FIXED POINT THEOREMS FOR SET-VALUED MAPPINGS IN b-METRIC SPACES

ALIREZA KAMEL MIRMOSTAFAEE

Center of Excellence in Analysis on Algebraic Structures
Department of Pure Mathematics, Ferdowsi University of Mashhad
P. O. Box 1159, Mashhad 91775, Mashhad, Iran
E-mail:mirmostafaei@um.ac.ir

Abstract

We will establish set-valued version of Suzuki's fixed point theorem when the underling space is a complete b-metric. Our method enable us to prove set-valued versions of Hardy-Rogers and Cirić fixed point theorems for b-metric spaces. Key Words and Phrases: contraction-type mappings, fixed point theorems, set-valued functions. 2010 Mathematics Subject Classification: 37C25, 47H09, 47H10, 26E25.

1. Introduction

Fixed points and strict fixed points of multivalued operators are important concepts in the theory of set-valued dynamic systems [2, 13]. The study of fixed points for setvalued functions using Hausdorff metric was initiated by Nadler [14] in 1969, who extended Banach's fixed point theorem [4] for set-valued functions. Nadler's idea was used by some mathematicians to prove the existence of a fixed point for setvalued functions. In 2008, Suzuki [15] proved a generalization of Banach's fixed point theorem. Kikkawa and Suzuki extended Suzuki's theorem for set-valued mappings as follows:

Theorem 1.1. [11, Theorem 2] Let (X, d) be a complete metric space and let T ba a mapping from X into the set of all nonempty closed bounded subsets of X. Assume that there exists $r \in[0,1)$ such that $\frac{1}{1+r} d(x, T x) \leq d(x, y)$ implies that $\mathcal{H}(T x, T y) \leq$ $r d(x, y)$ for all $x, y \in X$. Then there is some $x \in X$ such that $x \in T x$.

The above result was improved by Mot and Petruşel:
Theorem 1.2. [12, Theorem 6. 6] Let (X, d) ba a complete metric space and T be a set-valued function from X into nonempty closed subsets of X. Assume that for some $a, b, c \in[0,1)$ with $a+b+c<1, \frac{1-b-c}{1+a} d(x, T x) \leq d(x, y)$ implies that $\mathcal{H}(T x, T y) \leq a d(x, y)+b d(x, T x)+c d(y, T y)$ for all $x, y \in X$. Then there is some $x \in X$ such that $x \in T x$.

In 2011, Aleomraninejad et al. [1] developed a new method to prove Suzuki's fixed point theorem for set-valued mapping. The method was extended by Yingtaweesittikul [16] for set-valued functions in general b-metric spaces.

In this paper, we use the definition Czerwik for b-metrics to improve the main result in [16] in this special case. This result will enable us to prove set-valued version of some known results in special kind of b-metric spaces.

2. Results

We recall that a b-metric d on a nonempty set X is a function $d: X \times X \rightarrow[0, \infty)$ with the following properties:
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, z) \leq k[d(x, y)+d(y, z)]$
for all $x, y, z \in Z$ for some $k>1$. Clearly every metric space is a b-metric. However, the converse is not true in general. For example the function $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ which is defined by $d(x, y)=|x-y|^{2}$ is a b-metric on \mathbb{R} for $k=2$. However, it is not a metric. Czerwik in [7], defined a special class of b-metrics by replacing (iii) by the following:
(iv) For each $\varepsilon>0$ and $x, y, z \in X$ if $d(x, y)<\varepsilon$ and $d(y, z)<\varepsilon$, then $d(x, z)<2 \varepsilon$. It is easy to verify that " $<$ " can be replaced by " \leq " in (iv). Moreover, if d satisfies (iv), then (iii) holds for $k=2$. For the b-metric $d(x, y)=|x-y|^{2}, x, y \in \mathbb{R}$, we have $d(1,0)=d(0,-1)=1$ but $d(1,-1)=4 \nless 2$. Hence the class of those b-metrics with the property (iv) is strictly smaller than the class of all b-metric spaces for $k=2$.

