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1. Introduction

Fixed points and strict fixed points of multivalued operators are important concepts
in the theory of set-valued dynamic systems [2, 13]. The study of fixed points for set-
valued functions using Hausdorff metric was initiated by Nadler [14] in 1969, who
extended Banach’s fixed point theorem [4] for set-valued functions. Nadler’s idea
was used by some mathematicians to prove the existence of a fixed point for set-
valued functions. In 2008, Suzuki [15] proved a generalization of Banach’s fixed point
theorem. Kikkawa and Suzuki extended Suzuki’s theorem for set-valued mappings as
follows:

Theorem 1.1. [11, Theorem 2] Let (X, d) be a complete metric space and let T ba a
mapping from X into the set of all nonempty closed bounded subsets of X. Assume
that there exists r ∈ [0, 1) such that 1

1+rd(x, Tx) ≤ d(x, y) implies that H(Tx, Ty) ≤
rd(x, y) for all x, y ∈ X. Then there is some x ∈ X such that x ∈ Tx.

The above result was improved by Mot and Petruşel:

Theorem 1.2. [12, Theorem 6. 6] Let (X, d) ba a complete metric space and T
be a set-valued function from X into nonempty closed subsets of X. Assume that
for some a, b, c ∈ [0, 1) with a + b + c < 1, 1−b−c

1+a d(x, Tx) ≤ d(x, y) implies that

H(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) for all x, y ∈ X. Then there is some
x ∈ X such that x ∈ Tx.
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In 2011, Aleomraninejad et al. [1] developed a new method to prove Suzuki’s fixed
point theorem for set-valued mapping. The method was extended by Yingtaweesit-
tikul [16] for set-valued functions in general b-metric spaces.

In this paper, we use the definition Czerwik for b-metrics to improve the main
result in [16] in this special case. This result will enable us to prove set-valued version
of some known results in special kind of b-metric spaces.

2. Results

We recall that a b-metric d on a nonempty set X is a function d : X ×X → [0,∞)
with the following properties:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ k[d(x, y) + d(y, z)]

for all x, y, z ∈ Z for some k > 1. Clearly every metric space is a b-metric. However,
the converse is not true in general. For example the function d : R×R→ R which is
defined by d(x, y) = |x− y|2 is a b-metric on R for k = 2. However, it is not a metric.
Czerwik in [7], defined a special class of b-metrics by replacing (iii) by the following:

(iv) For each ε > 0 and x, y, z ∈ X if d(x, y) < ε and d(y, z) < ε, then d(x, z) < 2ε.

It is easy to verify that “ < ” can be replaced by “ ≤ ” in (iv). Moreover, if d satisfies
(iv), then (iii) holds for k = 2. For the b-metric d(x, y) = |x− y|2, x, y ∈ R, we have
d(1, 0) = d(0,−1) = 1 but d(1,−1) = 4 ≮ 2. Hence the class of those b-metrics with
the property (iv) is strictly smaller than the class of all b-metric spaces for k = 2.

In order to avoid ambiguity, if (X, d) satisfies (i)-(iii), for some k > 1, we say that
(X, d) is a bk-metric space. If (X, d) satisfies the properties (i), (ii) and (iv), then it is
called a b-metric space. We denote by CL(X ) the set of all nonempty closed subsets
of X. For each x ∈ X and A ∈ CL(X), define

d(x,A) = d(A, x) = inf{d(x, a) : a ∈ A}.

We have the following simple observation.

Proposition 2.1. Let (X, d)be a b-metric space and A ∈ CL(X). Then for every
x, y ∈ X, a ∈ A and ε > 0, we have the following.

(a) d(x,A) ≥ 0 and the equality holds only if x ∈ A.
(b) If d(x, y) < ε and d(y,A) < ε, then d(x,A) < 2ε.

