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1. Introduction

Theory of differential equations of a fractional order arises from ideas of Leibnitz
and Euler but only recently the interest to this subject essentially strengthened due to
interesting applications in applied mathematics, physics, enginery, biology, economics
and other branches of natural sciences (see, e.g., monographs [1], [3], [6], [7], [10],
[13], [15], [16], [17] and references therein and papers [11], [12], [14], [18] and many
others).
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In the present paper we are considering the Cauchy problem for a semilinear frac-
tional differential inclusion in a Banach space E of the following form:

Dqx(t) ∈ Ax(t) + F (t, x(t)), t ∈ [0, a], (1.1)

x(0) = x0, (1.2)

where Dq, 0 < q < 1, is the Caputo fractional derivative, F : [0, a] × E ( E is a
multivalued map with nonempty compact convex values, A : D(A) → E is a linear
closed, not necessarily bounded operator in E, and x0 ∈ E.

By using the fixed point theory for condensing multivalued maps, we prove the
local and global theorems of the existence of mild solutions to problem (1.1)-(1.2).
We verify the compactness of the solutions set and its continuous dependence on
parameters and initial data. In the last section we demonstrate the application of the
averaging principle to the investigation of the continuous dependence of the solutions
set on a parameter in the case when the right-hand side of the inclusion is rapidly
oscillating.

2. Preliminaries

2.1. Fractional integral and derivative.

Definition 2.1. (See, e.g., [15], [16]). The fractional integral of order α ∈ (0, 1) of a
function g ∈ L1([0, T ];E) is the function Iα0 g of the following form:

Iα0 g(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s) ds,

where Γ is the Euler’s gamma-function

Γ(α) =

∫ ∞
0

xα−1e−xdx.

Definition 2.2. The Caputo fractional derivative of the order α ∈ (N − 1, N ] of a
function g ∈ CN ([0, T ];E) is the function Dα

0 g of the following form:

Dα
0 g(t) =

1

Γ(N − α)

∫ t

0

(t− s)N−α−1g(N)(s) ds.

2.2. Multivalued maps. Let E be a Banach space. Introduce the following notation:

• P (E) = {A ⊆ E : A 6= ∅} denotes the collection of all non-empty subsets of
E ;
• Pv(E) = {A ∈ P (E) : A is convex} ;
• K(E) = {A ∈ P (E) : A compact} ;
• Kv(E) = {Pv(E) ∩K(E)} denotes the collection of all non-empty compact

and convex subsets of E .

Definition 2.3. (See, e.g., [2], [8]). Let (A,≥) be a partially ordered set. A function
β : P(E) → A is called the measure of noncompactness (MNC) in E if for each
Ω ∈ P(E) we have:

β(co Ω) = β(Ω),

where co Ω denotes the closure of the convex hull of Ω.
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A measure of noncompactness β is called:

1) monotone if for each Ω0,Ω1 ∈ P(E), from Ω0 ⊆ Ω1 follows β(Ω0) ≤ β(Ω1).
2) nonsingular, if for each a ∈ E and each Ω ∈ P(E) we have β({a}∪Ω) = β(Ω).

If A is a cone in a Banach space, the MNC β is called:

3) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ P(E);
4) real, if A is the set of all real numbers R with the natural ordering.

As the example of a real MNC obeying all above properties, we can consider the
Hausdorff MNC χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E }.
Notice that the Hausdorff MNC satisfies the semi-homogeneity condition, i.e.:

χ(λΩ) = |λ|χ(Ω),

for each λ ∈ R and each Ω ∈ P(E).
Recall that the norm of a set M ⊂ E is defined by the formula:

‖M‖ = sup
x∈M
‖x‖E

Definition 2.4. (See, e.g., [4], [8]). Let X be a metric space. A multivalued map
(multimap) F : X → P (E) is called:

(i) upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F(x) ⊂ V } is an open
subset of X for each open set V ⊂ E ;

(ii) closed if its graph ΓF = {(x, y) : y ∈ F(x)} is a closed subset of X × E ;
(iii) compact if F(X) = ∪x∈XF (x) is a relatively compact subset of E ;
(iv) quasicompact if its restriction to each compact subset A ⊂ X is compact.

Definition 2.5. (see [2], [8]). A multimap F : X ⊆ E → K(E) is called condensing
with respect to a MNC β (or β-condensing) if for each bounded set Ω ⊆ X which is
not relatively compact, we have:

β(F (Ω)) 6≥ β(Ω).