In order to avoid ambiguity, if (X, d) satisfies (i)-(iii), for some $k>1$, we say that (X, d) is a b_{k}-metric space. If (X, d) satisfies the properties (i), (ii) and (iv), then it is called a b-metric space. We denote by $C L(X)$ the set of all nonempty closed subsets of X. For each $x \in X$ and $A \in C L(X)$, define

$$
d(x, A)=d(A, x)=\inf \{d(x, a): a \in A\} .
$$

We have the following simple observation.
Proposition 2.1. Let (X, d) be a b-metric space and $A \in C L(X)$. Then for every $x, y \in X, a \in A$ and $\varepsilon>0$, we have the following.
(a) $d(x, A) \geq 0$ and the equality holds only if $x \in A$.
(b) If $d(x, y)<\varepsilon$ and $d(y, A)<\varepsilon$, then $d(x, A)<2 \varepsilon$.

Proof. (a) follows directly from the definition. To prove (b), let $d(y, A)<\varepsilon$, by the definition, there is some $a^{\prime} \in A$ such that $d\left(y, a^{\prime}\right)<\varepsilon$. Since (X, d) is a b-metric, if $d(x, y)<\varepsilon$, then $d\left(x, a^{\prime}\right)<2 \varepsilon$. Hence $d(x, A) \leq d\left(x, a^{\prime}\right)<2 \varepsilon$.

Let (X, d) be a b-metric space. For each $x_{0} \in X$ and $\delta>0$, let $N\left(x_{0} ; \delta\right)=\{x \in$ $\left.X: d\left(x, x_{0}\right)<\delta\right\}$. Now if $A, B \in C L(X)$, we define the Hausdorff distance of A and B by

$$
\mathcal{H}(A, B)=\inf \left\{r>0: A \subseteq \bigcup_{b \in B} N(b ; r) \text { and } B \subseteq \bigcup_{a \in A} N(a ; r)\right\}
$$

Proposition 2.2. Let (X, d) be a b-metric space and $A, B \in C L(X)$. Then we have the following.
(a) \mathcal{H} defines a b-metric on nonempty closed bounded subsets of X.
(b) $d(x, B) \leq \mathcal{H}(A, B)$ for any $x \in A$.
(c) For each $0<\lambda<1$ and $x_{0} \in X \backslash A$, there is some $x_{1} \in A$ such that $\lambda d\left(x_{0}, A\right)<d\left(x_{0}, x_{1}\right)$.

Proof. It follows from the definition that for each $A, B \in C L(X), \mathcal{H}(A, B) \geq 0$ and the equality holds only if $A=B$. Moreover $\mathcal{H}(A, B)=\mathcal{H}(B, A)$. Now, let A, B and C be in $C L(X)$ and $\varepsilon>0$. If $\mathcal{H}(A, B)<\varepsilon$ and $\mathcal{H}(B, C)<\varepsilon$, then

$$
A \subseteq \bigcup_{b \in B} N(b ; \varepsilon) \text { and } B \subseteq \bigcup_{c \in C} N(c ; \varepsilon)
$$

Hence if $a \in A$, there is some $b \in B$ such that $d(a, b)<\varepsilon$. Moreover, there is some $c \in C$ such that $d(b, c)<\varepsilon$. Hence $d(a, c)<2 \varepsilon$. This means that $A \subseteq \bigcup_{c \in C} N(c, 2 \varepsilon)$. A similar argument shows that $C \subseteq \bigcup_{a \in A} N(a, 2 \varepsilon)$. Hence $\mathcal{H}(B, C) \leq 2 \varepsilon$. This proves (a). Let $\mathcal{H}(A, B)<r$ and $x \in A$. Then $A \subseteq \bigcup_{b \in B} N(b ; r)$. Hence there is some $b \in B$ such that $d(x, b)<r$. It follows that $d(x, B) \leq d(x, b)<r$. Thus (b) holds. (c) follows from the definition of $d\left(x_{0}, A\right)$.

The following result plays an important rule in the sequel.
Lemma 2.3. (see [8] or [9]). Suppose $d: X \times X \rightarrow[0, \infty)$ satisfies the following condition:
For any $\varepsilon>0$ and $x, y, z \in X$, if $d(x, y)<\varepsilon$ and $d(y, z)<\varepsilon$, then $d(x, z)<2 \varepsilon$.
Then the function $\rho: X \times X \rightarrow[0, \infty)$, defined by
$\rho(x, y)=\inf \left\{\sum_{i=1}^{n} d\left(x_{i-1}, x_{i}\right) ;\right.$ where $n \in \mathbb{N}, x_{0}=x$ and $\left.\left.x_{n}=y\right\}, \quad(x, y) \in X \times X\right)$,
has the following properties:
(i) $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$, for all $x, y, z \in X$.
(ii) $\frac{d(x, y)}{4} \leq \rho(x, y) \leq d(x, y)$ for all $x, y \in X$. Further, ρ is symmetric (i.e. $\rho(x, y)=\rho(y, x)$ if d is $)$.