Proof. (a) follows directly from the definition. To prove (b), let d(y,A) < ε, by the
definition, there is some a′ ∈ A such that d(y, a′) < ε. Since (X, d) is a b-metric, if
d(x, y) < ε, then d(x, a′) < 2ε. Hence d(x,A) ≤ d(x, a′) < 2ε. �

Let (X, d) be a b-metric space. For each x0 ∈ X and δ > 0, let N(x0; δ) = {x ∈
X : d(x, x0) < δ}. Now if A,B ∈ CL(X), we define the Hausdorff distance of A and
B by

H(A,B) = inf{r > 0 : A ⊆
⋃
b∈B

N(b; r) and B ⊆
⋃
a∈A

N(a; r) }.
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Proposition 2.2. Let (X, d) be a b-metric space and A,B ∈ CL(X). Then we have
the following.

(a) H defines a b-metric on nonempty closed bounded subsets of X.
(b) d(x,B) ≤ H(A,B) for any x ∈ A.
(c) For each 0 < λ < 1 and x0 ∈ X \ A, there is some x1 ∈ A such that

λd(x0, A) < d(x0, x1).

Proof. It follows from the definition that for each A,B ∈ CL(X), H(A,B) ≥ 0 and
the equality holds only if A = B. Moreover H(A,B) = H(B,A). Now, let A,B and
C be in CL(X) and ε > 0. If H(A,B) < ε and H(B,C) < ε, then

A ⊆
⋃
b∈B

N(b; ε) and B ⊆
⋃
c∈C

N(c; ε).

Hence if a ∈ A, there is some b ∈ B such that d(a, b) < ε. Moreover, there is some
c ∈ C such that d(b, c) < ε. Hence d(a, c) < 2ε. This means that A ⊆

⋃
c∈C N(c, 2ε).

A similar argument shows that C ⊆
⋃

a∈AN(a, 2ε). Hence H(B,C) ≤ 2ε. This
proves (a). Let H(A,B) < r and x ∈ A. Then A ⊆

⋃
b∈B N(b; r). Hence there is

some b ∈ B such that d(x, b) < r. It follows that d(x,B) ≤ d(x, b) < r. Thus (b)
holds. (c) follows from the definition of d(x0, A). �

The following result plays an important rule in the sequel.

Lemma 2.3. (see [8] or [9]). Suppose d : X × X → [0,∞) satisfies the following
condition:
For any ε > 0 and x, y, z ∈ X, if d(x, y) < ε and d(y, z) < ε, then d(x, z) < 2ε.
Then the function ρ : X ×X → [0,∞), defined by

ρ(x, y) = inf{
n∑

i=1

d(xi−1, xi); where n ∈ N, x0 = x and xn = y}, (x, y) ∈ X ×X),

(2.1)
has the following properties:

(i) ρ(x, z) ≤ ρ(x, y) + ρ(y, z), for all x, y, z ∈ X.

(ii) d(x,y)
4 ≤ ρ(x, y) ≤ d(x, y) for all x, y ∈ X. Further, ρ is symmetric (i.e.

ρ(x, y) = ρ(y, x) if d is).

We also need to the following observation.

Lemma 2.4. Let X be a b-metric space and {xn} be a sequence in X such that for
some 0 ≤ r < 1,

d(xn, xn+1) ≤ rd(xn−1, xn) (n = 2, 3, . . . ). (2.2)

Then {xn} is a Cauchy sequence.

Proof. It follows from (2.2) that for each n ≥ 1, d(xn, xn+1) ≤ rnd(x0, x1). Given

ε > 0, find some n0 ∈ N such that rnd(x0,x1)
1−r < ε/4. In view of Lemma 2.3, there is

a metric ρ on X such that d(x,y)
4 ≤ ρ(x, y) ≤ d(x, y) for all x, y ∈ X. Hence for each



308 ALIREZA KAMEL MIRMOSTAFAEE

m > n ≥ n0, we have

(1/4)d(xn, xm) ≤ ρ(xn, xm) ≤
m−1∑
i=n

ρ(xi, xi+1)

≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

rid(x0, x1)

≤ rnd(x0, x1)

1− r
< ε/4.

