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Abstract. This paper is concerned with an algorithmic solution to the proximal split feasibility
problem which is also a fixed point of a k-strictly pseudocontractive mapping in Hilbert spaces. Under

some assumptions on the parameters in our iterative algorithm, we first establish a strong convergence

theorem for a problem of finding a point which minimizes a proper convex lower-semicontinuous
function f which is also a fixed point of a k-strictly pseudocontractive mapping such that its image

under a bounded linear operator A minimizes another proper convex lower-semicontinuous function
g and secondly prove another strong convergence result for a problem of finding a point which

minimizes a proper convex lower-semicontinuous function f which is also a fixed point of a k-strictly

pseudocontractive mapping such that its image under a bounded linear operator A minimizes locally
lower semicontinuous, prox-bounded and prox-regular function g. In all our results in this work, our

iterative schemes are proposed with a way of selecting the step-sizes such that their implementation

does not need any prior information about the operator norm because the calculation or at least
an estimate of the operator norm ||A|| is very difficult, if it is not an impossible task. Our result

complement many recent and important results in this direction.
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1. Introduction

In this paper, we shall assume that H is a real Hilbert space with inner product 〈., .〉
and norm ||.||. Let I denote the identity operator on H. A mapping T : H → H is
said to be nonexpansive if

||Tx− Ty|| ≤ ||x− y||, ∀ x, y ∈ H, (1.1)

and T : H → H is said to be k-strictly pseudocontractive (see, [2]) if for 0 ≤ k < 1,

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2, ∀ x, y ∈ H. (1.2)

It is well known that every nonexpansive mapping is strictly pseudocontractive. In a
Hilbert space H, we can show that (1.2) is equivalent to

〈Tx− Ty, x− y〉 ≤ ||x− y||2 − 1− k
2
||(I − T )x− (I − T )y||2. (1.3)
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A point x ∈ H is called a fixed point of T if Tx = x. The set of fixed points of T
is denoted by F (T ). Iterative approximation of fixed points for k-strictly pseudocon-
tractive mappings has been studied extensively by many authors (see, for example,
[1, 6, 8, 9, 10, 11, 12, 13, 16, 21, 23, 20, 36] and the references contained therein).
Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and
H2, respectively. The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q, (1.4)

where A : H1 → H2 is a bounded linear operator. The SFP in finite-dimensional
Hilbert spaces was first introduced by Censor and Elfving [7] for modeling inverse
problems which arise from phase retrievals and in medical image reconstruction [3].
The SFP attracts the attention of many authors due to its application in signal
processing. Various algorithms have been invented to solve it (see, for example,
[4, 17, 22, 27, 29, 30, 33] and references therein).
Note that the split feasibility problem (1.4) can be formulated as a fixed-point equa-
tion by using the fact

PC(I − γA∗(I − PQ)A)x∗ = x∗; (1.5)

that is, x∗ solves the SFP (1.4) if and only if x∗ solves the fixed point equation (1.5)
(see [26] for the details). This implies that we can use fixed-point algorithms (see
[31, 32, 34]) to solve SFP. A popular algorithm that solves the SFP (1.4) is due to
Byrne’s CQ algorithm [3] which is found to be a gradient-projection method (GPM) in
convex minimization. Subsequently, Byrne [4] applied Krasnoselskii-Mann iteration
to the CQ algorithm, and Zhao and Yang [35] applied Krasnoselskii-Mann iteration to
the perturbed CQ algorithm to solve the SFP. It is well known that the CQ algorithm
and the Krasnoselskii-Mann algorithm for a split feasibility problem do not necessarily
converge strongly in the infinite-dimensional Hilbert spaces.
Let H1 and H2 be real Hilbert spaces and A : H1 → H2 be a bounded linear operator.
Let f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞} be proper, lower semicontinuous
convex functions on H1 and H2 respectively. Define argminf := {x̄ ∈ H1 : f(x̄) ≤
f(x),∀x ∈ H1} and argming := {ȳ ∈ H2 : g(ȳ) ≤ g(y),∀y ∈ H2}. Moudafi and
Thakur [19] recently studied the following proximal split feasibility problem: find a
minimizer x∗ of f such that Ax∗ minimizes g, namely

x∗ ∈ argminf such that Ax∗ ∈ argmin g. (1.6)

