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1. INTRODUCTION

Fixed points and strict fixed points of multivalued operators are important concepts
in the theory of set-valued dynamic systems [2, 13]. The study of fixed points for set-
valued functions using Hausdorff metric was initiated by Nadler [14] in 1969, who
extended Banach’s fixed point theorem [4] for set-valued functions. Nadler’s idea
was used by some mathematicians to prove the existence of a fixed point for set-
valued functions. In 2008, Suzuki [15] proved a generalization of Banach’s fixed point
theorem. Kikkawa and Suzuki extended Suzuki’s theorem for set-valued mappings as
follows:

Theorem 1.1. [11, Theorem 2] Let (X, d) be a complete metric space and let T ba a
mapping from X into the set of all nonempty closed bounded subsets of X. Assume
that there exists r € [0,1) such that ﬁd(m,Tﬂ:) < d(z,y) implies that H(Tz,Ty) <
rd(xz,y) for all x,y € X. Then there is some x € X such that x € Tx.

The above result was improved by Mot and Petrusel:

Theorem 1.2. [12, Theorem 6. 6] Let (X,d) ba a complete metric space and T
be a set-valued function from X into nonempty closed subsets of X. Assume that
for some a,b,c € [0,1) with a +b+c¢ < 1, 1;igc (x,Tz) < d(z,y) implies that

H(Tz,Ty) < ad(z,y) + bd(x,Tz) + cd(y,Ty) for all z,y € X. Then there is some
x € X such that x € Tx.
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In 2011, Aleomraninejad et al. [1] developed a new method to prove Suzuki’s fixed
point theorem for set-valued mapping. The method was extended by Yingtaweesit-
tikul [16] for set-valued functions in general b-metric spaces.

In this paper, we use the definition Czerwik for b-metrics to improve the main
result in [16] in this special case. This result will enable us to prove set-valued version
of some known results in special kind of b-metric spaces.

2. RESULTS

We recall that a b-metric d on a nonempty set X is a function d: X x X — [0, 00)
with the following properties:

(i) d(z,y) =0 if and only if x = y,

(i) d(z,y) = d(y, ),

(iii) d(z, 2) < kl[d(z,y) + d(y, 2)]
for all z,y,z € Z for some k > 1. Clearly every metric space is a b-metric. However,
the converse is not true in general. For example the function d : R x R — R which is
defined by d(z,y) = |z —y|? is a b-metric on R for k = 2. However, it is not a metric.
Czerwik in [7], defined a special class of b-metrics by replacing (iii) by the following:

(iv) Foreache > 0and z,y,z € X if d(z,y) < € and d(y, z) < ¢, then d(z, z) < 2e.

b

It is easy to verify that “ < ” can be replaced by “ < ” in (iv). Moreover, if d satisfies
(iv), then (iii) holds for k = 2. For the b-metric d(z,y) = |z — y|?, 2,y € R, we have
d(1,0) = d(0,—1) =1 but d(1,—1) = 4 £ 2. Hence the class of those b-metrics with
the property (iv) is strictly smaller than the class of all b-metric spaces for k = 2.

In order to avoid ambiguity, if (X, d) satisfies (i)-(iii), for some k > 1, we say that
(X, d) is a bg-metric space. If (X, d) satisfies the properties (i), (ii) and (iv), then it is
called a b-metric space. We denote by CL(X) the set of all nonempty closed subsets
of X. For each z € X and A € CL(X), define

d(z,A) =d(A,z) = inf{d(z,a) : a € A}.
We have the following simple observation.

Proposition 2.1. Let (X, d)be a b-metric space and A € CL(X). Then for every
z,y € X, a€ A and e >0, we have the following.

(a) d(z,A) > 0 and the equality holds only if v € A.

(b) Ifd(z,y) <e and d(y, A) < ¢, then d(z, A) < 2e.

Proof. (a) follows directly from the definition. To prove (b), let d(y, A) < €, by the
definition, there is some a’ € A such that d(y,a’) < e. Since (X,d) is a b-metric, if
d(z,y) < e, then d(z,a’) < 2¢. Hence d(z, A) < d(z,a’) < 2e. O

Let (X,d) be a b-metric space. For each 9 € X and § > 0, let N(zg;0) = {z €
X 1 d(z,z0) < ¢}. Now if A, B € CL(X), we define the Hausdorff distance of A and
B by

H(A,B) =inf{r >0: AC U N(b;r) and B C U N(a;r) }.
beB acA
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Proposition 2.2. Let (X,d) be a b-metric space and A, B € CL(X). Then we have
the following.

