Fixed Point Theory, 18(2017), No. 1, 305-314 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT THEOREMS FOR SET-VALUED MAPPINGS IN b-METRIC SPACES

ALIREZA KAMEL MIRMOSTAFAEE

Center of Excellence in Analysis on Algebraic Structures Department of Pure Mathematics, Ferdowsi University of Mashhad P. O. Box 1159, Mashhad 91775, Mashhad, Iran E-mail:mirmostafaei@um.ac.ir

Abstract. We will establish set-valued version of Suzuki's fixed point theorem when the underling space is a complete *b*-metric. Our method enable us to prove set-valued versions of Hardy-Rogers and Ĉirić fixed point theorems for *b*-metric spaces.

Key Words and Phrases: contraction-type mappings, fixed point theorems, set-valued functions. **2010 Mathematics Subject Classification**: 37C25, 47H09, 47H10, 26E25.

1. INTRODUCTION

Fixed points and strict fixed points of multivalued operators are important concepts in the theory of set-valued dynamic systems [2, 13]. The study of fixed points for setvalued functions using Hausdorff metric was initiated by Nadler [14] in 1969, who extended Banach's fixed point theorem [4] for set-valued functions. Nadler's idea was used by some mathematicians to prove the existence of a fixed point for setvalued functions. In 2008, Suzuki [15] proved a generalization of Banach's fixed point theorem. Kikkawa and Suzuki extended Suzuki's theorem for set-valued mappings as follows:

Theorem 1.1. [11, Theorem 2] Let (X, d) be a complete metric space and let T be a mapping from X into the set of all nonempty closed bounded subsets of X. Assume that there exists $r \in [0,1)$ such that $\frac{1}{1+r}d(x,Tx) \leq d(x,y)$ implies that $\mathcal{H}(Tx,Ty) \leq rd(x,y)$ for all $x, y \in X$. Then there is some $x \in X$ such that $x \in Tx$.

The above result was improved by Mot and Petruşel:

Theorem 1.2. [12, Theorem 6. 6] Let (X, d) be a complete metric space and T be a set-valued function from X into nonempty closed subsets of X. Assume that for some $a, b, c \in [0, 1)$ with a + b + c < 1, $\frac{1-b-c}{1+a}d(x, Tx) \leq d(x, y)$ implies that $\mathcal{H}(Tx, Ty) \leq ad(x, y) + bd(x, Tx) + cd(y, Ty)$ for all $x, y \in X$. Then there is some $x \in X$ such that $x \in Tx$.

In 2011, Aleomraninejad et al. [1] developed a new method to prove Suzuki's fixed point theorem for set-valued mapping. The method was extended by Yingtaweesittikul [16] for set-valued functions in general *b*-metric spaces.

In this paper, we use the definition Czerwik for b-metrics to improve the main result in [16] in this special case. This result will enable us to prove set-valued version of some known results in special kind of b-metric spaces.

2. Results

We recall that a *b*-metric *d* on a nonempty set *X* is a function $d: X \times X \to [0, \infty)$ with the following properties:

- (i) d(x, y) = 0 if and only if x = y,
- (ii) d(x,y) = d(y,x),
- (iii) $d(x,z) \le k[d(x,y) + d(y,z)]$

for all $x, y, z \in Z$ for some k > 1. Clearly every metric space is a *b*-metric. However, the converse is not true in general. For example the function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ which is defined by $d(x, y) = |x - y|^2$ is a *b*-metric on \mathbb{R} for k = 2. However, it is not a metric. Czerwik in [7], defined a special class of *b*-metrics by replacing (iii) by the following:

(iv) For each $\varepsilon > 0$ and $x, y, z \in X$ if $d(x, y) < \varepsilon$ and $d(y, z) < \varepsilon$, then $d(x, z) < 2\varepsilon$. It is easy to verify that "<" can be replaced by " \leq " in (iv). Moreover, if d satisfies (iv), then (iii) holds for k = 2. For the *b*-metric $d(x, y) = |x - y|^2$, $x, y \in \mathbb{R}$, we have d(1, 0) = d(0, -1) = 1 but $d(1, -1) = 4 \not\leq 2$. Hence the class of those *b*-metrics with the property (iv) is strictly smaller than the class of all *b*-metric spaces for k = 2.

