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Abstract. In this paper, existence and uniqueness of a fixed point for non-self mappings with
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1. Introduction

The Banach Contraction Mapping Principle [2] is one of the most important the-
orems in functional analysis. There are many generalizations of this theorem for
classical metric spaces. One of the most important of them is the introduction of a
nonlinear contractive principle by Boyd and Wong [3].

The notion of statistical metric spaces, as a generalization of metric spaces, with
non-deterministic distance, was introduced by Menger [18] in 1942. Schweizer and
Sklar [20, 21] studied the properties of spaces introduced by Menger and gave some
basic results on these spaces. They studied topology, convergence of sequences, con-
tinuity of mappings, defined the completeness of these spaces, etc. The first result
from the fixed point theory in probabilistic metric spaces was obtain by Sehgal and
Bharucha–Reid [22] as a generalization of the classical Banach Contraction Mapping
Principle.

Ćirić [4] and Jachymski [15] gave a probabilistic version of the fixed point theorem
of Boyd and Wong [3]. The main result of Jachymski [15] follows.
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Theorem 1.1 ([15]). Let (X,F , T ) be a complete Menger probabilistic space with
continuous t-norm T of H-type (Hadžić type), and let ϕ : (0,+∞) 7→ (0,+∞) be a
function satisfying conditions:

0 < ϕ(t) < t and lim
n→∞

ϕn(t) = 0 (1.1)

for every t > 0. If f : X 7→ X is a probabilistic ϕ-contraction, then f has a unique
fixed point x∗ ∈ X and {fn(x0)} converges to x∗, for every x0 ∈ X.

Let us recall that a mapping f : X 7→ X is called a probabilistic ϕ-contraction (or
a ϕ-contraction in probabilistic metric space) if it satisfies

Ffx,fy
(
ϕ(t)

)
≥ Fx,y(t)

for all x, y ∈ X and every t > 0, where function ϕ is gauge function satisfying certain
conditions.

Recently, Fang [9] gave a more general condition for gauge ϕ function than condi-
tion (1.1). Actually, he observed two classes of functions: the class Φ of all functions
ϕ : (0,+∞) 7→ (0,+∞) satisfying the condition lim

n→∞
ϕn(t) = 0, for every t > 0, and

the class ΦW of all functions ϕ : (0,+∞) 7→ (0,+∞) satisfying the condition

for every t > 0 there exists r ≥ t such that lim
n→∞

ϕn(r) = 0. (1.2)

Fang [9] has showed that class Φ is a proper subclass of class ΦW (see Example 3.1 in
[9]) and by means of introducing condition (1.2) for function ϕ : (0,+∞) 7→ (0,+∞)

Fang has improved and generalized the results of Ćirić [4], Jachymski [15], and Xiao
et al. [25].

In 1970 Takahashi [24] was defined convex and normal structures for sets in metric
spaces and generalized some important fixed point theorems previously proved for
Banach spaces. In 1987 Hadžić [12] introduced the notion of convex structure for sets
in Menger probabilistic metric spaces and proved fixed point theorem for mappings in
probabilistic metric spaces with a convex structure. Ješić [16] defined convex, strictly
convex and normal structure in intuitionistic fuzzy metric spaces. Recently, Ješić
et al. [17] have introduced convex, strictly convex and normal structure in Menger
PM-spaces.

Furthermore, in convex spaces occur cases where the involved function is not nec-
essarily a self-mapping of a closed subset. Assad and Kirk [1] first considered non-self
mappings in a metric spaces (X, d). They proved that for some non-self (single-
valued) mapping f : C → X, which satisfied Banach Contraction Mapping Principle
d(fx, fy) ≤ λd(x, y) for all x, y ∈ C and λ ∈ (0, 1), where X is complete metrically
convex space in the sense of Menger (i.e. for every x, y ∈ X, (x 6= y), there exists
z ∈ X, such that d(x, y) = d(x, z) + d(z, y)), then the condition f(∂C) ⊆ C is suffi-
cient to guarantee the existence of fixed point for mapping f , where ∂C is boundary
of set C. In recent years many generalizations of mentioned theorem were proved (see
e.g. [5], [6], [7], [10], [11], [13], [14] and [19]).