(a) H defines a b-metric on nonempty closed bounded subsets of X.

(b) d(z,B) < H(A,B) for any x € A.

(¢) For each 0 < A < 1 and 9 € X \ A, there is some x1 € A such that
)\d(xo,A) < d(xo,.’El).

Proof. Tt follows from the definition that for each A, B € CL(X), H(A,B) > 0 and
the equality holds only if A = B. Moreover H(A, B) = H(B, A). Now, let A, B and
C bein CL(X) and € > 0. If H(A, B) < € and H(B, () < ¢, then

AC U N(b;e) and B C U N(c;e).
beB ceC

Hence if a € A, there is some b € B such that d(a,b) < e. Moreover, there is some
c € C such that d(b,c) < e. Hence d(a,c) < 2¢. This means that A C |J,c N(c, 2¢).
A similar argument shows that C' C J,c4 N(a,2¢). Hence H(B,C) < 2e. This
proves (a). Let H(A,B) <7 and x € A. Then A C (J,c5 N(b;7). Hence there is
some b € B such that d(z,b) < r. It follows that d(z, B) < d(z,b) < r. Thus (b)
holds. (c) follows from the definition of d(x¢, A). O

The following result plays an important rule in the sequel.

Lemma 2.3. (see [8] or [9]). Suppose d : X x X — [0,00) satisfies the following
condition:

Foranye >0 and x,y,z € X, if d(z,y) < e and d(y, z) < €, then d(z, z) < 2e.

Then the function p: X x X — [0,00), defined by

plx,y) = mf{z d(x;—1,x;); where n € Nyxg =z and z, =y}, (x,y) € X x X),
i=1
(2.1)
has the following properties:
() p(a,2) < pla,y) + p(y, ), for all ,y,2 € X.

(ii) @ < p(z,y) < d(z,y) for oll x,y € X. Further, p is symmelric (i.e.

p(z,y) = ply,x) if d is).
We also need to the following observation.

Lemma 2.4. Let X be a b-metric space and {x,} be a sequence in X such that for
some 0 <r <1,

d(xp, Tnt1) < rd(xp—1,2,) (n=2,3,...). (2.2)
Then {x,} is a Cauchy sequence.

Proof. Tt follows from (2.2) that for each n > 1, d(zy, zp+1) < r"d(zo,z1). Given

e > 0, find some ng € N such that Z-4ze.r1)

1—r
a metric p on X such that % < p(z,y) < d(z,y) for all z,y € X. Hence for each

< g/4. In view of Lemma 2.3, there is
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m > n > ng, we have
m—1
(1/4)d($n7xm) < p(wm xm) < Z p(:ci,xiﬂ)
m—1 - m—1
Z d(ﬂ?i,xi+1) S Z Tld(l‘(),l’l)
rd(zg, 1)
— < /4.
- 1—r e/

IN

O

Let R denote the class of all continuous functions g : [0,00)% — [0,00) with the
following properties:

(i) ¢(1,1,1,4,0) = g(1,1,1,0,4) = h € (0, 1),
(ii) g is sub-homogeneous, that is,

g(>\fl'1, )\1’2, )\1’3, )\1’4, )\1’5) S >\g($17 T2,X3,T4, $5)7 (xla T2,X3,T4,T5, A 2 0)
(iii) If x; < y; for 1 <i <4, then
9(251, X2,T3,T4, 0) S g(y17 Y2,Y3, Y4, 0) and
9(331, T2,T3, 0) 1‘4) S g(yla Y2, 07 y4)

Let £ > 1 be fixed and let R; denote the set of all continuous functions g :
[0,00)5 — [0, 00) satisfying the conditions (ii), (iii) and

(iv) g(1,1,1,2k,0) = g(1,1,1,0,2k) = hy, € (0, ).

We need to the following elementary results.
Lemma 2.5. If g € R and u,v € [0,00) are such that
u < max{g(u, v, u, 2(u+v),0), g(v,v,0, 2(u+v)), g(v, u, v, u+v,0), g(v, u,v,0, 2(u+v)) },
then u < hv.
Proof. See the proof of [6, Lemma 1. 3] or [16, Lemma 1. 10]. O

We recall that a point g € X is said to be a fixed point of a set-valued function
T:X — 2% if xy € Txy. The set of all fixed points of T': X — 2% is denoted by
F(T).