We also need to the following observation.
Lemma 2.4. Let X be a b-metric space and $\left\{x_{n}\right\}$ be a sequence in X such that for some $0 \leq r<1$,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq r d\left(x_{n-1}, x_{n}\right) \quad(n=2,3, \ldots) \tag{2.2}
\end{equation*}
$$

Then $\left\{x_{n}\right\}$ is a Cauchy sequence.
Proof. It follows from (2.2) that for each $n \geq 1, d\left(x_{n}, x_{n+1}\right) \leq r^{n} d\left(x_{0}, x_{1}\right)$. Given $\varepsilon>0$, find some $n_{0} \in \mathbb{N}$ such that $\frac{r^{n} d\left(x_{0}, x_{1}\right)}{1-r}<\varepsilon / 4$. In view of Lemma 2.3, there is a metric ρ on X such that $\frac{d(x, y)}{4} \leq \rho(x, y) \leq d(x, y)$ for all $x, y \in X$. Hence for each
$m>n \geq n_{0}$, we have

$$
\begin{aligned}
(1 / 4) d\left(x_{n}, x_{m}\right) & \leq \rho\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} \rho\left(x_{i}, x_{i+1}\right) \\
& \leq \sum_{i=n}^{m-1} d\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{m-1} r^{i} d\left(x_{0}, x_{1}\right) \\
& \leq \frac{r^{n} d\left(x_{0}, x_{1}\right)}{1-r}<\varepsilon / 4
\end{aligned}
$$

Let \mathcal{R} denote the class of all continuous functions $g:[0, \infty)^{5} \rightarrow[0, \infty)$ with the following properties:
(i) $g(1,1,1,4,0)=g(1,1,1,0,4)=h \in(0,1)$,
(ii) g is sub-homogeneous, that is,

$$
g\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4}, \lambda x_{5}\right) \leq \lambda g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), \quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \lambda \geq 0\right)
$$

(iii) If $x_{i} \leq y_{i}$ for $1 \leq i \leq 4$, then

$$
\begin{aligned}
& g\left(x_{1}, x_{2}, x_{3}, x_{4}, 0\right) \leq g\left(y_{1}, y_{2}, y_{3}, y_{4}, 0\right) \text { and } \\
& g\left(x_{1}, x_{2}, x_{3}, 0, x_{4}\right) \leq g\left(y_{1}, y_{2}, 0, y_{4}\right)
\end{aligned}
$$

Let $k \geq 1$ be fixed and let \mathcal{R}_{k} denote the set of all continuous functions g : $[0, \infty)^{5} \rightarrow[0, \infty)$ satisfying the conditions (ii), (iii) and
(iv) $g(1,1,1,2 k, 0)=g(1,1,1,0,2 k)=h_{k} \in\left(0, \frac{1}{k}\right)$.

We need to the following elementary results.
Lemma 2.5. If $g \in \mathcal{R}$ and $u, v \in[0, \infty)$ are such that
$u \leq \max \{g(u, v, u, 2(u+v), 0), g(v, v, 0,2(u+v)), g(v, u, v, u+v, 0), g(v, u, v, 0,2(u+v))\}$, then $u \leq h v$.
Proof. See the proof of [6, Lemma 1. 3] or [16, Lemma 1. 10].
We recall that a point $x_{0} \in X$ is said to be a fixed point of a set-valued function $T: X \rightarrow 2^{X}$ if $x_{0} \in T x_{0}$. The set of all fixed points of $T: X \rightarrow 2^{X}$ is denoted by $\mathcal{F}(T)$.
Lemma 2.6. Let X be a complete b-metric space and let $T, S: X \rightarrow C L(X)$ be two set-valued functions such that for some $\lambda>0$ and $g \in \mathcal{R}$,

$$
\begin{gathered}
\lambda d(x, T x) \leq d(x, y) \text { or } \lambda d(x, S x) \leq d(x, y) \text { implies that } \\
\mathcal{H}(T x, S y) \leq g(d(x, y), d(x, T x), d(y, S y), d(x, S y), d(y, T x)) \quad(x, y \in X)
\end{gathered}
$$

Then $\mathcal{F}(F)=\mathcal{F}(G)$.
Proof. See [1, Lemma 2.1] or [16, Theorem 1.9].
In [16], H. Yingtaweesittikul proved the following.