In order to avoid ambiguity, if (X, d) satisfies (i)-(iii), for some k > 1, we say that (X, d) is a b_k -metric space. If (X, d) satisfies the properties (i), (ii) and (iv), then it is called a *b*-metric space. We denote by CL(X) the set of all nonempty closed subsets of X. For each $x \in X$ and $A \in CL(X)$, define

$$d(x, A) = d(A, x) = \inf\{d(x, a) : a \in A\}.$$

We have the following simple observation.

Proposition 2.1. Let (X, d) be a b-metric space and $A \in CL(X)$. Then for every $x, y \in X$, $a \in A$ and $\varepsilon > 0$, we have the following.

- (a) $d(x, A) \ge 0$ and the equality holds only if $x \in A$.
- (b) If $d(x,y) < \varepsilon$ and $d(y,A) < \varepsilon$, then $d(x,A) < 2\varepsilon$.

Proof. (a) follows directly from the definition. To prove (b), let $d(y, A) < \varepsilon$, by the definition, there is some $a' \in A$ such that $d(y, a') < \varepsilon$. Since (X, d) is a *b*-metric, if $d(x, y) < \varepsilon$, then $d(x, a') < 2\varepsilon$. Hence $d(x, A) \leq d(x, a') < 2\varepsilon$.

Let (X, d) be a *b*-metric space. For each $x_0 \in X$ and $\delta > 0$, let $N(x_0; \delta) = \{x \in X : d(x, x_0) < \delta\}$. Now if $A, B \in CL(X)$, we define the Hausdorff distance of A and B by

$$\mathcal{H}(A,B) = \inf\{r > 0 : A \subseteq \bigcup_{b \in B} N(b;r) \text{ and } B \subseteq \bigcup_{a \in A} N(a;r) \}.$$

Proposition 2.2. Let (X, d) be a b-metric space and $A, B \in CL(X)$. Then we have the following.

- (a) \mathcal{H} defines a b-metric on nonempty closed bounded subsets of X.
- (b) $d(x,B) \leq \mathcal{H}(A,B)$ for any $x \in A$.
- (c) For each $0 < \lambda < 1$ and $x_0 \in X \setminus A$, there is some $x_1 \in A$ such that $\lambda d(x_0, A) < d(x_0, x_1)$.

Proof. It follows from the definition that for each $A, B \in CL(X), \mathcal{H}(A, B) \geq 0$ and the equality holds only if A = B. Moreover $\mathcal{H}(A, B) = \mathcal{H}(B, A)$. Now, let A, B and C be in CL(X) and $\varepsilon > 0$. If $\mathcal{H}(A, B) < \varepsilon$ and $\mathcal{H}(B, C) < \varepsilon$, then

$$A \subseteq \bigcup_{b \in B} N(b; \varepsilon) \text{ and } B \subseteq \bigcup_{c \in C} N(c; \varepsilon).$$

Hence if $a \in A$, there is some $b \in B$ such that $d(a, b) < \varepsilon$. Moreover, there is some $c \in C$ such that $d(b, c) < \varepsilon$. Hence $d(a, c) < 2\varepsilon$. This means that $A \subseteq \bigcup_{c \in C} N(c, 2\varepsilon)$. A similar argument shows that $C \subseteq \bigcup_{a \in A} N(a, 2\varepsilon)$. Hence $\mathcal{H}(B, C) \leq 2\varepsilon$. This proves (a). Let $\mathcal{H}(A, B) < r$ and $x \in A$. Then $A \subseteq \bigcup_{b \in B} N(b; r)$. Hence there is some $b \in B$ such that d(x, b) < r. It follows that $d(x, B) \leq d(x, b) < r$. Thus (b) holds. (c) follows from the definition of $d(x_0, A)$.