We will denote the solution set of (1.6) by Γ.
Observe that if we take f = δC [defined as δC(x) = 0 if x ∈ C and +∞ otherwise],
the indicator function of nonempty, closed and convex subset C of H1 and g = δQ,
the indicator function of nonempty, closed and convex subsets Q of H2, then Problem
(1.6) reduces to (1.4).
Moudafi and Thakur [19] studied the proximal split feasibility problem (1.6) and
proved weak convergence results for its solution using the following split proximal
algorithm based on the idea of the algorithm introduced in Lopez et al. [14].
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Split Proximal Algorithm 1. Given an initial point x1 ∈ H1. Assume that xn has
been constructed and θ(xn) 6= 0, then compute xn+1 via the rule

xn+1 = proxλµnf (xn − µnA∗(I − proxλg)Axn), n ≥ 1, (1.7)

where stepsize µn := ρn
h(xn)+l(xn)
θ2(xn) with 0 < ρn < 4. If θ(xn) = 0, then xn+1 = xn is

a solution of (1.6) and the iterative process stops, otherwise, we set n := n + 1 and
go to (1.7).
Furthermore, Moudafi and Thakur [19] assumed f to be convex and allowed the
function g to be non-convex. They considered the problem of finding a minimizer x̄
of f such that Ax̄ is a critical point of g. Thus,

0 ∈ ∂f(x̄) such that 0 ∈ ∂pg(Ax̄), (1.8)

where ∂pg stands for the proximal sub-differential of g. In particular, they studied
the weak convergence of the following algorithm to a solution of (1.8):
Split Proximal Algorithm 2. Given an initial point x1 ∈ H1. Assume that xn has
been constructed and θ(xn) 6= 0, then compute xn+1 via the rule

xn+1 = proxλnµnf (xn − µnA∗(I − proxλng)Axn), n ≥ 1, (1.9)

where stepsize µn := ρn
h(xn)+l(xn)
θ2(xn) with 0 < ρn < 4. If θ(xn) = 0, then xn+1 = xn is

a solution of (1.8) and the iterative process stops, otherwise, we set n := n + 1 and
go to (1.9).
Motivating by the results of Lopez et al. [14], Moudafi and Thakur [19] and previous
results on approximation of fixed point of k-strictly pseudocontractive mappings, our
aim in this paper is to introduce new iterative schemes for solving problems (1.6) and
(1.8) which is also a fixed point of a k-strictly pseudocontractive mapping and prove
strong convergence of the sequences generated by our schemes in real Hilbert spaces.
Our results also complement the results of Shehu [24] and Shehu and Ogbuisi [25].

2. Preliminaries

Let H be a real Hilbert space and C a nonempty, closed and convex subset of H. For
any point u ∈ H, there exists a unique point PCu ∈ C such that

||u− PCu|| ≤ ||u− y||, ∀y ∈ C.
PC is called the metric projection of H onto C. We know that PC satisfies

〈x− y, PCx− PCy〉 ≥ ||PCx− PCy||2, (2.1)

for all x, y ∈ H. Furthermore, PCx is characterized by the properties PCx ∈ C and

〈x− PCx, PCx− y〉 ≥ 0, (2.2)

for all y ∈ C.
We state the following well-known lemmas which will be used in the sequel.
Lemma 2.1. Let H be a real Hilbert space. Then there holds the following well-known
results:

(i) ||x+ y||2 = ||x||2 + 2〈x, y〉+ ||y||2,∀x, y ∈ H;
(ii) ||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉,∀x, y ∈ H.
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Lemma 2.2. ([36]) Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let T : C → C be k-strictly pseudocontractive mapping. Then I − T is
demiclosed at 0, i.e., if xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.
Lemma 2.3. (Xu, [28]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where
(i) {an} ⊂ [0, 1],

∑
αn =∞;

(ii) lim supσn ≤ 0;
(iii) γn ≥ 0; (n ≥ 1), Σγn <∞.

Then, an → 0 as n→∞.