Theorem 2.7. [16, Theorem 2. 1] Let (X, d) be a complete b_{k}-complete metric space and let $T, S: X \rightarrow C B(X)$ be two set-valued mappings. Suppose there exists $\lambda \in(0,1)$ and $g \in \mathcal{R}_{k}$ such that $k \lambda\left(1+h_{k}\right) \leq 1$ and

$$
\begin{gathered}
\lambda d(x, T x) \leq d(x, y) \text { or } \lambda d(x, S x) \leq d(x, y) \text { implies that } \\
\mathcal{H}(T x, S y) \leq g(d(x, y), d(x, T x), d(y, S y), d(x, S y), d(y, T x)) \quad(x, y \in X)
\end{gathered}
$$

Then $\mathcal{F}(T)=\mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.
Note that $h_{2}=h$ but $h_{2} \in\left(0, \frac{1}{2}\right)$ while $h \in(0,1)$. In the next result, we improve the above theorem for special kind of b_{2}-metric spaces.

Theorem 2.8. Let X be a complete b-metric space and let $T, S: X \rightarrow C L(X)$ be two set-valued functions such that for some $\lambda \in(0,1)$ and $g \in \mathcal{R}$ such that $2 \lambda(1+h)<1$ and

$$
\begin{gathered}
\lambda d(x, T x) \leq d(x, y) \text { or } \lambda d(x, S x) \leq d(x, y) \text { implies that } \\
\mathcal{H}(T x, S y) \leq g(d(x, y), d(x, T x), d(y, S y), d(x, S y), d(y, T x)) \quad(x, y \in X)
\end{gathered}
$$

Then $\mathcal{F}(T)=\mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.
Proof. Thanks to Lemma 2.6, $\mathcal{F}(T)=\mathcal{F}(S)$. Take some $1>r>h$ and $x_{0} \in X$. If $x_{0} \in T x_{0}$, then $x_{0} \in \mathcal{F}(T)$. Otherwise, choose some $x_{1} \in T x_{0}$ such that $\lambda d\left(x_{0}, T x_{0}\right)<$ $d\left(x_{0}, x_{1}\right)$. Then

$$
\begin{aligned}
d\left(x_{1}, S x_{1}\right) & \leq \mathcal{H}\left(T x_{0}, S x_{1}\right) \\
& \leq g\left(d\left(x_{0}, x_{1}\right), d\left(x_{0}, T x_{0}\right), d\left(x_{1}, S x_{1}\right), d\left(x_{0}, S x_{1}\right), d\left(x_{1}, T x_{0}\right)\right) \\
& \leq g\left(d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right), 2 d\left(x_{0}, x_{1}\right)+2 d\left(x_{1}, S x_{1}\right), 0\right)
\end{aligned}
$$

By Lemma 2.5, $d\left(x_{1}, S x_{1}\right) \leq h d\left(x_{0}, x_{1}\right)<r d\left(x_{0}, x_{1}\right)$. Let $d\left(x_{1}, S x_{1}\right)<\mu<r d\left(x_{0}, x_{1}\right)$. By the definition, there is some $x_{2} \in S x_{1}$ such that $d\left(x_{1}, x_{2}\right)<\mu<r d\left(x_{0}, x_{1}\right)$. Since $\lambda d\left(x_{1}, S x_{1}\right)<d\left(x_{1}, x_{2}\right)$, by assumption,

$$
\begin{aligned}
d\left(x_{2}, T x_{2}\right) & \leq \mathcal{H}\left(T x_{2}, S x_{1}\right) \\
& \leq g\left(d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), d\left(x_{1}, S x_{1}\right), d\left(x_{2}, S x_{1}\right), d\left(x_{1}, T x_{2}\right)\right) \\
& \leq g\left(d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), d\left(x_{1}, x_{2}\right), 0,2 d\left(x_{1}, x_{2}\right)+2 d\left(x_{2}, T x_{2}\right)\right)
\end{aligned}
$$