Lemma 2.6. Let X be a complete b-metric space and let T, S : X — CL(X) be two
set-valued functions such that for some A >0 and g € R,

Ad(z,Tx) < d(z,y) or Ad(x,Sz) < d(z,y) implies that
(T, Sy) < g(d(z,y),d(z, Tx), d(y, Sy), d(z, Sy),d(y, Tz)) (z,y € X).
Then F(F) = F(G).
Proof. See [1, Lemma 2.1] or [16, Theorem 1.9]. O

In [16], H. Yingtaweesittikul proved the following.
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Theorem 2.7. [16, Theorem 2. 1] Let (X, d) be a complete by-complete metric space
and letT,S : X — CB(X) be two set-valued mappings. Suppose there exists A € (0, 1)
and g € Ry, such that kA(1 + hy) <1 and

M(z, Tx) < d(z,y) or Ad(x, Sz) < d(x,y) implies that

H(Tz,Sy) < g(d(z,y),d(z,Tz),d(y, Sy), d(z, Sy),d(y, Tz)) (z,y € X).
Then F(T) = F(S) and F(T') is non-empty.

Note that hy = h but hy € (0, %) while A € (0,1). In the next result, we improve
the above theorem for special kind of by-metric spaces.

Theorem 2.8. Let X be a complete b-metric space and let T, S : X — CL(X) be two
set-valued functions such that for some A € (0,1) and g € R such that 2X\(1+h) < 1
and

A(z,Tx) < d(z,y) or Ad(x,Sz) < d(z,y) implies that
H(Tz,Sy) < g(d(z,y),d(x, Tx),d(y, Sy),d(z, Sy),d(y, Tz)) (z,y € X).
Then F(T) = F(S) and F(T) is non-empty.
Proof. Thanks to Lemma 2.6, F(T) = F(S). Take some 1 > r > h and zp € X. If
xo € Txg, then g € F(T). Otherwise, choose some x1 € Txg such that Ad(xg, Txg) <
d(xg,x1). Then
d(1'1, S(El) S ’H(Tﬁo, le)
< g(d(m(h 1'1), d(-r07 T{L'()), d(l’l, SJ;]), d(-r(h Sml)a d<x17 Tﬂ?o))
< g(d(zo, 1), d(zg, z1), d(z1, Sz1), 2d(20, T1) + 2d(271, S71),0)
By Lemma 2.5, d(x1, Sz1) < hd(zo, z1) < rd(zo, x1). Let d(x1, Sz1) < p < rd(zo, z1).
By the definition, there is some zo € Sz such that d(z1,z2) < pu < rd(zo,z1). Since
Ad(z1,Sx1) < d(z1,x2), by assumption,
d(l‘g, Tl‘g) S H(TZCQ, Sl‘l)
< g(d(xla 132), d(CCg, Tl‘g), d(zla le)v d(gj27 S‘Tl)a d(xlv T'r2))
S g(d(l‘l, %2), d(:]Cg, TIQ), d(l‘l, mg), O, Qd(l‘h 1’2) + 2d(I2, Txg))
By applying Lemma 2.5 once again, we have d(xs, Tzs) < hd(x1,x2) < rd(xy,x2).
Similarly, we can find some z3 € Txy such that d(za,x3) < rd(zi,z2). Using the

above argument, by induction, we can obtain a sequence {z,} in X with the following
properties:

(a) Tont1 € Ton_o and 2, € Sx2,-1,

(b) d(xpn,xns1) < rd(xnp_1,Ty),

(c) d(zon, Txon) < hd(xon—1,%2n) and d(z2,—1, ST2p—1) < hd(T2p—2, Tan—1)
for all n € N. If &, = 41 for some n € N, then by (c), z, is a common fixed

point of 7" and S. Otherwise, (b) and Lemma 2.4 imply that {x,} is a Cauchy
sequence in complete b-metric space X. Let x = lim,,_o z,,. We claim that either



310 ALIREZA KAMEL MIRMOSTAFAEE

Ad(xon, Ton) < d(zan,x) or Ad(z2n11,Tont1) < d(zani1,x) for each n € N. If for
some n € N, Ad(zay, Ton) > d(xon, x) and Ad(x2n41, Tont+1) > d(zony1, ), then

d(2n, Tont1) < 2[d(z2n, ) + d(T2041, 7))
< 2\ [d(xgn, Txzop,) + d(zont1, S$2n+1)]
< 2)\[d(:r2n, Zont1) + hd(xop, I2n+1)]
=2X(1 + h)d(xan, Tont+1) < d(Tan, Tant1)-