3. Main results

3.1. Strong Convergence for Convex minimization feasibility and fixed
point problem. Let T be a k-strictly pseudocontractive mapping of H1 into itself.
Set

θ(x) :=
√
||∇h(x)||2 + ||∇l(x)||2

with h(x) = 1
2 ||(I − proxλg)Ax||2, l(x) = 1

2 ||(I − proxλµf )x||2 and introduce the
following algorithm:
Algorithm 1. Let u ∈ H1. Assume that xn has been constructed and θ(xn) 6= 0,
then compute xn+1 via the rule{

yn = proxλµnf (xn − µnA∗(I − proxλg)Axn)
xn+1 = (1− αn)yn + αnTyn − tn(yn − u), n ≥ 1,

(3.1)

where stepsize µn := ρn
h(xn)+l(xn)
θ2(xn) with 0 < ρn < 4. If θ(xn) = 0, then xn+1 = xn is a

solution of (1.6) which is also a fixed point of a k-strictly pseudocontractive mapping
and the iterative process stops, otherwise, we set n := n+ 1 and go to (3.1).
Using (3.1), we prove the following strong convergence theorem for approximation of
solution of problem (1.6) which is also a fixed point of a k-strictly pseudocontractive
mapping of H1 into itself.
Theorem 3.1. Assume that f and g are two proper convex lower-semicontinuous
functions and that (1.6) is consistent (i.e., Γ 6= ∅). Let T be a k-strictly pseudocon-
tractive mapping of H1 into itself such that F (T ) ∩ Γ 6= ∅. Let {tn} be a sequence in
(0, 1), {αn} a sequence in (0, (1 − k)(1 − tn)) ⊂ (0, 1). If the parameters satisfy the
following conditions

(a) lim
n→∞

tn = 0;

(b)
∞∑
n=1

tn =∞;

(c) ε ≤ ρn ≤ 4h(xn)
h(xn)+l(xn) − ε for some ε > 0;

(d) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1− k,

then sequence {xn} generated by (3.1) converge strongly to x∗ ∈ F (T ) ∩ Γ, where
x∗ = PF (T )∩Γu.
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Proof. Let x∗ ∈ F (T ) ∩ Γ. Using the same line of arguments and method of proof
in the earlier part of proof of Theorem 2.2 of Moudafi and Thakur [19], we can show
that

||yn − x∗||2 ≤ ||xn − x∗||2 − ρn
( 4h(xn)

h(xn) + l(xn)
− ρn

) (h(xn) + l(xn))2

θ2(xn)
. (3.2)

From (3.1), we have

||xn+1 − x∗|| = ||(1− αn − tn)(yn − x∗) + αn(Tyn − x∗) + tn(u− x∗)||
≤ ||(1− αn − tn)(yn − x∗) + αn(Tyn − x∗)||+ tn||u− x∗||. (3.3)

But from (1.2) and (1.3), we obtain

||(1− αn − tn)(yn − x∗) + αn(Tyn − x∗)||2

= (1− αn − tn)2||yn − x∗||2 + α2
n||Tyn − x∗||2

+ 2(1− αn − tn)αn〈Tyn − x∗, yn − x∗〉
≤ (1− αn − tn)2||yn − x∗||2

+ α2
n[||yn − x∗||2 + k||yn − Tyn||2]

+ 2(1− αn − tn)αn

[
||yn − x∗||2 −

1− k
2
||yn − Tyn||2

]
= (1− tn)2||yn − x∗||2

+ [kα2
n − (1− k)(1− αn − tn)αn]||yn − Tyn||2

= (1− tn)2||yn − x∗||2

+ αn[αn − (1− tn)(1− k)]||yn − Tyn||2

≤ (1− tn)2||yn − x∗||2, (3.4)

which implies

||(1− αn − tn)(yn − x∗) + αn(Tyn − x∗)|| ≤ (1− tn)||yn − x∗||. (3.5)

Therefore, it follows from (3.2), (3.3) and (3.5) that

||xn+1 − x∗|| ≤ (1− tn)||yn − x∗||+ tn||u− x∗|| (3.6)

≤ (1− tn)||xn − x∗||+ tn||u− x∗||
≤ max{||xn − x∗||, ||u− x∗||}.