The following result plays an important rule in the sequel.

Lemma 2.3. (see [8] or [9]). Suppose $d : X \times X \to [0, \infty)$ satisfies the following condition:

For any $\varepsilon > 0$ and $x, y, z \in X$, if $d(x, y) < \varepsilon$ and $d(y, z) < \varepsilon$, then $d(x, z) < 2\varepsilon$. Then the function $\rho : X \times X \to [0, \infty)$, defined by

$$\rho(x,y) = \inf\{\sum_{i=1}^{n} d(x_{i-1},x_i); \text{ where } n \in \mathbb{N}, x_0 = x \text{ and } x_n = y\}, \quad (x,y) \in X \times X\},$$
(2.1)

has the following properties:

- (i) $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$, for all $x, y, z \in X$.
- (ii) $\frac{d(x,y)}{4} \leq \rho(x,y) \leq d(x,y)$ for all $x, y \in X$. Further, ρ is symmetric (i.e. $\rho(x,y) = \rho(y,x)$ if d is).

We also need to the following observation.

Lemma 2.4. Let X be a b-metric space and $\{x_n\}$ be a sequence in X such that for some $0 \le r < 1$,

$$d(x_n, x_{n+1}) \le rd(x_{n-1}, x_n) \quad (n = 2, 3, \dots).$$
(2.2)

Then $\{x_n\}$ is a Cauchy sequence.

Proof. It follows from (2.2) that for each $n \ge 1$, $d(x_n, x_{n+1}) \le r^n d(x_0, x_1)$. Given $\varepsilon > 0$, find some $n_0 \in \mathbb{N}$ such that $\frac{r^n d(x_0, x_1)}{1-r} < \varepsilon/4$. In view of Lemma 2.3, there is a metric ρ on X such that $\frac{d(x,y)}{4} \le \rho(x,y) \le d(x,y)$ for all $x, y \in X$. Hence for each

 $m > n \ge n_0$, we have

$$(1/4)d(x_n, x_m) \le \rho(x_n, x_m) \le \sum_{i=n}^{m-1} \rho(x_i, x_{i+1})$$
$$\le \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \le \sum_{i=n}^{m-1} r^i d(x_0, x_1)$$
$$\le \frac{r^n d(x_0, x_1)}{1 - r} < \varepsilon/4.$$

Let \mathcal{R} denote the class of all continuous functions $g: [0,\infty)^5 \to [0,\infty)$ with the following properties:

- (i) $g(1,1,1,4,0) = g(1,1,1,0,4) = h \in (0,1),$
- (ii) g is sub-homogeneous, that is,

$$g(\lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4, \lambda x_5) \le \lambda g(x_1, x_2, x_3, x_4, x_5), \quad (x_1, x_2, x_3, x_4, x_5, \lambda \ge 0).$$

(iii) If $x_i \leq y_i$ for $1 \leq i \leq 4$, then

 $g(x_1, x_2, x_3, x_4, 0) \le g(y_1, y_2, y_3, y_4, 0)$ and $g(x_1, x_2, x_3, 0, x_4) \le g(y_1, y_2, 0, y_4).$

Let $k \geq 1$ be fixed and let \mathcal{R}_k denote the set of all continuous functions $g : [0,\infty)^5 \to [0,\infty)$ satisfying the conditions (ii), (iii) and

(iv) $g(1, 1, 1, 2k, 0) = g(1, 1, 1, 0, 2k) = h_k \in (0, \frac{1}{k}).$

We need to the following elementary results.

Lemma 2.5. If $g \in \mathcal{R}$ and $u, v \in [0, \infty)$ are such that

 $u \le \max\{g(u, v, u, 2(u+v), 0), g(v, v, 0, 2(u+v)), g(v, u, v, u+v, 0), g(v, u, v, 0, 2(u+v))\}, then \ u \le hv.$

Proof. See the proof of [6, Lemma 1. 3] or [16, Lemma 1. 10].