�

Let R denote the class of all continuous functions g : [0,∞)5 → [0,∞) with the
following properties:

(i) g(1, 1, 1, 4, 0) = g(1, 1, 1, 0, 4) = h ∈ (0, 1),
(ii) g is sub-homogeneous, that is,

g(λx1, λx2, λx3, λx4, λx5) ≤ λg(x1, x2, x3, x4, x5), (x1, x2, x3, x4, x5, λ ≥ 0).

(iii) If xi ≤ yi for 1 ≤ i ≤ 4, then

g(x1, x2, x3, x4, 0) ≤ g(y1, y2, y3, y4, 0) and
g(x1, x2, x3, 0, x4) ≤ g(y1, y2, 0, y4).

Let k ≥ 1 be fixed and let Rk denote the set of all continuous functions g :
[0,∞)5 → [0,∞) satisfying the conditions (ii), (iii) and

(iv) g(1, 1, 1, 2k, 0) = g(1, 1, 1, 0, 2k) = hk ∈ (0, 1k ).

We need to the following elementary results.

Lemma 2.5. If g ∈ R and u, v ∈ [0,∞) are such that

u ≤ max{g(u, v, u, 2(u+v), 0), g(v, v, 0, 2(u+v)), g(v, u, v, u+v, 0), g(v, u, v, 0, 2(u+v))},

then u ≤ hv.

Proof. See the proof of [6, Lemma 1. 3] or [16, Lemma 1. 10]. �

We recall that a point x0 ∈ X is said to be a fixed point of a set-valued function
T : X → 2X if x0 ∈ Tx0. The set of all fixed points of T : X → 2X is denoted by
F(T ).

Lemma 2.6. Let X be a complete b-metric space and let T, S : X → CL(X) be two
set-valued functions such that for some λ > 0 and g ∈ R,

λd(x, Tx) ≤ d(x, y) or λd(x, Sx) ≤ d(x, y) implies that

H(Tx, Sy) ≤ g
(
d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)

)
(x, y ∈ X).

Then F(F ) = F(G).

Proof. See [1, Lemma 2.1] or [16, Theorem 1.9]. �

In [16], H. Yingtaweesittikul proved the following.
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Theorem 2.7. [16, Theorem 2. 1] Let (X, d) be a complete bk-complete metric space
and let T, S : X → CB(X) be two set-valued mappings. Suppose there exists λ ∈ (0, 1)
and g ∈ Rk such that kλ(1 + hk) ≤ 1 and

λd(x, Tx) ≤ d(x, y) or λd(x, Sx) ≤ d(x, y) implies that

H(Tx, Sy) ≤ g
(
d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)

)
(x, y ∈ X).

Then F(T ) = F(S) and F(T ) is non-empty.

Note that h2 = h but h2 ∈ (0, 12 ) while h ∈ (0, 1). In the next result, we improve
the above theorem for special kind of b2-metric spaces.

Theorem 2.8. Let X be a complete b-metric space and let T, S : X → CL(X) be two
set-valued functions such that for some λ ∈ (0, 1) and g ∈ R such that 2λ(1 + h) < 1
and

λd(x, Tx) ≤ d(x, y) or λd(x, Sx) ≤ d(x, y) implies that

H(Tx, Sy) ≤ g
(
d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)

)
(x, y ∈ X).

Then F(T ) = F(S) and F(T ) is non-empty.

Proof. Thanks to Lemma 2.6, F(T ) = F(S). Take some 1 > r > h and x0 ∈ X. If
x0 ∈ Tx0, then x0 ∈ F(T ). Otherwise, choose some x1 ∈ Tx0 such that λd(x0, Tx0) <
d(x0, x1). Then

d(x1, Sx1) ≤ H(Tx0, Sx1)

≤ g
(
d(x0, x1), d(x0, Tx0), d(x1, Sx1), d(x0, Sx1), d(x1, Tx0)

