and $F(x) \in c l(Y), x \in$ K (where $\operatorname{cl}(Y)$ denotes the family of all closed members of $n(Y)$), then $(\operatorname{Sel}(F), d)$ is complete (see [4], ch. 11).

Theorem 2.1. Let $\alpha \in(-1,1), \quad p, q>0$ and K be a subset of a real vector space X such that $0 \in K$ and $K \subset p K$. Assume that $(Y,\|\cdot\|)$ is a real Banach space and $F: K \rightarrow c l(Y)$ a set-valued function with bounded diameter, i.e.

$$
\sup \{\operatorname{diam} F(x), x \in K\}=M<+\infty
$$

If

$$
\begin{equation*}
\alpha F(x)+(1-\alpha) F(y) \subset F(p x+q y), \quad x, y \in K, p x+q y \in K \tag{2.1}
\end{equation*}
$$

then there exists a unique function $f: K \rightarrow Y$ such that

$$
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y), \quad x, y \in K, p x+q y \in K
$$

and

$$
f(x)+F(0) \subset F(x), x \in K
$$

Proof. Fix $a \in F(0)$ and define a set-valued function $G: K \rightarrow c l(Y)$ by formula

$$
G(x)=F(x)-a, x \in K
$$

Obviously, $0 \in G(0), \operatorname{diam} G(x)=\operatorname{diam} F(x) \leq M, x \in K$ and

$$
\begin{equation*}
\alpha G(x)+(1-\alpha) G(y) \subset G(p x+q y), \quad x, y \in K, p x+q y \in K \tag{2.2}
\end{equation*}
$$

Indeed, fix $x, y \in K$ such that $p x+q y \in K$. By (2.1),

$$
\alpha G(x)+(1-\alpha) G(y)=\alpha F(x)+(1-\alpha) F(y)-a \subset F(p x+q y)-a=G(p x+q y) .
$$

Setting $y=0$ and replacing x by $\frac{x}{p}$ in (2.2), we get

$$
\alpha G\left(\frac{x}{p}\right)+(1-\alpha) G(0) \subset G(x), \quad x \in K .
$$

Hence

$$
\begin{equation*}
\alpha G\left(\frac{x}{p}\right) \subset G(x), \quad x \in K . \tag{2.3}
\end{equation*}
$$

Let

$$
T(g)(x):=\alpha g\left(\frac{x}{p}\right), x \in K, g \in \operatorname{Sel}(G) .
$$

By $(2.3), T(g) \in \operatorname{Sel}(G), g \in \operatorname{Sel}(G)$. Moreover for every $g_{1}, g_{2} \in \operatorname{Sel}(G)$

$$
d\left(T\left(g_{1}\right), T\left(g_{2}\right)\right)=|\alpha| \sup \left\{\left\|g_{1}\left(\frac{x}{p}\right)-g_{2}\left(\frac{x}{p}\right)\right\|, x \in K\right\} \leq|\alpha| d\left(g_{1}, g_{2}\right) .
$$

Thus $T: \operatorname{Sel}(G) \rightarrow \operatorname{Sel}(G)$ is contractive in the complete metric space $(\operatorname{Sel}(G), d)$, so by the Banach theorem, it has a unique fixed point g_{a} and $\lim _{n \rightarrow \infty} T^{n}(g)=g_{a}$ for each $g \in \operatorname{Sel}(G)$. Hence $g_{a}: K \rightarrow Y$ is a unique selection of the set-valued function G such that

$$
\begin{equation*}
g_{a}(x)=\alpha g_{a}\left(\frac{x}{p}\right), x \in K . \tag{2.4}
\end{equation*}
$$

In particular, $g_{a}(0)=0$ and $g_{a}(x)+a \in F(x), x \in K$. Fix now $g \in \operatorname{Sel}(G)$ and $x, y \in K$ such that $p x+q y \in K$. By (2.2),

$$
\alpha g(x)+(1-\alpha) g(y), g(p x+q y) \in G(p x+q y), x, y \in K, p x+q y \in K
$$