We recall that a point $x_0 \in X$ is said to be a fixed point of a set-valued function $T: X \to 2^X$ if $x_0 \in Tx_0$. The set of all fixed points of $T: X \to 2^X$ is denoted by $\mathcal{F}(T)$.

Lemma 2.6. Let X be a complete b-metric space and let $T, S : X \to CL(X)$ be two set-valued functions such that for some $\lambda > 0$ and $g \in \mathcal{R}$,

$$\lambda d(x, Tx) \leq d(x, y)$$
 or $\lambda d(x, Sx) \leq d(x, y)$ implies that

$$\mathcal{H}(Tx, Sy) \leq g\big(d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)\big) \quad (x, y \in X).$$

Then $\mathcal{F}(F) = \mathcal{F}(G).$

Proof. See [1, Lemma 2.1] or [16, Theorem 1.9].

In [16], H. Yingtaweesittikul proved the following.

Theorem 2.7. [16, Theorem 2. 1] Let (X, d) be a complete b_k -complete metric space and let $T, S : X \to CB(X)$ be two set-valued mappings. Suppose there exists $\lambda \in (0, 1)$ and $g \in \mathcal{R}_k$ such that $k\lambda(1 + h_k) \leq 1$ and

$$\lambda d(x, Tx) \leq d(x, y)$$
 or $\lambda d(x, Sx) \leq d(x, y)$ implies that

$$\mathcal{H}(Tx, Sy) \le g(d(x, y), d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx)) \quad (x, y \in X).$$

Then $\mathcal{F}(T) = \mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.

Note that $h_2 = h$ but $h_2 \in (0, \frac{1}{2})$ while $h \in (0, 1)$. In the next result, we improve the above theorem for special kind of b_2 -metric spaces.

Theorem 2.8. Let X be a complete b-metric space and let $T, S : X \to CL(X)$ be two set-valued functions such that for some $\lambda \in (0,1)$ and $g \in \mathcal{R}$ such that $2\lambda(1+h) < 1$ and

 $\lambda d(x, Tx) \leq d(x, y)$ or $\lambda d(x, Sx) \leq d(x, y)$ implies that

 $\mathcal{H}(Tx,Sy) \leq g\big(d(x,y),d(x,Tx),d(y,Sy),d(x,Sy),d(y,Tx)\big) \quad (x,y \in X).$

Then $\mathcal{F}(T) = \mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.

Proof. Thanks to Lemma 2.6, $\mathcal{F}(T) = \mathcal{F}(S)$. Take some 1 > r > h and $x_0 \in X$. If $x_0 \in Tx_0$, then $x_0 \in \mathcal{F}(T)$. Otherwise, choose some $x_1 \in Tx_0$ such that $\lambda d(x_0, Tx_0) < d(x_0, x_1)$. Then

$$d(x_1, Sx_1) \le \mathcal{H}(Tx_0, Sx_1)$$

$$\le g(d(x_0, x_1), d(x_0, Tx_0), d(x_1, Sx_1), d(x_0, Sx_1), d(x_1, Tx_0))$$

$$\le g(d(x_0, x_1), d(x_0, x_1), d(x_1, Sx_1), 2d(x_0, x_1) + 2d(x_1, Sx_1), 0)$$

By Lemma 2.5, $d(x_1, Sx_1) \leq hd(x_0, x_1) < rd(x_0, x_1)$. Let $d(x_1, Sx_1) < \mu < rd(x_0, x_1)$. By the definition, there is some $x_2 \in Sx_1$ such that $d(x_1, x_2) < \mu < rd(x_0, x_1)$. Since $\lambda d(x_1, Sx_1) < d(x_1, x_2)$, by assumption,

$$d(x_2, Tx_2) \leq \mathcal{H}(Tx_2, Sx_1)$$

$$\leq g(d(x_1, x_2), d(x_2, Tx_2), d(x_1, Sx_1), d(x_2, Sx_1), d(x_1, Tx_2))$$

$$\leq g(d(x_1, x_2), d(x_2, Tx_2), d(x_1, x_2), 0, 2d(x_1, x_2) + 2d(x_2, Tx_2)).$$