)
≤ g
(
d(x0, x1), d(x0, x1), d(x1, Sx1), 2d(x0, x1) + 2d(x1, Sx1), 0

)
By Lemma 2.5, d(x1, Sx1) ≤ hd(x0, x1) < rd(x0, x1). Let d(x1, Sx1) < µ < rd(x0, x1).
By the definition, there is some x2 ∈ Sx1 such that d(x1, x2) < µ < rd(x0, x1). Since
λd(x1, Sx1) < d(x1, x2), by assumption,

d(x2, Tx2) ≤ H(Tx2, Sx1)

≤ g
(
d(x1, x2), d(x2, Tx2), d(x1, Sx1), d(x2, Sx1), d(x1, Tx2)

)
≤ g
(
d(x1, x2), d(x2, Tx2), d(x1, x2), 0, 2d(x1, x2) + 2d(x2, Tx2)

)
.

By applying Lemma 2.5 once again, we have d(x2, Tx2) ≤ hd(x1, x2) < rd(x1, x2).
Similarly, we can find some x3 ∈ Tx2 such that d(x2, x3) < rd(x1, x2). Using the
above argument, by induction, we can obtain a sequence {xn} in X with the following
properties:

(a) x2n+1 ∈ T2n−2 and x2n ∈ Sx2n−1,
(b) d(xn, xn+1) ≤ rd(xn−1, xn),
(c) d(x2n, Tx2n) ≤ hd(x2n−1, x2n) and d(x2n−1, Sx2n−1) ≤ hd(x2n−2, x2n−1)

for all n ∈ N. If xn = xn+1 for some n ∈ N, then by (c), xn is a common fixed
point of T and S. Otherwise, (b) and Lemma 2.4 imply that {xn} is a Cauchy
sequence in complete b-metric space X. Let x = limn→∞ xn. We claim that either
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λd(x2n, T2n) ≤ d(x2n, x) or λd(x2n+1, T2n+1) ≤ d(x2n+1, x) for each n ∈ N. If for
some n ∈ N, λd(x2n, T2n) > d(x2n, x) and λd(x2n+1, T2n+1) > d(x2n+1, x), then

d(x2n, x2n+1) ≤ 2
[
d(x2n, x) + d(x2n+1, x)

]
< 2λ

[
d(x2n, Tx2n) + d(x2n+1, Sx2n+1)

]
≤ 2λ

[
d(x2n, x2n+1) + hd(x2n, x2n+1)

]
= 2λ(1 + h)d(x2n, x2n+1) < d(x2n, x2n+1).

This contradiction proves our claim. Therefore, by our assumption for each n ∈ N
either

H(Tx2n, Sx) ≤ g
(
d(x2n, x), d(x2n, Tx2n), d(x, Sx), d(x2n, Sx), d(x, Tx2n)

)
or

H(Tx, Sx2n+1) ≤
≤ g
(
d(x2n+1, x), d(x, Tx), d(x2n+1, Sx2n+1), d(x, Sx2n+1), d(x2n+1, Tx)

)
.

It follows that at least one of the following two cases happens.
Case 1. There is an infinite subset I ⊆ N such that

d(x2n+1, Sx) ≤ H(Tx2n, Sx)

≤ g
(
d(x2n, x), d(x2n, Tx2n), d(x, Sx), d(x2n, Sx), d(x, Tx2n)

)
(n ∈ I).

In this case, for each n ∈ I, we have

d(x, Sx) ≤ 2
[
d(x, x2n+1) + d(x2n+1, Sx)

]
≤ 2
[
d(x, x2n+1) + g

(
d(x2n, x), d(x2n, Tx2n), d(x, Sx), d(x2n, Sx), d(x, Tx2n)

)
≤ 2
[
d(x, x2n+1) + g

(
d(x2n, x), d(x2n, x2n+1), d(x, Sx),

2d(x2n, x) + 2d(x, Sx), d(x, x2n+1)
)
.

By continuity of g, it follows that

d(x, Sx) ≤ 2g(0, 0, d(x, Sx), 2d(x, Sx), 0).

By Lemma 2.5, we have d(x, Sx) = 0. Hence x ∈ F(S).