Hence

$$
\|\alpha g(x)+(1-\alpha) g(y)-g(p x+q y)\| \leq \operatorname{diam} G(p x+q y) \leq M
$$

Thus for each $x, y \in K$ such that $p x+q y \in K$,

$$
\left\|\alpha T^{0}(g)(x)+(1-\alpha) T^{0}(g)(y)-T^{0}(g)(p x+q y)\right\| \leq|\alpha|^{0} M
$$

Fix now $n \geq 0$ and assume, that

$$
\left\|\alpha T^{n}(g)(x)+(1-\alpha) T^{n}(g)(y)-T^{n}(g)(p x+q y)\right\| \leq|\alpha|^{n} M
$$

for all $x, y \in K$ with $p x+q y \in K$. Let $x, y \in K$ and $p x+q y \in K$. Then $\frac{x}{p}, \frac{y}{p} \in K$ and $p \frac{x}{p}+q \frac{y}{p} \in K$. Hence

$$
\begin{aligned}
& \left\|\alpha T^{n+1}(g)(x)+(1-\alpha) T^{n+1}(g)(y)-T^{n+1}(g)(p x+q y)\right\| \\
& =|\alpha| \cdot\left\|\alpha T^{n}(g)\left(\frac{x}{p}\right)+(1-\alpha) T^{n}(g)\left(\frac{y}{p}\right)-T^{n}(g)\left(p \frac{x}{p}+q \frac{y}{p}\right)\right\| \\
& \leq|\alpha|^{n+1} M .
\end{aligned}
$$

It follows that for every $x, y \in K$ such that $p x+q y \in K$ and each $n \geq 0$,

$$
\left\|\alpha T^{n}(g)(x)+(1-\alpha) T^{n}(g)(y)-T^{n}(g)(p x+q y)\right\| \leq|\alpha|^{n} M .
$$

Letting $n \rightarrow \infty$ we obtain

$$
\alpha g_{a}(x)+(1-\alpha) g_{a}(y)=g_{a}(p x+q y), x, y \in K, p x+q y \in K .
$$

We have proved, that for every $a \in F(0)$ there exists a unique function $g_{a}: K \rightarrow Y$ such that $g_{a}(x)+a \in F(x), x \in K$ and

$$
\alpha g_{a}\left(\frac{x}{p}\right)=g_{a}(x), x \in K
$$

Moreover,

$$
\alpha g_{a}(x)+(1-\alpha) g_{a}(y)=g_{a}(p x+q y), x, y \in K p x+q y \in K .
$$

For the end of the proof fix $a_{1}, a_{2} \in F(0)$. From what has already been proved, there exist functions $g_{1}, g_{2}: K \rightarrow Y$ such that $g_{i}(x)+a_{i} \in F(x)$ and $\alpha g_{i}\left(\frac{x}{p}\right)=g_{i}(x), x \in K$, $i=1,2$. Consequently, for all $x \in K$,

$$
\left\|g_{1}(x)-g_{2}(x)\right\| \leq \operatorname{diam} F(x)+\left\|a_{1}-a_{2}\right\| \leq \operatorname{diam} F(x)+\operatorname{diam} F(0) \leq 2 M
$$

Hence

$$
\left\|g_{1}(x)-g_{2}(x)\right\| \leq 2|\alpha|^{0} M, x \in K .
$$

Assume, that for fixed $n \geq 0$

$$
\left\|g_{1}(x)-g_{2}(x)\right\| \leq 2|\alpha|^{n} M, x \in K
$$

and fix $x \in K$. Then $\frac{x}{p} \in K$ and

$$
\left\|g_{1}(x)-g_{2}(x)\right\|=|\alpha|\left\|g_{1}\left(\frac{x}{p}\right)-g_{2}\left(\frac{x}{p}\right)\right\| \leq 2|\alpha|^{n+1} M .
$$