In this paper, using the notion of strictly convex structure for Menger probabilistic
spaces the existence and uniqueness of a fixed point for non-self mappings with non-
linear contractive condition (1.2) for function ϕ : (0,+∞) 7→ (0,+∞), will be proved.



FIXED POINT THEOREMS FOR NON-SELF MAPPINGS 317

The obtained results hold for Menger probabilistic spaces with arbitrary t-continuous
T norm. In the proof of the main result topological characterization of complete
spaces with nondeterministic distances will be used. As a consequence of the main
result we will give probabilistic generalization of Assad and Kirk’s result [1].

2. Preliminaries

In the standard notation, let D+ be the set of all distribution functions F : R →
[0, 1], such that F is a nondecreasing, left-continuous mapping, which satisfies F (0) =
0 and supx∈R F (x) = 1. The space D+ is partially ordered by the usual point-wise
ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. The maximal
element for D+ in this order is the distribution function given by

ε0(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 2.1 ([21]). A binary operation T : [0, 1] × [0, 1] 7→ [0, 1] is continuous
t-norm if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norm are T (a, b) = min{a, b} and T (a, b) = ab.

The t-norms are defined recursively by T 1 = T and

Tn(x1, . . . , xn+1) = T (Tn−1(x1, . . . , xn), xn+1)

for n ≥ 2 and xi ∈ [0, 1] for all i ∈ {1, . . . , n+ 1}.

Definition 2.2. A Menger probabilistic metric space (briefly, Menger PM-space) is
a triple (X,F , T ) where X is a nonempty set, T is a continuous t-norm, and F is a
mapping from X ×X into D+ such that, if Fx,y denotes the value of F at the pair
(x, y), the following conditions hold:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t+ s) ≥ T

(
Fx,y(t), Fy,z(s)

)
, for all x, y, z ∈ X and s, t ≥ 0.

Remark 2.3 ([22]). Every metric space is a PM-space. Let (X, d) be a metric space
and T (a, b) = min{a, b} is a continuous t-norm. Define

Fx,y(t) = ε0

(
t− d(x, y)

)
i.e

Fx,y(t) =

{
0, t− d(x, y) ≤ 0,
1, t− d(x, y) > 0,

for all x, y ∈ X and t > 0. The triple (X,F , T ) is a PM-space induced by the metric
d.

Definition 2.4. Let (X,F , T ) be a Menger PM-space.
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(1) A sequence {xn}n∈N in X is said to be convergent to x in X if, for every
ε > 0 and λ ∈ (0, 1) there exists positive integer N such that Fxn,x(ε) > 1−λ
whenever n ≥ N.

(2) A sequence {xn}n∈N in X is called Cauchy sequence if, for every ε > 0 and
λ ∈ (0, 1) there exists positive integer N such that Fxn,xm

(ε) > 1−λ whenever
n,m ≥ N.

(3) A Menger PM-space is said to be complete if every Cauchy sequence in X is
convergent to a point in X.

The (ε, λ)-topology (see [21]) in a Menger PM-space (X,F , T ) is introduced by the
family of neighbourhoods Nx of a point x ∈ X given by

Nx =
{
Nx(ε, λ) : ε > 0, λ ∈ (0, 1)

}
where

Nx(ε, λ) =
{
y ∈ X : Fx,y(ε) > 1− λ

}
.

The (ε, λ)-topology is a Hausdorff topology. In this topology the function f is
continuous in x0 ∈ X if and only if for every sequence xn → x0 it holds that f(xn)→
f(x0).

The following Lemma is proved by Schweizer and Sklar.