Case 2. There is an infinite subset I of N such that

d(Tx, x2n+1) ≤ H(Tx, Sx2n+1)

≤ g
(
d(x2n+1, x), d(x, Tx), d(x2n+1, Sx2n+1), d(x, Sx2n+1), d(x2n+1, Tx)

)
In this case, for each n ∈ I, we have

d(x, Tx) ≤ 2
[
d(x, x2n+2) + d(x2n+2, Tx)

]
≤ 2
[
d(x, x2n+2) + g

(
d(x2n+1, x), d(x, Tx),

d(x2n+1, Sx2n+1), d(x, Sx2n+1), d(x2n+1, Tx)
)]

≤ 2
[
d(x, x2n+2)

+ g
(
d(x2n+1, x), d(x, Tx), d(x2n+1, x2n+2), d(x, x2n+2),

2d(x2n+1, x) + 2d(x, Tx)
)]
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Using continuity of g, we have

d(x, Tx) ≤ 2g
(
0, d(x, Tx), 0, 0, 2d(x, Tx)

)
.

By Lemma 2.5, d(x, Tx) = 0. Hence x ∈ Tx. �

The above result enable us to prove Theorem 1.2 for b-metric spaces.

Theorem 2.9. Let (X, d) ba a complete b-metric space and T, S : X → CL(X).
Assume that for some a, b, c ∈ [0, 1) with a + b + c < 1, 1−b−c

2(1+a)d(x, Tx) ≤ d(x, y) or
1−b−c
2(1+a)d(y, Sy) ≤ d(x, y) implies that H(Tx, Sy) ≤ ad(x, y) + bd(x, Tx) + cd(y, Sy) for

all x, y ∈ X. Then F(T ) = F(S) and F(T ) is non-empty.

Proof. In Theorem 2.8, let λ = 1−b−c
2(1+a) and g(x1, x2, x3, x4, x5) = ax1 + bx2 + cx3 for

all x1, x2, x3, x4, x5 ≥ 0. Since 2λ(1 + a+ b+ c) < 1, by Theorem 2.8, F(T ) = F(S)
and F(T ) is non-empty. �

By imitating the proof of Theorem 2.8, one can prove the following:

Theorem 2.10. Let X be a complete b-metric space and let T, S : X → CL(X) be
two set-valued functions such that for some g ∈ R

H(Tx, Sy) ≤ g
(
d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)

)
(x, y ∈ X).

Then F(T ) = F(S) and F(T ) is non-empty.

The next result can be considered as set-valued version of Hardy-Rogers fixed point
theorem [10] in b-metric spaces.

Theorem 2.11. Let (X, d) be a complete b-metric and T : X → CL(X) be a set-
valued mapping such that for all x, y ∈ X,

H(Tx, Ty) ≤ a d(x, y) + b d(x, Tx) + c d(y, Ty) + e d(x, Ty) + f d(y, Tx), (2.3)

where 0 ≤ a, b, c, e, f < 1 and a+ b+ c+ 2(e+ f) < 1. Then F(T ) 6= ∅.

Proof. By symmetry,

H(Tx, Ty) ≤ a d(x, y) + b d(y, Ty) + c d(x, Tx) + e d(y, Tx) + f d(x, Ty), (2.4)

for all x, y ∈ X. Put α = b+c
2 and β = e+f

2 . Then by (2.3) and (2.4) for all x, y ∈ X,

H(Tx, Ty) ≤ a d(x, y) + α [d(x, Tx) + d(y, Ty)] + β[ d(x, Ty) + d(y, Tx)]. (2.5)

Define g : [0,∞)5 → [0,∞) by

g(x1, x2, x3, x4, x5) = ax1 + α(x2 + x3) + β(x4 + x5) (xi ≥ 0, 1 ≤ i ≤ 5).