This contradiction proves our claim. Therefore, by our assumption for each n € N
either

H(Txop, Sx) < g(d(xgn, x),d(xon, Tray), d(x, Sx), d(xey,, Sx),d(x, T(Egn))

or
H(Tz, Stant1) <
S g(d(xQn—&-la CE), d((E, TZL’), d($2n+17 Sx2n+l); d(.’ﬂ, S.’£2n+1), d(x2n+1> Tl’)) .
It follows that at least one of the following two cases happens.
Case 1. There is an infinite subset I C N such that

d(zant1,S) < H(Tzap, Sx)
< g(d(zan, ), d(z2n, T22n), d(2, Sz), (221, S2), d(2, TT2,)) (M E I).
In this case, for each n € I, we have
d(z, Sz) < 2[d(2, T2n+1) + d(z2n41, ST)]
< 2[d(m,$2n+1) + g(d(mgn,x), d(zon, Txay), d(z, Sx), d(x2n, Sx), d(x,Txgn))
< 2[d(.’1/',1'2n+1) + g(d(mgn,x), d(xon, Tant1), d(x, Sx),
2d(x2y, ) + 2d(z, Sz), d(z, T2n41))-
By continuity of g, it follows that
d(z,Sz) < 2¢(0,0,d(z, Sx), 2d(z, Sx), 0).
By Lemma 2.5, we have d(z, Sx) = 0. Hence = € F(S5).

Case 2. There is an infinite subset I of N such that
d(Tz,xon11) < H(Tx,Sxont1)
< g(d(xQnH, x),d(z, Tx),d(x2n+1, STont1), d(x, Stant1), d(Tant1, T:c))
In this case, for each n € I, we have
d(z,Tx) [d X, Topt2) +d(z2n+2,T:c)]
[d (z, Tont2) +g(d(x2n+1,x),d(x,Tx),
d(zant1, STant1), d(z, Sx2n+1),d(x2n+17Tm))]
[d (z x2n+2
+ ( Tont1, ), d(x, Tx), d(Xon11, Tant2), A(T, Tant2),

2d($2n+1, ) + 2d(x, TSL’))]
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Using continuity of g, we have
d(z,Tx) < QQ(O,d(x,Tx),O, 0, 2d(x,Tm)).
By Lemma 2.5, d(z,Tx) = 0. Hence z € Tx. O
The above result enable us to prove Theorem 1.2 for b-metric spaces.

Theorem 2.9. Let (X,d) ba a complete b-metric space and T,S : X — CL(X).

Assume that for some a,b,c € [0,1) witha+b+c <1, 21(_11_5(1(,@7Tx) < d(z,y) or
;(_1?;1‘) d(y, Sy) < d(x,y) implies that H(Tx, Sy) < ad(z,y) +bd(z, Tx) + cd(y, Sy) for

all z,y € X. Then F(T) = F(S) and F(T) is non-empty.

Proof. In Theorem 2.8, let A = 21(_1116) and g(x1,x2, T3, T4, T5) = axy + bxe + cxs for

all z1, 22,3, 24,25 > 0. Since 2A(1 + a4+ b+ ¢) < 1, by Theorem 2.8, F(T) = F(S5)
and F(T') is non-empty. O

By imitating the proof of Theorem 2.8, one can prove the following:

Theorem 2.10. Let X be a complete b-metric space and let T,S : X — CL(X) be
two set-valued functions such that for some g € R

H(Tz,8y) < g(d(z,y),d(z,Tx),d(y, Sy), d(z, Sy), d(y, Tx)) (z,y € X).
Then F(T) = F(S) and F(T) is non-empty.

The next result can be considered as set-valued version of Hardy-Rogers fixed point
theorem [10] in b-metric spaces.

Theorem 2.11. Let (X,d) be a complete b-metric and T : X — CL(X) be a set-
valued mapping such that for oll x,y € X,

H(Tz,Ty) < a d(z,y) +bdz,Tz) +cdly,Ty) +edzTy)+ [ dly,Tz), (2.3)
where 0 < a,b,c,e, f <1l anda+b+c+2(e+ f) <1. Then F(T) # 0.
Proof. By symmetry,

H(Tz,Ty) < a d(x,y) +bd(y, Ty) + c d(z, Tz) + e d(y, Tx) + f d(z,Ty), (2.4)
for all 2,y € X. Put o = £¢ and 8 = e;f. Then by (2.3) and (2.4) for all z,y € X,

H(Tz,Ty) < a d(z,y) + « [d(z,Tz) + d(y, Ty)] + 8] d(z, Ty) + d(y,Tz)]. (2.5)
Define g : [0,00)% — [0, 00) by

9(x1, T2, 73,4, 75) = azxy + a(x2 + x3) + B(ws + 5) (2 > 0,1 <4 <5).