By applying Lemma 2.5 once again, we have $d(x_2, Tx_2) \leq hd(x_1, x_2) < rd(x_1, x_2)$. Similarly, we can find some $x_3 \in Tx_2$ such that $d(x_2, x_3) < rd(x_1, x_2)$. Using the above argument, by induction, we can obtain a sequence $\{x_n\}$ in X with the following properties:

- (a) $x_{2n+1} \in T_{2n-2}$ and $x_{2n} \in Sx_{2n-1}$,
- (b) $d(x_n, x_{n+1}) \le rd(x_{n-1}, x_n),$
- (c) $d(x_{2n}, Tx_{2n}) \le hd(x_{2n-1}, x_{2n})$ and $d(x_{2n-1}, Sx_{2n-1}) \le hd(x_{2n-2}, x_{2n-1})$

for all $n \in \mathbb{N}$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N}$, then by (c), x_n is a common fixed point of T and S. Otherwise, (b) and Lemma 2.4 imply that $\{x_n\}$ is a Cauchy sequence in complete *b*-metric space X. Let $x = \lim_{n \to \infty} x_n$. We claim that either

 $\lambda d(x_{2n}, T_{2n}) \leq d(x_{2n}, x)$ or $\lambda d(x_{2n+1}, T_{2n+1}) \leq d(x_{2n+1}, x)$ for each $n \in \mathbb{N}$. If for some $n \in \mathbb{N}$, $\lambda d(x_{2n}, T_{2n}) > d(x_{2n}, x)$ and $\lambda d(x_{2n+1}, T_{2n+1}) > d(x_{2n+1}, x)$, then

$$d(x_{2n}, x_{2n+1}) \leq 2 \left[d(x_{2n}, x) + d(x_{2n+1}, x) \right]$$

$$< 2\lambda \left[d(x_{2n}, Tx_{2n}) + d(x_{2n+1}, Sx_{2n+1}) \right]$$

$$\leq 2\lambda \left[d(x_{2n}, x_{2n+1}) + hd(x_{2n}, x_{2n+1}) \right]$$

$$= 2\lambda (1+h) d(x_{2n}, x_{2n+1}) < d(x_{2n}, x_{2n+1}).$$

This contradiction proves our claim. Therefore, by our assumption for each $n \in \mathbb{N}$ either

 $\mathcal{H}(Tx_{2n}, Sx) \le g(d(x_{2n}, x), d(x_{2n}, Tx_{2n}), d(x, Sx), d(x_{2n}, Sx), d(x, Tx_{2n}))$

or

 $\mathcal{H}(Tx, Sx_{2n+1}) \leq \\ \leq g(d(x_{2n+1}, x), d(x, Tx), d(x_{2n+1}, Sx_{2n+1}), d(x, Sx_{2n+1}), d(x_{2n+1}, Tx)).$ It follows that at least one of the following two cases happens. **Case 1.** There is an infinite subset $I \subseteq \mathbb{N}$ such that

 $d(x_{2n+1}, Sx) \le \mathcal{H}(Tx_{2n}, Sx)$

$$\leq g(d(x_{2n}, x), d(x_{2n}, Tx_{2n}), d(x, Sx), d(x_{2n}, Sx), d(x, Tx_{2n})) \quad (n \in I).$$

In this case, for each $n \in I$, we have

$$d(x, Sx) \leq 2[d(x, x_{2n+1}) + d(x_{2n+1}, Sx)]$$

$$\leq 2[d(x, x_{2n+1}) + g(d(x_{2n}, x), d(x_{2n}, Tx_{2n}), d(x, Sx), d(x_{2n}, Sx), d(x, Tx_{2n}))$$

$$\leq 2[d(x, x_{2n+1}) + g(d(x_{2n}, x), d(x_{2n}, x_{2n+1}), d(x, Sx), d(x, Tx_{2n}))]$$

$$2d(x_{2n}, x) + 2d(x, Sx), d(x, x_{2n+1})).$$

By continuity of g, it follows that

$$d(x, Sx) \le 2g(0, 0, d(x, Sx), 2d(x, Sx), 0).$$

By Lemma 2.5, we have d(x, Sx) = 0. Hence $x \in \mathcal{F}(S)$.