Lemma 2.5 ([21]). Let (X,F , T ) be a Menger PM-space. Then the function F is
lower semi-continuous for every fixed t > 0, i.e. for every fixed t > 0 and every two
convergent sequences {xn}n∈N, {yn}n∈N ⊆ X such that xn → x, yn → y, for n → ∞,
it follows that

lim inf
n→∞

Fxn,yn(t) = Fx,y(t).

Definition 2.6. Let (X,F , T ) be a Menger PM-space and A ⊆ X. The closure of
the set A is the smallest closed set containing A, denoted by A.

Obviously, keeping in mind the Hausdorff topology, and the definition of converging
sequences we note that the next remark holds.

Remark 2.7. x ∈ A if and only if there exists a sequence {xn}n∈N in A such that
xn → x, for n→∞.

The concept of probabilistic boundedness was introduced by Egbert [8]. A version
on this definition follows.

Definition 2.8. Let (X,F , T ) be a Menger PM-space and A ⊆ X. The probabilistic
diameter of set A is given by

δA(t) = sup
ε< t

inf
x,y∈A

Fx,y(ε).

The diameter of the set A is defined by

δA = sup
t>0

δA(t).

If there exists λ ∈ (0, 1) such that δA = 1 − λ the set A will be called probabilistic
semi-bounded. If δA = 1 the set A will be called probabilistic bounded.
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Lemma 2.9. Let (X,F , T ) be a Menger PM-space. A set A ⊆ X is probabilistic
bounded if and only if for each λ ∈ (0, 1) there exists t > 0 such that Fx,y(t) > 1− λ
for all x, y ∈ A.

Proof. The proof follows from the definitions of supA and inf A of nonempty sets. �

Remark 2.10. It is not difficult to see that every metrically bounded set is also
probabilistic bounded if it is considered in the induced PM-space.

Sherwood has proved the following theorem.

Theorem 2.11 ([23]). Let (X,F , T ) be a Menger PM-space and {Fn}n∈N a nested
sequence of nonempty, closed subsets of X such that δFn → ε0, for n → ∞. Then
there is exactly one point x0 ∈ Fn, for every n ∈ N.

It is easy to show that the following lemma holds.

Lemma 2.12 ([23]). Let (X,F , T ) be a Menger PM-space. Let {Fn}n∈N be a nested
sequence of nonempty, closed subsets of X. The sequence {Fn}n∈N has probabilistic
diameter zero i.e. for each λ ∈ (0, 1) and each t > 0 there exists n0 ∈ N such that
Fx,y(t) > 1− λ for all x, y ∈ Fn0 if and only if δFn → ε0, for n→∞.

3. Convex structure and strictly convex structure
in Menger PM-spaces

Takahashi [24] introduced the notion of metric spaces with a convex structure.
This class of metric spaces includes normed linear spaces and metric spaces of the
hyperbolic type.

Definition 3.1. Let (X, δ) be a metric space. We say that a metric space possesses a
Takahashi’s convex structure if there exists a function W : X ×X × [0, 1] 7→ X which
satisfies

δ
(
z,W (x, y, θ)

)
≤ θδ(z, x) + (1− θ)δ(z, y)

for all x, y, z ∈ X and arbitrary θ ∈ [0, 1]. A metric space (X, δ) with Takahashi’s
convex structure is called convex metric space.

Hadžić [12] introduced a generalization of the Takahashi’s definition to the case of
a Menger PM-space.