By applying Lemma 2.5 once again, we have $d\left(x_{2}, T x_{2}\right) \leq h d\left(x_{1}, x_{2}\right)<r d\left(x_{1}, x_{2}\right)$. Similarly, we can find some $x_{3} \in T x_{2}$ such that $d\left(x_{2}, x_{3}\right)<r d\left(x_{1}, x_{2}\right)$. Using the above argument, by induction, we can obtain a sequence $\left\{x_{n}\right\}$ in X with the following properties:
(a) $x_{2 n+1} \in T_{2 n-2}$ and $x_{2 n} \in S x_{2 n-1}$,
(b) $d\left(x_{n}, x_{n+1}\right) \leq r d\left(x_{n-1}, x_{n}\right)$,
(c) $d\left(x_{2 n}, T x_{2 n}\right) \leq h d\left(x_{2 n-1}, x_{2 n}\right)$ and $d\left(x_{2 n-1}, S x_{2 n-1}\right) \leq h d\left(x_{2 n-2}, x_{2 n-1}\right)$
for all $n \in \mathbb{N}$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}$, then by (c), x_{n} is a common fixed point of T and S. Otherwise, (b) and Lemma 2.4 imply that $\left\{x_{n}\right\}$ is a Cauchy sequence in complete b-metric space X. Let $x=\lim _{n \rightarrow \infty} x_{n}$. We claim that either
$\lambda d\left(x_{2 n}, T_{2 n}\right) \leq d\left(x_{2 n}, x\right)$ or $\lambda d\left(x_{2 n+1}, T_{2 n+1}\right) \leq d\left(x_{2 n+1}, x\right)$ for each $n \in \mathbb{N}$. If for some $n \in \mathbb{N}, \lambda d\left(x_{2 n}, T_{2 n}\right)>d\left(x_{2 n}, x\right)$ and $\lambda d\left(x_{2 n+1}, T_{2 n+1}\right)>d\left(x_{2 n+1}, x\right)$, then

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n+1}\right) & \leq 2\left[d\left(x_{2 n}, x\right)+d\left(x_{2 n+1}, x\right)\right] \\
& <2 \lambda\left[d\left(x_{2 n}, T x_{2 n}\right)+d\left(x_{2 n+1}, S x_{2 n+1}\right)\right] \\
& \leq 2 \lambda\left[d\left(x_{2 n}, x_{2 n+1}\right)+h d\left(x_{2 n}, x_{2 n+1}\right)\right] \\
& =2 \lambda(1+h) d\left(x_{2 n}, x_{2 n+1}\right)<d\left(x_{2 n}, x_{2 n+1}\right) .
\end{aligned}
$$

This contradiction proves our claim. Therefore, by our assumption for each $n \in \mathbb{N}$ either

$$
\mathcal{H}\left(T x_{2 n}, S x\right) \leq g\left(d\left(x_{2 n}, x\right), d\left(x_{2 n}, T x_{2 n}\right), d(x, S x), d\left(x_{2 n}, S x\right), d\left(x, T x_{2 n}\right)\right)
$$

or

$$
\begin{gathered}
\mathcal{H}\left(T x, S x_{2 n+1}\right) \leq \\
\leq g\left(d\left(x_{2 n+1}, x\right), d(x, T x), d\left(x_{2 n+1}, S x_{2 n+1}\right), d\left(x, S x_{2 n+1}\right), d\left(x_{2 n+1}, T x\right)\right)
\end{gathered}
$$

It follows that at least one of the following two cases happens.
Case 1. There is an infinite subset $I \subseteq \mathbb{N}$ such that

$$
\begin{aligned}
d\left(x_{2 n+1}, S x\right) & \leq \mathcal{H}\left(T x_{2 n}, S x\right) \\
& \leq g\left(d\left(x_{2 n}, x\right), d\left(x_{2 n}, T x_{2 n}\right), d(x, S x), d\left(x_{2 n}, S x\right), d\left(x, T x_{2 n}\right)\right) \quad(n \in I)
\end{aligned}
$$