Case 2. There is an infinite subset I of \mathbb{N} such that

 $\begin{aligned} d(Tx, x_{2n+1}) &\leq \mathcal{H}(Tx, Sx_{2n+1}) \\ &\leq g\big(d(x_{2n+1}, x), d(x, Tx), d(x_{2n+1}, Sx_{2n+1}), d(x, Sx_{2n+1}), d(x_{2n+1}, Tx)\big) \\ \text{In this case, for each } n \in I, \text{ we have} \\ d(x, Tx) &\leq 2\big[d(x, x_{2n+2}) + d(x_{2n+2}, Tx)\big] \\ &\leq 2\big[d(x, x_{2n+2}) + g\big(d(x_{2n+1}, x), d(x, Tx), \\ &\quad d(x_{2n+1}, Sx_{2n+1}), d(x, Sx_{2n+1}), d(x_{2n+1}, Tx)\big)\big] \end{aligned}$

$$\leq 2 \big[d(x, x_{2n+2}) \big]$$

+
$$g(d(x_{2n+1}, x), d(x, Tx), d(x_{2n+1}, x_{2n+2}), d(x, x_{2n+2}), 2d(x_{2n+1}, x) + 2d(x, Tx))]$$

Using continuity of g, we have

$$d(x, Tx) \le 2g(0, d(x, Tx), 0, 0, 2d(x, Tx)).$$

By Lemma 2.5, d(x, Tx) = 0. Hence $x \in Tx$.

The above result enable us to prove Theorem 1.2 for *b*-metric spaces.

Theorem 2.9. Let (X,d) be a complete b-metric space and $T, S : X \to CL(X)$. Assume that for some $a, b, c \in [0,1)$ with a + b + c < 1, $\frac{1-b-c}{2(1+a)}d(x,Tx) \leq d(x,y)$ or $\frac{1-b-c}{2(1+a)}d(y,Sy) \leq d(x,y)$ implies that $\mathcal{H}(Tx,Sy) \leq ad(x,y) + bd(x,Tx) + cd(y,Sy)$ for all $x, y \in X$. Then $\mathcal{F}(T) = \mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.

Proof. In Theorem 2.8, let $\lambda = \frac{1-b-c}{2(1+a)}$ and $g(x_1, x_2, x_3, x_4, x_5) = ax_1 + bx_2 + cx_3$ for all $x_1, x_2, x_3, x_4, x_5 \ge 0$. Since $2\lambda(1 + a + b + c) < 1$, by Theorem 2.8, $\mathcal{F}(T) = \mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.

By imitating the proof of Theorem 2.8, one can prove the following:

Theorem 2.10. Let X be a complete b-metric space and let $T, S : X \to CL(X)$ be two set-valued functions such that for some $g \in \mathcal{R}$

$$H(Tx,Sy) \le g\big(d(x,y), d(x,Tx), d(y,Sy), d(x,Sy), d(y,Tx)\big) \quad (x,y \in X).$$

Then $\mathcal{F}(T) = \mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.

The next result can be considered as set-valued version of Hardy-Rogers fixed point theorem [10] in *b*-metric spaces.

Theorem 2.11. Let (X, d) be a complete b-metric and $T : X \to CL(X)$ be a setvalued mapping such that for all $x, y \in X$,

 $\mathcal{H}(Tx,Ty) \le a \ d(x,y) + b \ d(x,Tx) + c \ d(y,Ty) + e \ d(x,Ty) + f \ d(y,Tx), \quad (2.3)$ where $0 \le a, b, c, e, f < 1$ and a + b + c + 2(e + f) < 1. Then $\mathcal{F}(T) \ne \emptyset$.