Definition 3.2. Let (X,F , T ) be a Menger PM-space. A mapping S : X×X×[0, 1] 7→
X, is said to be a convex structure on X if for every (x, y) ∈ X×X holds S(x, y, 0) = y,
S(x, y, 1) = x and for all x, y, z ∈ X, θ ∈ (0, 1) and t > 0

FS(x,y,θ),z(2t) ≥ T
(
Fx,z

(
t

θ

)
, Fy,z

(
t

1− θ

))
. (3.1)

Example 3.3. Mapping S : R× R× [0, 1] 7→ R, where R = (−∞,+∞), defined by

S(x, y, θ) = θx+ (1− θ)y
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for all x, y ∈ R and θ ∈ (0, 1) is a convex structure on Menger PM-space (R,F , Tmin)
induced by a metric d(x, y) = |x−y| on R where Tmin(a, b) = min{a, b} is a continuous
t-norm for a, b ∈ [0, 1], and

Fx,y(t) =

{
0, t− d(x, y) ≤ 0,
1, t− d(x, y) > 0.

for all x, y ∈ R and t > 0.
Let us prove this assertion. Firstly, we have that S(x, y, 0) = y and S(x, y, 1) = x

for all x, y ∈ R. Now, let us prove that inequality (3.1) is satisfied. If we assume that

Tmin

(
Fx,z

(
t

θ

)
, Fy,z

(
t

1− θ

))
= min

(
Fx,z

(
t

θ

)
, Fy,z

(
t

1− θ

))
= 0

then inequality (3.1) is a trivially satisfied because we get FS(x,y,θ),z(2t) ≥ 0. Now,

we will assume that Fx,z
(
t
θ

)
= 1 and Fy,z

(
t

1−θ

)
= 1. Then we have that t

θ > d(x, z)

and t
1−θ > d(y, z) i.e. t > θd(x, z) and t > (1− θ)d(y, z). Hence, we get

2t > θd(x, z) + (1− θ)d(y, z) = θ|x− z|+ (1− θ)|y − z|
≥
∣∣θx− θz + (1− θ)y − (1− θ)z

∣∣
=
∣∣θx+ (1− θ)y − z

∣∣ = d
(
θx+ (1− θ)y, z

)
= d
(
S(x, y, θ), z

)
,

i.e. 2t − d
(
S(x, y, θ), z

)
> 0 i.e FS(x,y,θ),z(2t) = 1, i.e. inequality (3.1) holds for all

x, y, z ∈ R and t > 0.

Remark 3.4. It is easy to see that every metric space (X, d) with a convex structure
S can be consider as a Menger PM-space (X,F , Tmin) (the associated Menger PM-
space) with the same function S.

Definition 3.5. Let (X,F , T ) be a Menger PM-space with a convex structure
S(x, y, θ). A subset A ⊆ X is said to be a convex set if for every x, y ∈ A and
θ ∈ [0, 1] it follows that S(x, y, θ) ∈ A.

Recently, the notion of strictly convex structure was introduced by Ješić et al. [17].

Definition 3.6 ([17]). A convex Menger PM-space (X,F , T ) with a convex structure
S : X × X × [0, 1] 7→ X will be called strictly convex if, for arbitrary x, y ∈ X and
θ ∈ (0, 1) the element z = S(x, y, θ) is the unique element which satisfies

Fx,y

(
t

1− θ

)
= Fz,x(t), Fx,y

(
t

θ

)
= Fz,y(t) (3.2)

for all t > 0.

Lemma 3.7 ([17]). Let (X,F , T ) be a Menger PM-space with a convex structure
S(x, y, θ). Suppose that for every θ ∈ (0, 1), t > 0 and x, y, z ∈ X hold

FS(x,y,θ),z(t) > min
{
Fz,x(t), Fz,y(t)

}
. (3.3)

If there exists z ∈ X such that

FS(x,y,θ),z(t) = min
{
Fz,x(t), Fz,y(t)

}
(3.4)
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is satisfied for all t > 0, then S(x, y, θ) ∈ {x, y}.

Example 3.8. Menger PM-space (R,F , Tmin) with a convex structure

S(x, y, θ) = θx+ (1− θ)y

for all x, y ∈ R and θ ∈ (0, 1) from Example 3.3 is a strictly convex space in the sense
of Definition 3.6 satisfying condition (3.3).