By induction, we have

||xn − x∗|| ≤ max{||x1 − x∗||, ||u− x∗||}.
Hence, {xn} is bounded and so is {yn}. Now, using (1.2), we have

||Tx− x∗||2 ≤ ||x− x∗||2 + k||x− Tx||2

⇒ 〈Tx− x∗, Tx− x∗〉 ≤ 〈x− x∗, x− Tx〉+ 〈x− x∗, Tx− x∗〉+ k||x− Tx||2

⇒ 〈Tx− x∗, Tx− x〉 ≤ 〈x− x∗, x− Tx〉+ k||x− Tx||2

⇒ 〈Tx− x, Tx− x〉+ 〈x− x∗, Tx− x〉 ≤ 〈x− x∗, x− Tx〉+ k||x− Tx||2

⇒ (1− k)||x− Tx||2 ≤ 2〈x− x∗, x− Tx〉. (3.7)
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Therefore, by (3.2) and Lemma 2.1 (ii), we obtain

||yn+1 − x∗||2 ≤ ||xn+1 − x∗||2 = ||(1− αn)yn + αnTyn − tn(yn − u)− x∗||2

= ||(yn − x∗)− αn(yn − Tyn)− tn(yn − u)||2

≤ ||(yn − x∗)− αn(yn − Tyn)||2 − 2tn〈yn − u, xn+1 − x∗〉
= ||yn − x∗||2 − 2αn〈yn − Tyn, yn − x∗〉+ α2

n||yn − Tyn||2

−2tn〈yn − u, xn+1 − x∗〉
≤ ||yn − x∗||2 − αn(1− k)||yn − Tyn||2 + α2

n||yn − Tyn||2

−2tn〈yn − u, xn+1 − x∗〉
= ||yn − x∗||2 − αn[(1− k)− αn]||yn − Tyn||2

−2tn〈yn − u, xn+1 − x∗〉 (3.8)

≤ ||yn − x∗||2 − αn[(1− k)− αn]||yn − Tyn||2

−2tn〈yn − u, xn+1 − x∗〉.

Since {xn} and {yn} are bounded, ∃M > 0 such that −2〈xn− u, xn+1− x∗〉 ≤M for
all n ≥ 1. Therefore,

||yn+1 − x∗||2 − ||yn − x∗||2 + αn[(1− k)− αn]||yn − Tyn||2 ≤ tnM. (3.9)

Now we divide the rest of the proof into two cases.
Case 1. Assume that {||yn − x∗||} is monotonically decreasing sequence. Then
{||yn − x∗||} is convergent and obviously,

||yn+1 − x∗|| − ||yn − x∗|| → 0, n→∞. (3.10)

This together with (3.9) and the condition that tn → 0 imply that,

||yn − Tyn|| → 0, n→∞. (3.11)

From (3.2) and (3.8), we have that

ρn

( 4h(xn)

h(xn) + l(xn)
− ρn

) (h(xn) + l(xn))2

θ2(xn)
≤ ||xn − x∗||2 − ||yn − x∗||2

≤
(
||yn−1 − x∗||+ tn−1||u− x∗||

)2

− ||yn − x∗||2

≤ ||yn−1 − x∗||2 − ||yn − x∗||2 + 2tn−1||u− x∗||||yn−1 − x∗||+ t2n−1||u− x∗||2.

Using condition (a) above implies that

ρn

( 4h(xn)

h(xn) + l(xn)
− ρn

) (h(xn) + l(xn))2

θ2(xn)
→ 0, n→∞.

Hence, we obtain

(h(xn) + l(xn))2

θ2(xn)
→ 0, n→∞. (3.12)

If z is a weak cluster point of {xn}, then by following the same line of arguments and
method of proof in the later part of proof of Theorem 2.2 of Moudafi and Thakur
[19], we can show that z ∈ Γ.
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Since x∗ = proxλµnf (x∗ − µnA∗(I − proxλg)Ax
∗) and A∗(I − proxλg)A is Lipschitz