Clearly g is nondecreasing with respect to each variable and sub-homogenous. More-
over, g(1, 1, 1, 4, 0) = g(1, 1, 1, 0, 4) = a+ b+ c+ 2(e+ f) < 1. Hence g ∈ R. Thanks
to Theorem 2.10, F(T ) 6= ∅. �

A mapping T : X → X is said to be a quasi-contraction if there is some 0 ≤ r < 1
such that

d(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
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In 1974, Ĉirić[5] proved a fixed point theorem for quasi-contractive mappings in com-

plete metric spaces. Aydi et al. [3] extend Ĉirić’s theorem for bk-metric spaces as
follows.

Theorem 2.12. [3, Theorem 2. 2]. Let (X, d) be a complete bk-metric space. Suppose
that T is a set-valued quasi-contractive mapping, that is

H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (x, y ∈ X).

If r(k2 + k) < 1, then F(T ) 6= ∅.

Theorem 2.10 enable us to prove the following extension of Theorem 2.12 for special
kind of b2-metrics.

Theorem 2.13. Let (X, d) be a complete b-metric and T, S : X → CL(X) be a
set-valued mapping such that for all x, y ∈ X,

H(Tx, Sy) ≤ rmax{d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)}, (2.6)

where 0 ≤ r < 1
4 . Then F(T ) = F(S) is nonempty.

Proof. Define g : [0,∞)5 → [0,∞) by

g(x1, x2, x3, x4, x5) = rmax{x1, x2, x3, x4, x5) (xi ≥ 0, 1 ≤ i ≤ 5).

Then h = rmax{1, 1, 1, 4, 0} = 4r < 1. According to Theorem 2.10, F(T ) = F(S) is
not empty. �

The following example shows that the above result is a genuine extension of The-
orem 2.12 in special kind of b2-metric spaces.

Example 2.14. Let X1 = {x ∈ R : 0 ≤ x ≤ 1
3} and X2 = {a, b, c} where a = 1

2 ≤
c ≤ b = 1. Let X = X1 ∪X2 and define a symmetric function d : X ×X → R+ by

d(x, x) = 0 for all x ∈ X,
d(x, y) = |x− y| if x, y ∈ X1,
d(x, y) = 1 if x ∈ X1, y ∈ X2 or x ∈ X2, y ∈ X1,
d(a, b) = 1

2 , d(a, c) = 1 and d(b, c) = 2.

Since d(b, c) = 2 � 3
2 = d(b, a)+d(a, c), d is not a metric. An easy computation shows

that (X, d) is complete and

d(x, y) ≤ 2 max{d(x, z), d(z, y)} (x, y, z ∈ X).

Therefore (X, d) is a complete b-metric. Let T : X → X be defined by Tx = x
5 for all

x ∈ X. We will show that

d(Tx, Ty) ≤ 1

5
max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (x, y ∈ X).

(2.7)
Clearly (2.7) holds for all x, y ∈ X1. If x, y ∈ X2, we have

d(Tx, Ty) =
1

5
|x− y| ≤ 1

5
× 1

2
≤ 1

5
d(x, y).

Suppose that x ∈ X1 and y ∈ X2, then

d(Tx, Ty) =
1

5
|x− y| ≤ 1

5
=

1

5
d(x, y).



FIXED POINT THEOREMS FOR b-METRIC SPACES 313

It follows from Theorem 2.13 that T has a fixed point. However, Theorem 2.12 can
not be applied. In fact, in Theorem 2.12, r must be less than 1

k2+k . So that for k = 2,

r < 1
6 . In this example for x0 = 0, y0 = 1, we have d(Tx0, Ty0) = 1

5 and

max{d(x0, y0), d(x0, Tx0), d(y0, Ty0), d(x0, T y0), d(y0, Tx0)}=max

{
1, 0,

1

5
, 1, 1

}
=1.

But for r < 1
6 ,

d(Tx0, Tx0) =
1

5
max{d(x0, y0), d(x0, Tx0), d(y0, Ty0), d(x0, T y0), d(y0, Tx0)}

� rmax{d(x0, y0), d(x0, Tx0), d(y0, T y0), d(x0, T y0), d(y0, Tx0)}.
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