In the sequel we will need the following assertions (see [8]).

Lemma 2.6. Let X and Y be metric spaces and F : X → K(Y ) a closed quasicompact
multimap. Then F is u.s.c.

Lemma 2.7. Let X be a closed subset of a Banach space E , β a monotone MNC in
E , Λ a metric space, and G : Λ×X → K(E) a closed multimap which is β-condensing
in the second argument and such that the fixed point set Fix G(λ, ·) := {x ∈ X : x ∈
G(λ, x)} is non-empty for each λ ∈ Λ. Then the multimap F : Λ → P (E), where
F(λ) = Fix G(λ, ·) is u.s.c.

Lemma 2.8. Let X be a closed subset of a Banach space E , β a monotone MNC in
E and F : X → K(E) a closed multimap which is β-condensing on each bounded set.
If the fixed point set FixF := {x : x ∈ F(x)} is bounded then it is compact.

Theorem 2.9. Let M be a convex closed bounded subset of E and F :M→ Kv(M)
a β-condensing multimap, where β is a monotone nonsingular MNC in E . Then the
fixed point set FixF is a non-empty compact set.
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2.3. Measurable multifunctions. Recall some notions (see, e.g., [4], [8]). Let E
be a Banach space.

Definition 2.10. For a given p ≥ 1, a multifunction G : [0, T ]→ K(E) is called:

• Lp-integrable if it admits an Lp-Bochner integrable selection, i.e., there exists
a function g ∈ Lp ([0, T ];E) such that g(t) ∈ G(t) for a.e. t ∈ [0, T ];
• Lp-integrably bounded if there exists a function ξ ∈ Lp([0, T ]) such that

‖G(t)‖ ≤ ξ(t)
for a.e. t ∈ [0, T ].

The set of all Lp-integrable selections of a multifunction G : [0, T ] → K(E) is
denoted by SpG.

Lemma 2.11. (See [8], Theorem 4.2.1). Let a sequence of functions {ξn} ⊂
L1([0, a];E) be L1-integrably bounded. Suppose that

χ({ξn} (t)) ≤ α(t) a.e. t ∈ [0, a]

for all n = 1, 2, ..., where α ∈ L1
+([0, a]). Then for every δ > 0 there exist a compact

set Kδ ⊂ E, a set mδ ⊂ [0, a] of a Lebesgue measure mδ < δ, and set of functions
Gδ ⊂ L1([0, a];E) with values in Kδ, such that for every n ≥ 1 there exists a function
bn ∈ Gδ for which

‖ξn(t)− bn(t)‖E ≤ 2α(t) + δ, t ∈ [0, a] \mδ.

Moreover, the sequence {bn} may be chosen so that bn ≡ 0 on mδ and this sequence
is weakly compact.

In the sequel we will need the following notion.

Definition 2.12. A sequence of functions {ξn} ⊂ Lp([0, a];E) is called Lp-
semicompact if it is Lp-integrably bounded, i.e.,

‖ξn(t)‖E ≤ v(t) for a.e. t ∈ [0, a] and for all n = 1, 2, ...,

where v ∈ Lp([0, a]), and the set {ξn(t)} is relatively compact in E for a.e. t ∈ [0, a].

3. The local and global existence of solutions
to the Cauchy problem

Let a multimap
F : [0, a]× E → Kv(E)

be such that:

(F1) for each x ∈ E the multifunction F (·, x) : [0, a] → Kv (E) admits a strongly
continuous selection;

(F2) for a.e. t ∈ [0, a] the multimap F (t, ·) : E → Kv (E) is u.s.c.;
(F3) for each r > 0 there exists a function ωr ∈ L∞([0, a]) such that for each x ∈ E

with ‖x‖ ≤ r we have:

‖F (t, x)‖ ≤ ωr(t)
for a.e. t ∈ [0, a];
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(F4) there exists a function µ ∈ L∞([0, a]) such that for each bounded set Q ⊂ E
we have:

χ(F (t, Q)) ≤ µ(t)χ(Q),

for a.e. t ∈ [0, a], where χ is the Hausdorff MNC in E.

On a linear operator A we pose the following condition:

(A) A : D(A) → E is a linear closed operator in E generating a C0-
semigroup{T (t)}t≥0.