Let us prove this assertion. For arbitrary x, y ∈ R and θ ∈ (0, 1) the element
z = S(x, y, θ) = θx+ (1− θ)y is the unique element which satisfies

Fz,x(t) = ε0 (t− d(x, z))

= ε0

(
t− d(x− θx, z − θx)

)
= ε0

(
t

1− θ
−
d
(
(1− θ)x, z − θx

)
1− θ

)

= ε0

(
t

1− θ
− d

(
x,

z

1− θ
− θx

1− θ

))
= ε0

(
t

1− θ
− d(x, y)

)
= Fx,y

(
t

1− θ

)
.

In one of previous equalities we used that

y =
z

1− θ
− θx

1− θ
,

which is obtained from z = θx + (1 − θ)y. In the similar way it can be proved that
the second equality in (3.2) is satisfied. Hence, we obtain that observed Menger PM-
space is strictly convex in the sense of Definition 3.6 with a given convex structure
S(x, y, θ).

On the other hand, we have that

d
(
θx+ (1− θ)y, z

)
< max

{
d(x, z), d(y, z)

}
is satisfied for all θ ∈ (0, 1), and it follows that

FS(x,y,θ),z(t) = ε0

(
t− d

(
S(x, y, θ), z

))
> ε0

(
t−max{d(x, z), d(y, z)}

)
= min

{
ε0

(
t− d(x, z)

)
, ε0

(
t− d(y, z)

)}
= min

{
Fz,x(t), Fz,y(t)

}
holds i.e. condition (3.3) is satisfied.

Lemma 3.9 ([17]). Let (X,F , T ) be a strictly convex Menger PM-space with a convex
structure S(x, y, θ). Then for arbitrary x, y ∈ X,x 6= y there exists θ ∈ (0, 1) such
that S(x, y, θ) 6∈ {x, y}.
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4. Main results

Fang [9] has proved the following lemma.

Lemma 4.1 ([9]). Let (X,F , T ) be a Menger PM-space and x, y ∈ X. If there exists
a function ϕ ∈ ΦW , such that

Fx,y
(
ϕ(t)

)
≥ Fx,y(t) (4.1)

holds for every t > 0, then x = y.

Now, we can formulate and prove the main result of this paper.

Theorem 4.2. Let (X,F , T ) be a strictly convex, complete Menger PM-space with
convex structure S : X×X× [0, 1] 7→ X satisfying (3.3). Let f : C → X be a non-self
mapping satisfying

Ffx,fy
(
ϕ(t)

)
≥ Fx,y(t) (4.2)

for all x, y ∈ C and every t > 0, where ϕ : (0,+∞) 7→ (0,+∞) satisfying condition
(1.2) and C is a nonempty, closed and probabilistic bounded subset of X. Additionally,
suppose that f has the property

f(∂C) ⊆ C. (4.3)

Then f has a unique fixed point in C.

Proof. Let x ∈ ∂C be an arbitrary point. We shall construct the sequence {xn}
as follows. Set x0 = x. Since x ∈ ∂C, by (4.3) fx0 ∈ C. Set x1 = fx0. Define
y2 = fx1. If y2 ∈ C, set x2 = y2. If y2 6∈ C let us choose x2 ∈ ∂C so that
x2 = S(x1, y2, θ), θ ∈ (0, 1). Continuing in this manner, we obtain than sequence
{xn} satisfying

xn = fxn−1, if fxn−1 ∈ C,
xn = S(xn−1, fxn−1, θ), θ ∈ (0, 1) if fxn−1 6∈ C.

(4.4)

Notice that if xn = S(xn−1, fxn−1, θ), θ ∈ (0, 1), then obviously xn+1 = fxn and
xn−1 = fxn−2, for n = 2, 3, 4, . . .

Let us consider nested sequence of nonempty closed sets defined by

Gn = {xn, xn+1, . . .} and Fn = Gn, n ∈ N.