Clearly g is nondecreasing with respect to each variable and sub-homogenous. More-
over, g(1,1,1,4,0) = ¢(1,1,1,0,4) =a+ b+ c+2(e + f) < 1. Hence g € R. Thanks
to Theorem 2.10, F(T') # 0. O

A mapping T : X — X is said to be a quasi-contraction if there is some 0 < r < 1
such that

d(Tz, Ty) < rmax{d(x,y),d(z, Tx),d(y, Ty),d(z, Ty),d(y, Tx)}.
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In 1974, Cirié[5] proved a fixed point theorem for quasi-contractive mappings in com-
plete metric spaces. Aydi et al. [3] extend Cirié¢’s theorem for bg-metric spaces as
follows.

Theorem 2.12. [3, Theorem 2. 2]. Let (X, d) be a complete by-metric space. Suppose
that T is a set-valued quasi-contractive mapping, that is

H(Tx, Ty) < rmax{d(z,y),d(z,Tx),d(y, Ty),d(z,Ty),d(y, Tz)} (z,y € X).
Ifr(k® + k) < 1, then F(T) # 0.
Theorem 2.10 enable us to prove the following extension of Theorem 2.12 for special

kind of bs-metrics.

Theorem 2.13. Let (X,d) be a complete b-metric and T,S : X — CL(X) be a
set-valued mapping such that for all x,y € X,

H(Tz,Sy) < rmax{d(z,y), dz,Tz), d(y,Sy), d(z,Sy), d(y,Tz)}, (2.6)
where 0 < r < 1. Then F(T) = F(S) is nonempty.
Proof. Define g : [0,00)% — [0,00) by
9(x1, 2, T3, x4, x5) = r max{xy, T2,T3,24,25) (x; >0,1<7<5).

Then h = rmax{1,1,1,4,0} = 4r < 1. According to Theorem 2.10, F(T') = F(S) is
not empty. O

The following example shows that the above result is a genuine extension of The-
orem 2.12 in special kind of by-metric spaces.
Example 2.14. Let X; = {z € R: 0 < 2 < §} and X5 = {a,b, ¢} where a =
c<b=1. Let X = X7 U X5 and define a symmetric function d : X x X — R™ by

<

d(z,x) =0 for all z € X,

d($,y) = |$—y| lfil',y GXla

dlz,y)=1ifzx € Xj,y € Xy or z € Xo,y € Xy,
d(a,b) = %, d(a,c) =1 and d(b,c) = 2.

Since d(b,c) =2 £ 3 = d(b,a)+d(a,c), d is not a metric. An easy computation shows
that (X, d) is complete and

d(z,y) < 2max{d(z, 2),d(z,v)} (z,y,z € X).

Therefore (X,d) is a complete b-metric. Let T': X — X be defined by Tz = £ for all
x € X. We will show that

A2, Tg) < 3 max{dle,y), d(a, o), d(y, To), d(w, To), dly, T)} (w,y € X).

(2.7)
Clearly (2.7) holds for all z,y € X;. If 2,y € X5, we have
1 1 1 1
dTx,Ty)=-lr—y| < =-x=<=d .
(T2, Ty) = |z —y| < ¢ x 5 < zd(z,y)

Suppose that x € X; and y € Xs, then
1 1 1
dTz,Ty)==lz —y| < - ==d .
(T, Ty) = glz —yl < ¢ = zd(z,y)
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It follows from Theorem 2.13 that 7" has a fixed point. However, Theorem 2.12 can
not be applied. In fact, in Theorem 2.12, r must be less than ﬁ So that for k = 2,

r < %. In this example for xg = 0, yo = 1, we have d(T'zg, T'yo) = % and

1
max{d(xo, yO), d(an T.’Eo), d(yOa TyO)v d(w()? TyO)v d(yOa T.’Eo)} =1nax {17 07 gv ]-7 1} =1
But for r < %,

1
d(T{EO, T(EO) = g max{d(x()a y0)7 d(l’o, T{EO), d(yo» TyO)a d(x(h TyO)a d(yO» Tmo)}
% T max{d(mo, y0)7 d($07 Txo)» d(y07 Tyo)a d(.’E07 T?JO)» d(y07 Txo)}
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