with constant ||A||2, we have from (3.1) that

||yn − x∗||2

= ||proxλµnf (xn− µnA∗(I− proxλg)Axn)− proxλµnf (x∗ − µnA∗(I − proxλg)Ax
∗)||2

≤ 〈(xn − µnA∗(I − proxλg)Axn)− (x∗ − µnA∗(I − proxλg)Ax
∗), yn − x∗〉

=
1

2

[
||(xn − µnA∗(I − proxλg)Axn)− (x∗ − µnA∗(I − proxλg)Ax

∗)||2 + ||yn − x∗||2

− ||(xn − µnA∗(I − proxλg)Axn)− (x∗ − µnA∗(I − proxλg)Ax
∗)− (yn − x∗)||2

]
≤ 1

2

[
(1 + µn||A||2)2||xn − x∗||2 + ||yn − x∗||2

− ||xn − yn − µn(A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)||2

]
=

1

2

[
(1 + µn||A||2)2||xn − x∗||2 + ||yn − x∗||2

− ||xn − yn||2 + 2µn〈xn − yn, A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)〉

− µ2
n||A∗(I − proxλg)Axn −A∗(I − proxλg)Ax

∗)||2
]
.

Thus,

||yn − x∗||2 ≤ (1 + µn||A||2)2||xn − x∗||2 − ||xn − yn||2

+2µn〈xn − yn, A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)〉

−µ2
n||A∗(I − proxλg)Axn −A∗(I − proxλg)Ax

∗)||2. (3.13)

We observe that

0 < µn < 4
h(xn) + l(xn)

θ2(xn)
→ 0, n→∞

implies that µn → 0, n→∞. Furthermore, we obtain from (3.13) and (3.6) that

||xn − yn||2 (3.14)

≤ (1 + µn||A||2)2||xn − x∗||2 − ||yn − x∗||2

+ 2µn〈xn − yn, A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)〉

= ||xn − x∗||2 + µn||A||2(2 + µn||A||2)||xn − x∗||2 − ||yn − x∗||2

+ 2µn〈xn − yn, A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)〉

≤ (||yn−1 − x∗||+ tn−1||u− x∗||)2 − ||yn − x∗||2 + µn||A||2(2 + µn||A||2)||xn − x∗||2

+ 2µn〈xn − yn, A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)〉

= ||yn−1 − x∗||2 − ||yn − x∗||2 + 2tn−1||u− x∗||||yn−1 − x∗||+ t2n−1||u− x∗||2

+ µn||A||2(2 + µn||A||2)||xn − x∗||2

+ 2µn〈xn − yn, A∗(I − proxλg)Axn −A∗(I − proxλg)Ax
∗)〉. (3.15)

Since µn → 0, n→∞ and tn → 0, n→∞, we obtain that

lim
n→∞

||xn − yn|| = 0.
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Observe that since lim
n→∞

||xn − yn|| = 0 and {xnj} weakly converges to z, we also

have xnj ⇀ z. Using Lemma 2.2 and (3.11), we have that z ∈ F (T ). Therefore,
z ∈ F (T ) ∩ Γ.

Next, we prove that {xn} converges strongly to x∗, where x∗ = PF (T )∩Γu. Setting
un = (1− αn)yn + αnTyn, n ≥ 1, then from (3.1) we have that

xn+1 = un − tn(yn − u).

It then follows that

xn+1 = (1− tn)un − tn(yn − un − u)

= (1− tn)un − tnαn(yn − Tyn) + tnu. (3.16)

Also

||un − x∗||2 = ||yn − x∗ − αn(yn − Tyn)||2

= ||yn − x∗||2 − 2αn〈yn − Tyn, yn − x∗〉+ α2
n||yn − Tyn||2

≤ ||yn − x∗||2 − αn[(1− k)− αn]||yn − Tyn||2

≤ ||yn − x∗||2. (3.17)

By (3.17) and applying Lemma 2.1 (ii) to (3.16), we have

||yn+1 − x∗||2 (3.18)

≤ ||xn+1 − x∗||2 = ||(1− tn)(un − x∗)− tnαn(yn − Tyn)− tn(x∗ − u)||2

≤ (1− tn)2||un − x∗||2 − 2tn〈αn(yn − Tyn)− (x∗ − u), xn+1 − x∗〉
= (1− tn)2||un − x∗||2 − 2tnαn〈yn − Tyn, xn+1 − x∗〉 − 2tn〈x∗ − u, xn+1 − x∗〉
≤ (1− tn)2||yn − x∗||2 − 2tnαn〈yn − Tyn, xn+1 − x∗〉 − 2tn〈x∗ − u, xn+1 − x∗〉
≤ (1− tn)||yn − x∗||2 + tn[−2αn〈yn − Tyn, xn+1 − x∗〉 − 2〈x∗ − u, xn+1 − x∗〉].