In this case, for each $n \in I$, we have

$$
\begin{aligned}
d(x, S x) & \leq 2\left[d\left(x, x_{2 n+1}\right)+d\left(x_{2 n+1}, S x\right)\right] \\
& \leq 2\left[d\left(x, x_{2 n+1}\right)+g\left(d\left(x_{2 n}, x\right), d\left(x_{2 n}, T x_{2 n}\right), d(x, S x), d\left(x_{2 n}, S x\right), d\left(x, T x_{2 n}\right)\right)\right. \\
& \leq 2\left[d\left(x, x_{2 n+1}\right)+g\left(d\left(x_{2 n}, x\right), d\left(x_{2 n}, x_{2 n+1}\right), d(x, S x),\right.\right. \\
& \left.2 d\left(x_{2 n}, x\right)+2 d(x, S x), d\left(x, x_{2 n+1}\right)\right) .
\end{aligned}
$$

By continuity of g, it follows that

$$
d(x, S x) \leq 2 g(0,0, d(x, S x), 2 d(x, S x), 0)
$$

By Lemma 2.5, we have $d(x, S x)=0$. Hence $x \in \mathcal{F}(S)$.
Case 2. There is an infinite subset I of \mathbb{N} such that

$$
\begin{aligned}
d\left(T x, x_{2 n+1}\right) & \leq \mathcal{H}\left(T x, S x_{2 n+1}\right) \\
& \leq g\left(d\left(x_{2 n+1}, x\right), d(x, T x), d\left(x_{2 n+1}, S x_{2 n+1}\right), d\left(x, S x_{2 n+1}\right), d\left(x_{2 n+1}, T x\right)\right)
\end{aligned}
$$

In this case, for each $n \in I$, we have

$$
\begin{aligned}
d(x, T x) \leq & 2\left[d\left(x, x_{2 n+2}\right)+d\left(x_{2 n+2}, T x\right)\right] \\
\leq & 2\left[d\left(x, x_{2 n+2}\right)+g\left(d\left(x_{2 n+1}, x\right), d(x, T x),\right.\right. \\
& \left.\left.d\left(x_{2 n+1}, S x_{2 n+1}\right), d\left(x, S x_{2 n+1}\right), d\left(x_{2 n+1}, T x\right)\right)\right] \\
\leq & 2\left[d\left(x, x_{2 n+2}\right)\right. \\
+ & g\left(d\left(x_{2 n+1}, x\right), d(x, T x), d\left(x_{2 n+1}, x_{2 n+2}\right), d\left(x, x_{2 n+2}\right),\right. \\
& \left.\left.2 d\left(x_{2 n+1}, x\right)+2 d(x, T x)\right)\right]
\end{aligned}
$$

Using continuity of g, we have

$$
d(x, T x) \leq 2 g(0, d(x, T x), 0,0,2 d(x, T x))
$$

By Lemma 2.5, $d(x, T x)=0$. Hence $x \in T x$.
The above result enable us to prove Theorem 1.2 for b-metric spaces.
Theorem 2.9. Let (X, d) ba a complete b-metric space and $T, S: X \rightarrow C L(X)$. Assume that for some $a, b, c \in[0,1)$ with $a+b+c<1, \frac{1-b-c}{2(1+a)} d(x, T x) \leq d(x, y)$ or $\frac{1-b-c}{2(1+a)} d(y, S y) \leq d(x, y)$ implies that $\mathcal{H}(T x, S y) \leq a d(x, y)+b d(x, T x)+c d(y, S y)$ for all $x, y \in X$. Then $\mathcal{F}(T)=\mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.
Proof. In Theorem 2.8, let $\lambda=\frac{1-b-c}{2(1+a)}$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=a x_{1}+b x_{2}+c x_{3}$ for all $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$. Since $2 \lambda(1+a+b+c)<1$, by Theorem $2.8, \mathcal{F}(T)=\mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.

By imitating the proof of Theorem 2.8, one can prove the following:
Theorem 2.10. Let X be a complete b-metric space and let $T, S: X \rightarrow C L(X)$ be two set-valued functions such that for some $g \in \mathcal{R}$

$$
H(T x, S y) \leq g(d(x, y), d(x, T x), d(y, S y), d(x, S y), d(y, T x)) \quad(x, y \in X)
$$

Then $\mathcal{F}(T)=\mathcal{F}(S)$ and $\mathcal{F}(T)$ is non-empty.
The next result can be considered as set-valued version of Hardy-Rogers fixed point theorem [10] in b-metric spaces.