Thus, for every for $x \in K$,

$$
\left\|g_{1}(x)-g_{2}(x)\right\| \leq 2|\alpha|^{n} M, n \geq 0
$$

what clearly forces

$$
g_{1}(x)=g_{2}(x), x \in K
$$

It follows that there exists a unique function $f: K \rightarrow Y$ such that

$$
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y), \quad x, y \in K, p x+q y \in K
$$

and

$$
f(x)+F(0) \subset F(x), x \in K
$$

Remark 2.2. Let $\alpha, \beta \neq 0$ and $p, q>0$. Assume that X and Y are real vector spaces and K is a convex cone in X. If $f: K \rightarrow Y$ satisfies the equation

$$
\alpha f(x)+\beta f(y)=f(p x+q y), \quad x, y \in K
$$

and $f(0)=0$, then f is additive, i.e.

$$
f(x)+f(y)=f(x+y), \quad x, y \in K
$$

The proof is immediate.
Corollary 2.3. Let $\alpha \in(-1,2) \backslash\{0,1\}, p, q>0$. Assume that K is a convex cone in a real vector space $X,(Y,\|\cdot\|)$ a real Banach space and $F: K \rightarrow c l(Y)$ a set-valued function with the bounded diameter. If

$$
\alpha F(x)+(1-\alpha) F(y) \subset F(p x+q y), \quad x, y \in K
$$

then there exists a unique function $f: K \rightarrow Y$ such that

$$
f(x)+F(0) \subset F(x), x \in K
$$

and

$$
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y), \quad x, y \in K
$$

The function f is additive.
Proof. Since K is a convex cone and p, q are positive numbers,

$$
K \subset p K \quad \text { and } \quad K \subset q K
$$

If $\alpha \in(-1,1)$, then by Theorem 2.1, there exists exactly one function $f: K \rightarrow Y$ satisfying the equation

$$
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y), \quad x, y \in K
$$

and such that

$$
f(x)+F(0) \subset F(x), x \in K
$$

In particular, $f(0)+F(0) \subset F(0)$, it follows that $n f(0)+F(0) \subset F(0)$ for every positive integer n. The set $F(0)$ is nonempty and bounded, and so $f(0)=0$. If $\alpha \in(1,2)$, then $1-\alpha \in(-1,0)$, so it is enough to change variables in Theorem 2.1.

Example 2.4. Let $K=[0,+\infty)$ and $F: K \rightarrow c l(\mathbb{R})$ be given by

$$
F(x)=\left[1,3-\frac{1}{x+1}\right], x \in K .
$$

The set-valued function F is convex i.e.

$$
\alpha F(x)+(1-\alpha) F(y) \subset F(\alpha x+(1-\alpha) y), x, y \in K, \alpha \in(0,1)
$$

and $\operatorname{diam} F(x) \leq 2, x \in K$. The function $K \ni x \mapsto f(x)=0 \in \mathbb{R}$ is additive and

$$
f(x)+F(0)=[1,2] \subset F(x), x \in K .
$$

Example 2.5. Let $K=[0,+\infty)$ and $F: K \rightarrow c l(\mathbb{R})$ be a set-valued function defined by

$$
F(x)=[x+1, x+2]=x+[1,2], x \in K
$$

Then F is convex and $f(x)=x, x \in K$ is an additive function such that

$$
f(x)+F(0)=x+[1,2] \subset F(x), x \in K
$$

Theorem 2.6. Let $\alpha \in(-1,1), \quad p \geq 1, q>0, K$ be a convex cone in a real normed space $(X,\|\cdot\|)$ and $(Y,\|\cdot\|)$ a real Banach space. Assume that $F: K \rightarrow \operatorname{cl}(Y)$ is a set-valued function such that

$$
K \ni x \mapsto \operatorname{diam} F(x) \in[0,+\infty)
$$

maps bounded subsets of K onto bounded. If

$$
\alpha F(x)+(1-\alpha) F(y) \subset F(p x+q y), \quad x, y \in K
$$

then there exists a unique function $f: K \rightarrow Y$ such that

$$
f(x)+F(0) \subset F(x), x \in K
$$

and fulfilling the functional equation

$$
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y), \quad x, y \in K
$$

Moreover, f is an additive function.
Proof. For every $n \geq 1$ define

$$
K_{n}:=\{x \in K:\|x\| \leq n\}
$$

and a set-valued function $F_{n}: K \rightarrow c l(Y)$ by

$$
F_{n}(x)=F(x), x \in K_{n} .
$$

Then $K_{n} \subset p K_{n}$ and

$$
\alpha F_{n}(x)+(1-\alpha) F_{n}(y) \subset F_{n}(p x+q y), \quad x, y \in K_{n}, p x+q y \in K_{n} .
$$