We shall prove that family {Fn}n∈N has probabilistic diameter zero.
Firstly, let us prove that:

δGn

(
ϕ(t)

)
≥ δGn−2

(t) (4.5)

holds for every t > 0. Hence, we will observe the following three cases that are all of
the possibilities:

Case 1: xn+p = fxn+p−1 and xn+q = fxn+q−1 for arbitrary p, q ∈ N ∪ {0};
Case 2: xn+p = fxn+p−1 and xn+q = S(xn+q−1, fxn+q−1, θ), θ ∈ (0, 1) for arbitrary

p, q ∈ N ∪ {0};
Case 3: xn+p = S(xn+p−1, fxn+p−1, θ1), θ1 ∈ (0, 1), and

xn+q = S(xn+q−1, fxn+q−1, θ2), θ2 ∈ (0, 1) for arbitrary p, q ∈ N ∪ {0}.
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Case 1: If xn+p = fxn+p−1 and xn+q = fxn+q−1 for arbitrary p, q ∈ N ∪ {0}, from
(4.2) we have

Fxn+p,xn+q

(
ϕ(t)

)
= Ffxn+p−1,fxn+q−1

(
ϕ(t)

)
≥ Fxn+p−1,xn+q−1

(t)

≥ δGn−2
(t).

(4.6)

Case 2: If xn+p = fxn+p−1 and xn+q = S(xn+q−1, fxn+q−1, θ), θ ∈ (0, 1) for arbitrary
p, q ∈ N ∪ {0}, then from (3.3) and (4.2) we have

Fxn+p,xn+q

(
ϕ(t)

)
= Ffxn+p−1,S(xn+q−1,fxn+q−1,λ)

(
ϕ(t)

)
> min

{
Ffxn+p−1,xn+q−1

(
ϕ(t)

)
, Ffxn+p−1,fxn+q−1

(
ϕ(t)

)}
= min

{
Ffxn+p−1,fxn+q−2

(
ϕ(t)

)
, Ffxn+p−1,fxn+q−1

(
ϕ(t)

)}
≥ min

{
Fxn+p−1,xn+q−2(t), Fxn+p−1,xn+q−1(t)

}
≥ δGn−2(t).

(4.7)

Case 3: If xn+p = S(xn+p−1, fxn+p−1, θ1), θ1 ∈ (0, 1), and

xn+q = S(xn+q−1, fxn+q−1, θ2), θ2 ∈ (0, 1)

for arbitrary p, q ∈ N ∪ {0}, then from (3.3) and (4.2) we have

Fxn+p,xn+q

(
ϕ(t)

)
= FS(xn+p−1,fxn+p−1,λ),S(xn+q−1,fxn+q−1,λ)

(
ϕ(t)

)
> min

{
Fxn+p−1,xn+q−1

(
ϕ(t)

)
, Fxn+p−1,fxn+q−1

(
ϕ(t)

)
,

Ffxn+p−1,xn+q−1

(
ϕ(t)

)
, Ffxn+p−1,fxn+q−1

(
ϕ(t)

)}
= min

{
Ffxn+p−2,fxn+q−2

(
ϕ(t)

)
, Ffxn+p−2,fxn+q−1

(
ϕ(t)

)
,

Ffxn+p−1,fxn+q−2

(
ϕ(t)

)
, Ffxn+p−1,fxn+q−1

(
ϕ(t)

)}
≥ min

{
Fxn+p−2,xn+q−2

(t), Fxn+p−2,xn+q−1
(t),

Fxn+p−1,xn+q−2
(t), Fxn+p−1,xn+q−1

(t)
}

≥ δGn−2(t).