(3.19)

We observe that lim sup
n→∞

{
−2〈x∗−u, xn+1−x∗〉

}
= −2 lim

j→∞
〈x∗−u, xnj

−x∗〉 ≤ 0 and

2αn〈yn−Tyn, xn+1−x∗〉 → 0. Now, using Lemma 2.3 in (3.18), we have ||yn−x∗|| → 0
and consequently ||xn − x∗|| → 0. That is xn → x∗, n→∞.
Case 2. Assume that {||yn − x∗||} is not monotonically decreasing sequence. Set
Γn = ||yn − x∗||2 and let τ : N → N be a mapping for all n ≥ n0 (for some n0 large
enough) by

τ(n) := max{k ∈ N : k ≤ n,Γk < Γk+1}.
Clearly, τ is a non decreasing sequence such that τ(n)→∞ as n→∞ and

Γτ(n)+1 − Γτ(n) ≥ 0, ∀n ≥ n0.

After a similar conclusion from (3.8), it is easy to see that

||yτ(n) − Tyτ(n)||2 ≤
tτ(n)M

ατ(n)[(1− k)− ατ(n)]
→ 0, n→∞.
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Thus,
||yτ(n) − Tyτ(n)|| → 0, n→∞.

By similar argument as above in Case 1, we conclude immediately that {uτ(n)} and
{xτ(n)} converge weakly to z as n→∞. Also, we can show that

lim sup
n→∞

{
− 2〈x∗ − u, xτ(n)+1 − x∗〉

}
≤ 0.

At the same time, we note from (3.18) that

||yτ(n)+1 − x∗||2 ≤ (1− tτ(n))||yτ(n) − x∗||2

+ tτ(n)[−2ατ(n)〈yτ(n) − Tyτ(n), xτ(n)+1 − x∗〉
− 2〈x∗ − u, xτ(n)+1 − x∗〉]. (3.20)

By Lemma 2.3, we have
lim
n→∞

||yτ(n) − x∗|| = 0.

Therefore,
lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0

Furthermore, for n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n 6= τ(n) (that is
τ(n) < n),because Γj ≥ Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for
all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1

Hence lim Γn = 0, that is {xn} converges strongly to x∗. Furthermore, {yn} converges
strongly to x∗. This completes the proof.
Corollary 3.2. Assume that f and g are two proper convex lower-semicontinuous
functions and that (1.6) is consistent (i.e., Γ 6= ∅). Let T be a nonexpansive mapping
of H1 into itself such that F (T ) ∩ Γ 6= ∅. Let {tn} be a sequence in (0, 1), {αn}
a sequence in (0, (1 − k)(1 − tn)) ⊂ (0, 1). If the parameters satisfy the following
conditions

(a) lim
n→∞

tn = 0;

(b)
∞∑
n=1

tn =∞;

(c) ε ≤ ρn ≤ 4h(xn)
h(xn)+l(xn) − ε for some ε > 0;

(d) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

then sequence {xn} generated by (3.1) converges strongly to x∗ ∈ F (T ) ∩ Γ, where
x∗ = PF (T )∩Γu.
Remark 3.3. 1. We would like also to emphasize that by taking f = δC [defined
as δC(x) = 0 if x ∈ C and +∞ otherwise], g = δQ the indicator functions of two
nonempty closed convex sets C,Q of H1 and H2 respectively, our iterative scheme
(3.1) reduces to{

yn = PC(xn − µnA∗(I − PQ)Axn)
xn+1 = (1− αn)yn + αnTyn − tn(yn − u), n ≥ 1,

which approximates a solution to problem (1.4) which is also a fixed point of a k-
strictly pseudocontractive mapping T .
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2. It is worth mentioning that our approach in this section also works for approx-
imation of solution to split equilibrium and split null point problems (considered in
[5] and [18], respectively) which is also a fixed point of a k-strictly pseudocontractive
mapping. In this case, just replace the proximal mappings of the convex functions f
and g by the resolvent operators associated to two monotone equilibrium bifunctions
and two maximal monotone operators, respectively.