Moreover

$$
\sup \left\{\operatorname{diam} F_{n}(x), x \in K_{n}\right\}<+\infty
$$

By Theorem 2.1, there exists a unique function $f_{n}: K_{n} \rightarrow Y$ such that

$$
\begin{equation*}
\alpha f_{n}(x)+(1-\alpha) f_{n}(y)=f_{n}(p x+q y), \quad x, y \in K_{n}, p x+q y \in K_{n} \tag{2.5}
\end{equation*}
$$

and

$$
f_{n}(x)+F(0) \subset F(x), x \in K_{n} .
$$

Since

$$
F_{n+1}(x)=F_{n}(x), x \in K_{n},
$$

by the uniqueness of the function f_{n}, we have

$$
f_{n+1}(x)=f_{n}(x), x \in K_{n} .
$$

It follows that the function $f: K \rightarrow Y$ given by

$$
f(x)=f_{n}(x), x \in K_{n}
$$

is defined properly. Obviously $f(x)+F(0) \subset F(x), x \in K$. For the end fix $x, y \in K$. There $x, y, p x+q y \in K_{n}$ for n big enough. Since $f(x)=f_{n}(x), x \in K_{n}$ and by (2.5),

$$
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y) .
$$

By Remark 2.2, f must be additive.

3. Stability Results

In this section we first present an application of the method used in the proof of Theorem 1 to the investigation of the Hyers-Ulam stability of the functional equation

$$
\begin{equation*}
\alpha f(x)+(1-\alpha) f(y)=f(p x+q y) . \tag{3.1}
\end{equation*}
$$

The above equation is a particular case of general linear equation

$$
\alpha f(x)+\beta f(y)+\gamma=f(p x+q y+r),
$$

where f maps a vector space into a Banach space. The general linear equation was considered by several authors (see for example [1, 6, 10]), however they verified the cases $\gamma=0$ and $r=0$ or investigated the stability under some additional assumptions like $\alpha+\beta \neq 1$ in [2]. Further information can be found in [3, 11].

Theorem 3.1. Let K be a convex cone in a vector space $X,(Y,\|\cdot\|)$ be a real Banach space and $\alpha \in(0,1), p, q>0$ and $\varepsilon>0$. If a function $f: K \rightarrow Y$ satisfies

$$
\|\alpha f(x)+(1-\alpha) f(y)-f(p x+q y)\| \leq \varepsilon, \quad x, y \in K
$$

then there exists a unique function $f_{0}: K \rightarrow Y$ fulfilling the condition

$$
\left\|f(x)-f_{0}(x)-f(0)\right\| \leq \frac{\varepsilon}{1-\alpha}, x \in K
$$

and the functional equation

$$
\alpha f_{0}(x)+(1-\alpha) f_{0}(y)=f_{0}(p x+q y), \quad x, y \in K .
$$

Moreover, f_{0} is an additive function.
Proof. Let $g: K \rightarrow Y$ be given by $g(x)=f(x)-f(0), x \in K$. Then $g(0)=0$ and

$$
\begin{equation*}
\|\alpha g(x)+(1-\alpha) g(y)-g(p x+q y)\| \leq \varepsilon, \quad x, y \in K . \tag{3.2}
\end{equation*}
$$