(4.8)

Since the inequalities (4.6), (4.7) and (4.8) are of all the possibilities we have that

δGn

(
ϕ(t)

)
= sup
ε<ϕ(t)

inf
x,y∈Gn

Fx,y(ε) = sup
ε<ϕ(t)

inf
p,q∈N∪{0}

Fxn+p,xn+q (ε) ≥ δGn−2(t),

i.e. it follows that (4.5) holds for every t > 0.
Now, we shall prove that family {Fn}n∈N has probabilistic diameter zero. Let

λ ∈ (0, 1) and t > 0 be arbitrary. From Gk ⊆ K, for arbitrary k ∈ N, it follows
that Gk is a probabilistic bounded set. Now, from Lemma 2.9 we have that for every
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λ ∈ (0, 1) there exist t0 > 0 such that

Fx,y(t0) > 1− λ (4.9)

for all x, y ∈ Gk. Hence, for every λ ∈ (0, 1) and such t0 we get that

δGk
(t0) ≥ 1− λ.

From condition (1.2), for such t0, there exists s ≥ t0, such that

lim
n→∞

ϕn(s) = 0.

Hence, there exists l ∈ N such that ϕl(s) < t. From the previous we can conclude
that there exists an even number p, p > l, such that ϕp(s) < t, i.e. ϕ2m(s) < t where
m = p

2 .
Let n = 2m+ k and x, y ∈ Gn be arbitrary. Applying induction in (4.5) we obtain

δGn

(
ϕ2m(s)

)
≥ δGn−2m

(s).

From the previous inequality it follows that

δGn
(t) ≥ δGn

(
ϕ2m(s)

)
≥ δGn−2m

(s) ≥ δGk
(t0) ≥ 1− λ

i.e.

δGn
(t) ≥ 1− λ.

Finally, since Gn and Fn have the same probabilistic diameter, we obtain that

δFn
(t) ≥ 1− λ

i.e. we get that

Fx,y(t) ≥ 1− λ
for all x, y ∈ Fn, i.e. the family {Fn}n∈N has probabilistic diameter zero.

Applying Theorem 2.11 and Lemma 2.12 we conclude that family {Fn}n∈N has
nonempty intersection, which consists of exactly one point z i.e. z ∈ Fn, for all
n ∈ N. Since the family {Fn}n∈N has probabilistic diameter zero, then for each
λ ∈ (0, 1) and each t > 0 there exists n0 ∈ N such that for all n ≥ n0 holds

Fxn,z(t) > 1− λ.

From the last inequality it follows that

lim inf
n→∞

Fxn,z(t) > 1− λ

holds for every λ ∈ (0, 1).
Taking that λ→ 0 we get

lim inf
n→∞

Fxn,z(t) = 1,

i.e. lim
n→∞

xn = z.

By the construction of sequence {xn}n∈N it follows that there exists a subse-
quence {xnk

}k∈N such that xnk+1 = fxnk
. It is obvious that lim

nk→∞
xnk+1 = z, and

lim
nk→∞

fxnk
= z.
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From (1.2), since for arbitrary t > 0, there exists r ≥ t, such that lim
n→∞

ϕn(r) = 0,

it follows that there exists l ∈ N such that ϕl(r) < t. Now, from inequality (4.2) and
previous we get

Ffxnk
,fz(t) > Ffxnk

,fz

(
ϕl(r)

)
≥ Fxnk

,z

(
ϕl−1(r)

)
.

Taking lim inf in previous inequality, applying Lemma 2.5, we obtain

Flim inf
nk→∞

fxnk
,f(z)(t) ≥ 1.

Hence, since previous inequality holds for arbitrary t > 0, we get that

Fz,f(z)(t) ≥ 1

holds for every t > 0, i.e. we get that fz = z, i.e. z is the fixed point of f. Furthermore,
since set C is closed set, we conclude that z ∈ C.

Let us prove that z is a unique fixed point. For this purpose let us suppose that
there exists another fixed point, denoted by u. From the condition (4.2) follows

Ffz,fu
(
ϕ(t)

)
≥ Fz,u(t)

for every t > 0. Therefore we get that

Fz,u
(
ϕ(t)

)
≥ Fz,u(t)

for every t > 0. Finally, applying Lemma 4.1 it follows that z = u. This completes
the proof. �

Example 4.3. Applying Theorem 4.2 we will prove that function f : R 7→ R, where

R = (−∞,+∞), defined by f(x) = 3
5 −

x2

2 , has a fixed point in set C =
[
− 1

2 ,
1
2

]
.