3.2. Strong Convergence for Non-convex Minimization Feasibility and fixed
point Problem. In this section, we introduce an iterative scheme for approximating
a solution to a problem of finding a point which minimizes a proper convex lower-
semicontinuous function f which also a fixed point of a k-strictly pseudocontractive
mapping such that its image under a bounded linear operator A minimizes locally
lower semicontinuous, prox-bounded and prox-regular function g and prove strong
convergence theorem using our iterative scheme for this solution. Our result in this
section is new in the sense that this is the first time (as far as we know) that an iterative
scheme is introduced and strong convergence theorem is proved using the iterative
scheme for common solution to non-convex minimization feasibility problem and fixed
point problem for k-strictly pseudocontractive mapping in real Hilbert spaces.
Throughout this section g is assumed to be prox-regular. The following problem

0 ∈ ∂f(x̄) such that 0 ∈ ∂pg(Ax̄), (3.21)

is very general in the sense that it includes, as special cases, g convex and g lower-C2

function which is of great importance in optimization and can be locally expressed
as a difference g − r

2 ||.||
2, where g is a finite convex function, hence a large core of

problems of interest in variational analysis and optimization. As pointed out in [15],
there are a lot of non-convex problems in crystallography, astronomy and inverse
scattering which need to be solved using fixed point algorithms. In what follows, we
shall represent the set of solutions of (3.21) by Γ.
Our interest is in studying the strong convergence properties of the following algorithm
for solving problem (3.21):
Algorithm 2. Let T be a k-strictly pseudocontractive mapping of H1 into itself such
that F (T ) 6= ∅. Let u ∈ H1. Given an initial point x1 ∈ H1. Assume that xn has
been constructed and θ(xn) 6= 0, then compute xn+1 via the rule{

yn = proxλnµnf (xn − µnA∗(I − proxλng)Axn)
xn+1 = (1− αn)yn + αnTyn − tn(yn − u), n ≥ 1,

(3.22)

where stepsize µn := ρn
h(xn)+l(xn)
θ2(xn) with 0 < ρn < 4. If θ(xn) = 0, then xn+1 = xn

is a solution of (3.21) which is also a fixed point of a a k-strictly pseudocontractive
mapping T and the iterative process stops, otherwise, we set n := n + 1 and go to
(3.22).
Theorem 3.4. Let T be a k-strictly pseudocontractive mapping of H1 into itself such
that F (T ) 6= ∅. Assume that f is a proper convex lower-semicontinuous function, g
is locally lower semicontinuous at Ax̄, prox-bounded and prox-regular at Ax̄ for v̄ = 0
with x̄ ∈ Γ∩F (T ) 6= ∅ and A a bounded linear operator which is surjective with a dense
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domain. Let {tn} be a sequence in (0, 1), {αn} a sequence in (0, (1−k)(1−tn)) ⊂ (0, 1).
If the parameters satisfy the following conditions

(a) lim
n→∞

tn = 0;

(b)
∞∑
n=1

tn =∞;

(c) ε ≤ ρn ≤ 4h(xn)
h(xn)+l(xn) − ε for some ε > 0;

(d) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1− k;

(e)
∞∑
n=1

λn <∞;

and if ||x1 − x̄|| is small enough, then sequence {xn} generated by (3.22) converges
strongly to x̄ ∈ F (T ) ∩ Γ, where x̄ = PF (T )∩Γu.
Proof. Using the same line of arguments and method of proof given in Theorem 3.4
of Moudafi and Thakur [19], we can show that

||yn− x̄||2 ≤ (1+Mλn)||xn− x̄||2−ρn
( 4h(xn)

h(xn) + l(xn)
−ρn

) (h(xn) + l(xn))2

θ2(xn)
. (3.23)

Using (3.23) in (3.6) (taking into account that 1 + x ≤ ex, x ≥ 0), we obtain that

||xn+1 − x̄|| ≤ (1− tn)||yn − x̄||+ tn||u− x̄||

≤ (eMλn)
1
2

(
||xn − x̄||+ tn||u− x̄||

)
≤ (eMλn)

1
2

(
max

{
||xn − x̄||, ||u− x̄||

})
= e

M
2 λn

(
max

{
||xn − x̄||, ||u− x̄||

})
...