Proof. By symmetry,

$$\mathcal{H}(Tx, Ty) \le a \ d(x, y) + b \ d(y, Ty) + c \ d(x, Tx) + e \ d(y, Tx) + f \ d(x, Ty), \quad (2.4)$$

for all $x, y \in X$. Put $\alpha = \frac{b+c}{2}$ and $\beta = \frac{e+f}{2}$. Then by (2.3) and (2.4) for all $x, y \in X$,

 $\mathcal{H}(Tx,Ty) \leq a \ d(x,y) + \alpha \ [d(x,Tx) + d(y,Ty)] + \beta [\ d(x,Ty) + \ d(y,Tx)].$ (2.5) Define $g: [0,\infty)^5 \to [0,\infty)$ by

$$g(x_1, x_2, x_3, x_4, x_5) = ax_1 + \alpha(x_2 + x_3) + \beta(x_4 + x_5) \quad (x_i \ge 0, 1 \le i \le 5).$$

Clearly g is nondecreasing with respect to each variable and sub-homogenous. Moreover, g(1, 1, 1, 4, 0) = g(1, 1, 1, 0, 4) = a + b + c + 2(e + f) < 1. Hence $g \in \mathcal{R}$. Thanks to Theorem 2.10, $\mathcal{F}(T) \neq \emptyset$.

A mapping $T:X \to X$ is said to be a quasi-contraction if there is some $0 \leq r < 1$ such that

 $d(Tx, Ty) \le r \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}.$

311

In 1974, Ĉirić[5] proved a fixed point theorem for quasi-contractive mappings in complete metric spaces. Aydi et al. [3] extend Ĉirić's theorem for b_k -metric spaces as follows.

Theorem 2.12. [3, Theorem 2. 2]. Let (X, d) be a complete b_k -metric space. Suppose that T is a set-valued quasi-contractive mapping, that is

 $\begin{aligned} \mathcal{H}(Tx,Ty) &\leq r \max\{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\} \quad (x,y \in X). \\ If \ r(k^2+k) &< 1, \ then \ \mathcal{F}(T) \neq \emptyset. \end{aligned}$

Theorem 2.10 enable us to prove the following extension of Theorem 2.12 for special kind of b_2 -metrics.

Theorem 2.13. Let (X,d) be a complete b-metric and $T, S : X \to CL(X)$ be a set-valued mapping such that for all $x, y \in X$,

$$\mathcal{H}(Tx, Sy) \leq r \max\{d(x, y), \ d(x, Tx), \ d(y, Sy), \ d(x, Sy), \ d(y, Tx)\},$$
(2.6)
where $0 \leq r < \frac{1}{4}$. Then $\mathcal{F}(T) = \mathcal{F}(S)$ is nonempty.

Proof. Define $g: [0,\infty)^5 \to [0,\infty)$ by

 $g(x_1, x_2, x_3, x_4, x_5) = r \max\{x_1, x_2, x_3, x_4, x_5\} \quad (x_i \ge 0, 1 \le i \le 5).$

Then $h = r \max\{1, 1, 1, 4, 0\} = 4r < 1$. According to Theorem 2.10, $\mathcal{F}(T) = \mathcal{F}(S)$ is not empty.

The following example shows that the above result is a genuine extension of Theorem 2.12 in special kind of b_2 -metric spaces.

Example 2.14. Let $X_1 = \{x \in \mathbb{R} : 0 \le x \le \frac{1}{3}\}$ and $X_2 = \{a, b, c\}$ where $a = \frac{1}{2} \le c \le b = 1$. Let $X = X_1 \cup X_2$ and define a symmetric function $d : X \times X \to \mathbb{R}^+$ by d(x, x) = 0 for all $x \in X$.

$$\begin{aligned} & d(x, y) = 0 \text{ for all } x \in X_1, \\ & d(x, y) = |x - y| \text{ if } x, y \in X_1, \\ & d(x, y) = 1 \text{ if } x \in X_1, y \in X_2 \text{ or } x \in X_2, y \in X_1, \\ & d(a, b) = \frac{1}{2}, d(a, c) = 1 \text{ and } d(b, c) = 2. \end{aligned}$$