Theorem 2.11. Let (X, d) be a complete b-metric and $T: X \rightarrow C L(X)$ be a setvalued mapping such that for all $x, y \in X$,

$$
\begin{equation*}
\mathcal{H}(T x, T y) \leq a d(x, y)+b d(x, T x)+c d(y, T y)+e d(x, T y)+f d(y, T x) \tag{2.3}
\end{equation*}
$$

where $0 \leq a, b, c, e, f<1$ and $a+b+c+2(e+f)<1$. Then $\mathcal{F}(T) \neq \emptyset$.
Proof. By symmetry,

$$
\begin{equation*}
\mathcal{H}(T x, T y) \leq a d(x, y)+b d(y, T y)+c d(x, T x)+e d(y, T x)+f d(x, T y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$. Put $\alpha=\frac{b+c}{2}$ and $\beta=\frac{e+f}{2}$. Then by (2.3) and (2.4) for all $x, y \in X$,

$$
\begin{equation*}
\mathcal{H}(T x, T y) \leq a d(x, y)+\alpha[d(x, T x)+d(y, T y)]+\beta[d(x, T y)+d(y, T x)] \tag{2.5}
\end{equation*}
$$

Define $g:[0, \infty)^{5} \rightarrow[0, \infty)$ by

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=a x_{1}+\alpha\left(x_{2}+x_{3}\right)+\beta\left(x_{4}+x_{5}\right) \quad\left(x_{i} \geq 0,1 \leq i \leq 5\right) .
$$

Clearly g is nondecreasing with respect to each variable and sub-homogenous. Moreover, $g(1,1,1,4,0)=g(1,1,1,0,4)=a+b+c+2(e+f)<1$. Hence $g \in \mathcal{R}$. Thanks to Theorem 2.10, $\mathcal{F}(T) \neq \emptyset$.

A mapping $T: X \rightarrow X$ is said to be a quasi-contraction if there is some $0 \leq r<1$ such that

$$
d(T x, T y) \leq r \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

In 1974, Ĉirić[5] proved a fixed point theorem for quasi-contractive mappings in complete metric spaces. Aydi et al. [3] extend Ĉirić's theorem for b_{k}-metric spaces as follows.

Theorem 2.12. [3, Theorem 2. 2]. Let (X, d) be a complete b_{k}-metric space. Suppose that T is a set-valued quasi-contractive mapping, that is

$$
\mathcal{H}(T x, T y) \leq r \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \quad(x, y \in X)
$$

If $r\left(k^{2}+k\right)<1$, then $\mathcal{F}(T) \neq \emptyset$.
Theorem 2.10 enable us to prove the following extension of Theorem 2.12 for special kind of b_{2}-metrics.

Theorem 2.13. Let (X, d) be a complete b-metric and $T, S: X \rightarrow C L(X)$ be a set-valued mapping such that for all $x, y \in X$,

$$
\begin{equation*}
\mathcal{H}(T x, S y) \leq r \max \{d(x, y), d(x, T x), d(y, S y), d(x, S y), d(y, T x)\} \tag{2.6}
\end{equation*}
$$

where $0 \leq r<\frac{1}{4}$. Then $\mathcal{F}(T)=\mathcal{F}(S)$ is nonempty.
Proof. Define $g:[0, \infty)^{5} \rightarrow[0, \infty)$ by

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=r \max \left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \quad\left(x_{i} \geq 0,1 \leq i \leq 5\right) .
$$

Then $h=r \max \{1,1,1,4,0\}=4 r<1$. According to Theorem $2.10, \mathcal{F}(T)=\mathcal{F}(S)$ is not empty.

The following example shows that the above result is a genuine extension of Theorem 2.12 in special kind of b_{2}-metric spaces.

Example 2.14. Let $X_{1}=\left\{x \in \mathbb{R}: 0 \leq x \leq \frac{1}{3}\right\}$ and $X_{2}=\{a, b, c\}$ where $a=\frac{1}{2} \leq$ $c \leq b=1$. Let $X=X_{1} \cup X_{2}$ and define a symmetric function $d: X \times X \rightarrow \mathbb{R}^{+}$by

$$
\begin{aligned}
& d(x, x)=0 \text { for all } x \in X, \\
& d(x, y)=|x-y| \text { if } x, y \in X_{1}, \\
& d(x, y)=1 \text { if } x \in X_{1}, y \in X_{2} \text { or } x \in X_{2}, y \in X_{1}, \\
& d(a, b)=\frac{1}{2}, d(a, c)=1 \text { and } d(b, c)=2 .
\end{aligned}
$$