Hence, for all $x, y \in K$

$$
\begin{equation*}
\alpha g(x)+(1-\alpha) g(y) \in g(p x+q y)+B_{\varepsilon}, \tag{3.3}
\end{equation*}
$$

where B_{ε} denotes the closed ball $B(0, \varepsilon)$. Setting $y=0$ and replacing x by $\frac{x}{p}$ in (3.3) we obtain

$$
\alpha g\left(\frac{x}{p}\right) \in g(x)+B_{\varepsilon}, x \in K .
$$

Thus, for all $x \in K$

$$
\alpha g\left(\frac{x}{p}\right)+\frac{\alpha}{1-\alpha} B_{\varepsilon} \subset g(x)+B_{\varepsilon}+\frac{\alpha}{1-\alpha} B_{\varepsilon}=g(x)+\frac{1}{1-\alpha} B_{\varepsilon} .
$$

Define a set-valued function $G: K \rightarrow c l(Y)$ as follows

$$
G(x)=g(x)+\frac{1}{1-\alpha} B_{\varepsilon}, x \in K .
$$

Then

$$
\alpha G\left(\frac{x}{p}\right) \subset G(x), x \in K
$$

and $\operatorname{diam} G(x)=\frac{2 \varepsilon}{1-\alpha}, x \in K$. The idea of the proof is the same as before so we only give a sketch. The function $T: \operatorname{Sel}(G) \rightarrow \operatorname{Sel}(G)$ given by

$$
T(h)(x):=\alpha h\left(\frac{x}{p}\right), x \in K, h \in \operatorname{Sel}(G) .
$$

is contraction with the constant α. By the Banach theorem, there exists the unique function $f_{0} \in \operatorname{Sel}(G)$ such that

$$
f_{0}(p x)=\alpha f_{0}(x), x \in K
$$

and $\lim _{n \rightarrow \infty} T^{n}(g)=f_{0}$. By the definition of G,

$$
\left\|g(x)-f_{0}(x)\right\| \leq \frac{\varepsilon}{1-\alpha}, x \in K
$$

Since g satisfies (3.2),

$$
\|\alpha T(g)(x)+(1-\alpha) T(g)(y)-T(g)(p x+q y)\| \leq \alpha \varepsilon
$$

for all $x, y \in K$. Proceeding by induction, we get

$$
\left\|\alpha T^{n}(g)(x)+(1-\alpha) T^{n}(g)(y)-T^{n}(g)(p x+q y)\right\| \leq \alpha^{n} \varepsilon
$$

for every $x, y \in K$ and $n \geq 1$. It follows that

$$
\alpha f_{0}(x)+(1-\alpha) f_{0}(y)=f_{0}(p x+q y), x, y \in K
$$

Since $f_{0}(0)=0, f_{0}$ is additive, by Remark 2.2. Thus f_{0} is the unique additive function such that $\alpha f_{0}(x)+(1-\alpha) f_{0}(y)=f_{0}(p x+q y), x, y \in K$ and

$$
\left\|f(x)-f_{0}(x)-f(0)\right\| \leq \frac{\varepsilon}{1-\alpha}, x \in K
$$

Now we apply Theorem 2.6 to the proof of Rassias stability of functional equation (3.1).

Theorem 3.2. Let K be a convex cone in a real normed space $(X,\|\cdot\|),(Y,\|\cdot\|)$ be a real Banach space and $\alpha \in(0,1), p \geq 1, q>0$. Consider the function $\varepsilon: K \times K \rightarrow$ $[0, \infty)$ such that

$$
\begin{gather*}
\varepsilon(x, 0)=\varepsilon(0, x), x \in K \tag{3.4}\\
\varepsilon(x, y)+\alpha \varepsilon(x, 0)+(1-\alpha) \varepsilon(0, y) \leq \varepsilon(p x+q y, 0), x, y \in K \tag{3.5}
\end{gather*}
$$

and the function $x \mapsto \varepsilon(x, 0)$ is bounded on every bounded subset of K.
If a function $f: K \rightarrow Y$ satisfies

$$
\|\alpha f(x)+(1-\alpha) f(y)-f(p x+q y)\| \leq \varepsilon(x, y), \quad x, y \in K
$$

then there exists a unique function $f_{0}: K \rightarrow Y$ fulfilling the condition

$$
\left\|f(x)-f_{0}(x)-f(0)\right\| \leq \varepsilon(x, 0), x \in K
$$

and the functional equation

$$
\alpha f_{0}(x)+(1-\alpha) f_{0}(y)=f_{0}(p x+q y), \quad x, y \in K .
$$

Moreover, f_{0} is an additive function.