≤ e
M
2

∞∑
n=1

λn
(

max
{
||x1 − x̄||, ||u− x̄||

})
.

Therefore, {xn} and {yn} are bounded.
Following the method of proof of Theorem 3.1, we can show that

lim
n→∞

(h(xn) + l(xn)) = 0⇔ lim
n→∞

h(xn) = 0 and lim
n→∞

l(xn) = 0.

If z is a weak cluster point of {xn}, then there exists a subsequence {xnj} which
weakly converges to z. From the proof of Theorem 3.1, we can show that

(i) 0 ∈ ∂f(z) such that 0 ∈ ∂pg(Az),
(ii) ||yn − Tyn|| → 0, n→∞,
(iii) lim

n→∞
||xn − yn|| = 0 and

(iv) z ∈ F (T ).
Therefore, z ∈ F (T ) ∩ Γ.
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Finally, from (3.22) and (3.23), we have for some M1 > 0 that

||yn+1 − z||2 ≤ (1 +Mλn+1)||xn+1 − z||2

= (1 +Mλn+1)||(1− tn)(un − z)
− tnαn(yn − Tyn)− tn(z − u)||2

≤ (1− tn)2||un − z||2

− 2tn〈αn(yn − Tyn)− (z − u), xn+1 − z〉+ λn+1M1

= (1− tn)2||un − z||2

− 2tnαn〈yn − Tyn, xn+1 − z〉 − 2tn〈z − u, xn+1 − z〉+ λn+1M1

≤ (1− tn)2||yn − z||2

− 2tnαn〈yn − Tyn, xn+1 − z〉 − 2tn〈z − u, xn+1 − z〉+ λn+1M1

≤ (1− tn)||yn − z||2 + tn[−2αn〈yn
− Tyn, xn+1 − z〉 − 2〈z − u, xn+1 − z〉] + λn+1M1, (3.24)

which concludes that the sequence {xn} strongly converges to z using Lemma 2.3.
Corollary 3.5. Let T be a nonexpansive mapping of H1 into itself such that F (T ) 6=
∅. Assume that f is a proper convex lower-semicontinuous function, g is locally
lower semicontinuous at Ax̄, prox-bounded and prox-regular at Ax̄ for v̄ = 0 with
x̄ ∈ Γ ∩ F (T ) 6= ∅ and A a bounded linear operator which is surjective with a dense
domain. Let {tn} be a sequence in (0, 1), {αn} a sequence in (0, (1− tn)) ⊂ (0, 1). If
the parameters satisfy the following conditions

(a) lim
n→∞

tn = 0;

(b)
∞∑
n=1

tn =∞;

(c) ε ≤ ρn ≤ 4h(xn)
h(xn)+l(xn) − ε for some ε > 0;

(d) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1;

(e)
∞∑
n=1

λn <∞;

and if ||x1 − x̄|| is small enough, then sequence {xn} generated by (3.22) converges
strongly to x̄ ∈ F (T ) ∩ Γ, where x̄ = PF (T )∩Γu.
Remark 3.6. 1. All the results in this paper carry over for the case when T is a
quasi-nonexpansive mapping (i.e., ||Tx−Tp|| ≤ ||x−p||,∀x ∈ H1, p ∈ F (T )) and when
T is a demicontractive mapping (i.e., ||Tx− Tp||2 ≤ ||x− p||2 + k||(I − T )x||2, ∀ x ∈
H1, p ∈ F (T )).

2. It is worth mentioning here that our result in this paper is more applicable than
the result of Moudafi and Thakur [19] in the sense that our result can be applied
to finding an approximate common solution to proximal split feasibility problem and
fixed point problem for k-strictly pseudocontractive mapping.

3. The assumption that the bounded linear operator A is surjective in Theorem
3.4 is always satisfied in inverse problems in which a priori information is available
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about the representation of the target solution in a frame, see for instance [19] and
the references therein.
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