Since $d(b, c)=2 \not \leq \frac{3}{2}=d(b, a)+d(a, c), d$ is not a metric. An easy computation shows that (X, d) is complete and

$$
d(x, y) \leq 2 \max \{d(x, z), d(z, y)\} \quad(x, y, z \in X)
$$

Therefore (X, d) is a complete b-metric. Let $T: X \rightarrow X$ be defined by $T x=\frac{x}{5}$ for all $x \in X$. We will show that

$$
\begin{equation*}
d(T x, T y) \leq \frac{1}{5} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \quad(x, y \in X) \tag{2.7}
\end{equation*}
$$

Clearly (2.7) holds for all $x, y \in X_{1}$. If $x, y \in X_{2}$, we have

$$
d(T x, T y)=\frac{1}{5}|x-y| \leq \frac{1}{5} \times \frac{1}{2} \leq \frac{1}{5} d(x, y)
$$

Suppose that $x \in X_{1}$ and $y \in X_{2}$, then

$$
d(T x, T y)=\frac{1}{5}|x-y| \leq \frac{1}{5}=\frac{1}{5} d(x, y)
$$

It follows from Theorem 2.13 that T has a fixed point. However, Theorem 2.12 can not be applied. In fact, in Theorem 2.12, r must be less than $\frac{1}{k^{2}+k}$. So that for $k=2$, $r<\frac{1}{6}$. In this example for $x_{0}=0, y_{0}=1$, we have $d\left(T x_{0}, T y_{0}\right)=\frac{1}{5}$ and $\max \left\{d\left(x_{0}, y_{0}\right), d\left(x_{0}, T x_{0}\right), d\left(y_{0}, T y_{0}\right), d\left(x_{0}, T y_{0}\right), d\left(y_{0}, T x_{0}\right)\right\}=\max \left\{1,0, \frac{1}{5}, 1,1\right\}=1$.
But for $r<\frac{1}{6}$,

$$
\begin{aligned}
d\left(T x_{0}, T x_{0}\right) & =\frac{1}{5} \max \left\{d\left(x_{0}, y_{0}\right), d\left(x_{0}, T x_{0}\right), d\left(y_{0}, T y_{0}\right), d\left(x_{0}, T y_{0}\right), d\left(y_{0}, T x_{0}\right)\right\} \\
& \not \neq r \max \left\{d\left(x_{0}, y_{0}\right), d\left(x_{0}, T x_{0}\right), d\left(y_{0}, T y_{0}\right), d\left(x_{0}, T y_{0}\right), d\left(y_{0}, T x_{0}\right)\right\} .
\end{aligned}
$$

Acknowledgements. I would like to express my sincere gratitude to the anonymous referee and editor for useful comments. This research was supported by a grant from Ferdowsi University of Mashhad (No. MP93323MIM).

References

[1] S.M.A. Alemraninejad, Sh. Rezapour, N. Shahzad, On fixed point generalizations of Suzuki's method, Appl. Math. Letter, 24(2011), 1037-1040.
[2] J.P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc., 78(1980), 391-398.
[3] H. Aydi, M. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl., (2012), 2012:88.
[4] S. Banach, Sur les opérations dans les ensemble abstraits et leur application aux équations intégrales, Fund. Mat., 3(1922), 133-181.
[5] Lj.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math., 45(1974), 267-273.
[6] A. Constantin, A random fixed point theorem for multifunctions, Stoch. Anal. Appl., 12(1994), 65-73.
[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1995), 5-11.
[8] A.H. Frink, Generalization of the G_{δ}-property of complete metric spaces, Bull. Amer. Math. Soc., 43(1937), 133-142.
[9] G. Gruenhage, Generalized Metric Spaces, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423-501.
[10] G. Hardy, T. Rogers, A generalization of fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206.
[11] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., 69(2008), 2942-2949.
[12] G. Mot, A. Petruşel, Fixed point theory for a new type of contractive multivalued operators, Nonlinear Anal., 70(2009), 3371-3377.
[13] M. Maschler, B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control Optim., 14(1976), 985-995.
[14] S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-488.
[15] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861-1869.
[16] H. Yingtaweesittikul, Suzuki type fixed point theorems for generalized multivalued mappins in b-metric spaces, Fixed Point Theory Appl., 2013, 2013:215.

Received: May 26, 2014; Accepted: March 23, 2015.