Since $d(b,c) = 2 \nleq \frac{3}{2} = d(b,a) + d(a,c)$, d is not a metric. An easy computation shows that (X,d) is complete and

$$d(x,y) \le 2 \max\{d(x,z), d(z,y)\} \quad (x,y,z \in X).$$

Therefore (X, d) is a complete *b*-metric. Let $T: X \to X$ be defined by $Tx = \frac{x}{5}$ for all $x \in X$. We will show that

$$d(Tx,Ty) \le \frac{1}{5} \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\} \quad (x,y \in X).$$
(2.7)

Clearly (2.7) holds for all $x, y \in X_1$. If $x, y \in X_2$, we have

$$d(Tx, Ty) = \frac{1}{5}|x - y| \le \frac{1}{5} \times \frac{1}{2} \le \frac{1}{5}d(x, y).$$

Suppose that $x \in X_1$ and $y \in X_2$, then

$$d(Tx, Ty) = \frac{1}{5}|x - y| \le \frac{1}{5} = \frac{1}{5}d(x, y).$$

It follows from Theorem 2.13 that T has a fixed point. However, Theorem 2.12 can not be applied. In fact, in Theorem 2.12, r must be less than $\frac{1}{k^2+k}$. So that for k = 2, $r < \frac{1}{6}$. In this example for $x_0 = 0$, $y_0 = 1$, we have $d(Tx_0, Ty_0) = \frac{1}{5}$ and

$$\max\{d(x_0, y_0), d(x_0, Tx_0), d(y_0, Ty_0), d(x_0, Ty_0), d(y_0, Tx_0)\} = \max\left\{1, 0, \frac{1}{5}, 1, 1\right\} = 1.$$

But for $r < \frac{1}{6}$,

$$d(Tx_0, Tx_0) = \frac{1}{5} \max\{d(x_0, y_0), d(x_0, Tx_0), d(y_0, Ty_0), d(x_0, Ty_0), d(y_0, Tx_0)\} \\ \leq r \max\{d(x_0, y_0), d(x_0, Tx_0), d(y_0, Ty_0), d(x_0, Ty_0), d(y_0, Tx_0)\}.$$

Acknowledgements. I would like to express my sincere gratitude to the anonymous referee and editor for useful comments. This research was supported by a grant from Ferdowsi University of Mashhad (No. MP93323MIM).

References

- S.M.A. Alemraninejad, Sh. Rezapour, N. Shahzad, On fixed point generalizations of Suzuki's method, Appl. Math. Letter, 24(2011), 1037-1040.
- J.P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc., 78(1980), 391-398.
- [3] H. Aydi, M. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl., (2012), 2012:88.
- [4] S. Banach, Sur les opérations dans les ensemble abstraits et leur application aux équations intégrales, Fund. Mat., 3(1922), 133-181.
- [5] Lj.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math., 45(1974), 267-273.
- [6] A. Constantin, A random fixed point theorem for multifunctions, Stoch. Anal. Appl., 12(1994), 65-73.
- [7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1995), 5-11.
- [8] A.H. Frink, Generalization of the G_{δ} -property of complete metric spaces, Bull. Amer. Math. Soc., **43**(1937), 133-142.
- [9] G. Gruenhage, Generalized Metric Spaces, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423-501.
- [10] G. Hardy, T. Rogers, A generalization of fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206.
- [11] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., 69(2008), 2942-2949.
- [12] G. Mot, A. Petruşel, Fixed point theory for a new type of contractive multivalued operators, Nonlinear Anal., 70(2009), 3371-3377.
- [13] M. Maschler, B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control Optim., 14(1976), 985-995.
- [14] S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-488.
- [15] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.
- [16] H. Yingtaweesittikul, Suzuki type fixed point theorems for generalized multivalued mappins in b-metric spaces, Fixed Point Theory Appl., 2013, 2013:215.

Received: May 26, 2014; Accepted: March 23, 2015.

ALIREZA KAMEL MIRMOSTAFAEE