Let us show that all of conditions of Theorem 4.2 are satisfied. In accordance with
Remark 2.3 we have that the triple (R,F , Tmin) is a Menger PM-space. From Example
3.3 and Example 3.8 we have that Menger PM-space (R,F , Tmin) is a strictly convex
Menger PM space satisfying condition (3.3) with a convex structure

S(x, y, θ) = θx+ (1− θ)y

for all x, y ∈ R and θ ∈ (0, 1). Mapping f : [− 1
2 ,

1
2 ] 7→ [ 19

40 ,
3
5 ] is a non-self mapping

and it satisfying condition f(∂C) ⊆ C because f(− 1
2 ) = f( 1

2 ) = 19
40 ∈ C. It is obvious

that C is a nonempty and closed set. Furthermore, C is a metrically bounded set and
by Remark 2.10 it is a probabilistic bounded set, also.
Let us define function ϕ : (0,+∞) 7→ (0,+∞) by

ϕ(t) =


t

1+t , 0 < t < 1,

− 3
4 t+ 7

4 , 1 ≤ t ≤ 4
3 ,

t− 7
12 ,

4
3 < t < +∞.

For function ϕ we have that

lim
n→∞

ϕn(t) = lim
n→∞

t

1 + nt
= 0
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holds for every t ∈ (0, 1), but it does not satisfy condition limn→+∞ ϕn(t) = 0, for
every t ≥ 1, because from ϕ(1) = ϕ

(
19
12

)
= 1 we get

lim
n→∞

ϕn(1) = lim
n→∞

ϕn
(

19

12

)
= 1 6= 0.

Now, we will show that function ϕ satisfying condition (1.2) for t ≥ 1, i.e. we will
show by induction that

lim
n→∞

ϕn
(

7k

12

)
= 0 (4.10)

holds for k = 2, 3, . . . It is obvious that (4.10) holds for k = 2, because ϕ
(

7
6

)
= 7

8 ∈
(0, 1). Let us assume that (4.10) holds for some k = l. Then, for k = l + 1, we have

that 7(l+1)
12 > 4

3 , and it follows ϕ
(

7(l+1)
12

)
= 7l

12 . Hence, we obtain

lim
n→∞

ϕn
(

7(l + 1)

12

)
= lim
n→∞

ϕn−1

(
7l

12

)
= 0

which shows that (4.10) holds for k = l+ 1, and by induction (4.10) holds, for every
k = 2, 3, . . . Finally, we can conclude that for every t ≥ 1, exists r = 7k0

12 > t for
sufficiently large k0 = 2, 3, . . . , such that (4.10) holds. Hence, function ϕ satisfied
condition (1.2).
Notice that ϕ(t) > t

2 holds for every t > 0 and |x2 − y2| ≤ |x − y| holds for every
x, y ∈ C, because |x+ y| ≤ 1 holds for every x, y ∈ C. Then, we get:

Ff(x),f(y)

(
ϕ(t)

)
= ε0

(
ϕ(t)− d

(
f(x), f(y)

))
= ε0

(
ϕ(t)−

∣∣f(x)− f(y)
∣∣)

= ε0

(
ϕ(t)− 1

2

∣∣x2 − y2
∣∣) ≥ ε0

( t
2
− 1

2
|x− y|

)
= ε0(t− |x− y|) = ε0

(
t− d(x, y)

)
= Fx,y(t),

i.e. nonlinear contractive condition (4.2) is satisfied for every x, y ∈ C.
Since, all conditions from Theorem 4.2 are satisfied we get that function f has

unique fixed point x = −5+
√

55
5 ∈ C.
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