Proof. Let $g: K \rightarrow Y$ be given by $g(x)=f(x)-f(0), x \in K$ and $F(x):=g(x)+$ $\varepsilon(x, 0) B, x \in K$, where B is the closed unit ball. By $(3.5), \varepsilon(0,0)=0$. Hence $F(0)=\{0\}$ and

$$
\begin{aligned}
& \alpha F(x)+(1-\alpha) F(y) \\
& \quad=[\alpha g(x)+(1-\alpha) g(y)]+\alpha \varepsilon(x, 0) B+(1-\alpha) \varepsilon(0, y) B \\
& \quad \subset g(p x+q y)+\varepsilon(x, y) B+\alpha \varepsilon(x, 0) B+(1-\alpha) \varepsilon(0, y) B \\
& \quad \subset g(p x+q y)+\varepsilon(p x+q y, 0) B \\
& \quad=F(p x+q y) .
\end{aligned}
$$

According to Theorem 2.6 there exists a unique function $f_{0}: K \rightarrow Y$ fulfilling equation (3.1) such that

$$
f_{0}(x) \in F(x)=g(x)+\varepsilon(x, 0) B, x \in K .
$$

Function f_{0} is additive. This completes the proof.
Example 3.3. Let $K=[0, \infty), p, q \geq 1, \alpha \in(0,1)$ and $\varepsilon(x, y)=x^{s}+y^{s}, x, y \in K$, where $s \geq 1$ is such a number that $2-q^{s} \leq \alpha \leq p^{s}-1$. Conditions (3.4),(3.5) hold and Theorem 3.2 may be used.

References

[1] C. Badea, The general linear equation is stable, Nonlinear Funct. Anal. Appl., 10(2005), 155164.
[2] J. Brzdȩk, A. Pietrzyk, A note on stability of the general linear equation, Aequationes Math., 75(2008), 267-270.
[3] J. Brzdȩk, D. Popa, B. Xu, Selections of the set-valued maps satisfying a linear inclusions in single variable via Hyers-Ulam stability, Nonlinear Anal., 74(2011), 324-330.
[4] D.J.H. Garling, A Course in Mathematical Analysis: Volume 2, Metric and Topological Spaces, Functions of a Vector Variable, Cambridge University Press, 2014.
[5] D. Inoan, D. Popa, On selections of generalized convex set-valued maps, Aequationes Math. DOI 10.1007/s00010-013-0219-5.
[6] S.M. Jung, On modified Hyers-Ulam-Rassias stability of generalized Cauchy functional equation, Nonlinear Stud., 5(1998), 59-67.
[7] K. Nikodem, A characterization of midconvex set-valued functions, Acta Univ. Carolin. Math. Phys., 30(1989), 125-129.
[8] K. Nikodem, D. Popa, On selections of general linear inclusions, Publ. Math. Debrecen, 75(2009), 239-349.
[9] M. Piszczek, On selections of set-valued inclusions in a single variable with applications to several variables, Results Math., 64(2013), 1-12.
[10] D. Popa, Hyers-Ulam-Rassias stability of the general linear equation, Nonlinear Funct. Anal. Appl., 4(2002), 581-588.
[11] D. Popa, A stability result for general linear inclusion, Nonlinear Funct. Anal. Appl., 3(2004), 405-414.
[12] D. Popa, A property of a functional inclusion connected with Hyers-Ulam stability, J. Math. Inequal., 4(2009), 591-598.
[13] A. Smajdor, W. Smajdor, Affine selections of convex set-valued functions, Aequationes Math., 51(1996), 12-20.

Received: May 26, 2014; Accepted: October 23, 2014.