Denote M = sup {‖T (t)‖ ; t ∈ [0; a]} .

For x ∈ C([0, a];E) consider the multifunction:

ΦF : [0, a]→ Kv(E), ΦF (t) = F (t, x(t)).

From above conditions (F1)− (F3) it follows (see, e.g., [8], Theorem 1.3.5) that the
multifunction ΦF is Lp-integrable for each p ≥ 1.

To solve our problem, we will use the superposition multioperator P∞F :
C([0, a];E)( L∞([0, a];E) defined in the following way:

P∞F (x) = S∞ΦF .

Definition 3.1. A mild solution of the Cauchy problem (1.1)-(1.2) on an interval
[0, τ ], τ ∈ (0, a] is called a function x ∈ C([0, τ ];E) which can be represented as:

x(t) = G(t)x0 +

∫ t

0

(t− s)q−1T (t− s)φ(s)ds, t ∈ [0, τ ],

where φ ∈ P∞F (x) and

G(t) =

∫ ∞
0

ξq(θ)T (tqθ)dθ, T (t) = q

∫ ∞
0

θξq(θ)T (tqθ)dθ,

ξq(θ) =
1

q
θ−1− 1

q Ψq(θ
−1/q),

Ψq(θ) =
1

π

∞∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)

n!
sin(nπq), θ ∈ R+.

Remark 3.2. (See, e.g. [18])
∫∞

0
θξq (θ) dθ = 1

Γ(q+1) , ξq (θ) ≥ 0.

Lemma 3.3. (See [18], Lemma 3.4.) The operators G and T possess the following
properties:

1) For each t ∈ [0, a], G(t) and T (t) are linear bounded operators, more precisely,
for each x ∈ E we have

‖G(t)x‖E ≤M ‖x‖E ; (3.1)

‖T (t)x‖E ≤
qM

Γ(1 + q)
‖x‖E ; (3.2)

2) the operator functions G(·) and T (·) are strongly continuous, i.e. functions
t ∈ [0, a]→ G(t)x and t ∈ [0, a]→ T (t)x are continuous for each x ∈ E.
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To search for mild solutions of problem (1.1)-(1.2) consider the map

S : L∞([0, a];E)→ C([0, a];E),

S(φ)(t) =

∫ t

0

(t− s)q−1T (t− s)φ(s)ds

and the function g0 ∈ C([0, a];E) defined as g0(t) = G(t)x0.
Consider the multioperator G : C([0, a];E) ( C([0, a];E), given in the following

way:

G(x) = g0 + S ◦ P∞F (x), t ∈ [0, a],

It is clear that a function x ∈ C([0, a];E) is a mild solution of problem (1.1)-(1.2)
on the interval [0, a] if and only if it is a fixed point x ∈ G(x) of the multioperator G.

Lemma 3.4. Let a sequence {ηn} ⊂ Lp([0, a];E), where 1
q < p ≤ ∞, be bounded and

ηn ⇀ η0 in L1([0, a];E). Then S (ηn) ⇀ S (η0) in C([0, a];E).

Proof. For d > 0 consider the operator Sd : L1([0, a];E)→ C([0, a];E) :

Sd(ηn) =

{
0, t ≤ d,∫ t−d

0
(t− s)q−1T (t− s)ηn(s)ds, t > d

(3.3)

Since the integrand in the last expression is the function continuous on [0, t− d], we
have

Sd (ηn) ⇀ Sd (η0) . (3.4)

in the space C([0, a];E). Let ψ be a continuous linear functional on C([0, a];E), i.e.,
ψ ∈ C∗([0, a];E). Then we have

(ψ, S (ηn)) = (ψ, Sd (ηn)) + (ψ, S (ηn)− Sd (ηn)) , n = 0, 1, 2, ... (3.5)

From the definition of the operator Sd, we conclude:

(S (ηn)− Sd (ηn)) (t) =

{ ∫ t
0
(t− s)q−1T (t− s)ηn(s)ds, t ≤ d,∫ t

t−d(t− s)
q−1T (t− s)ηn(s)ds, t > d.

Then, by using Lemma 3.3, we obtain the following estimates:

‖S (ηn)− Sd (ηn)‖C([0,a];E) ≤{ ∫ t
0
(t− s)q−1‖T (t− s)‖ · ‖ηn(s)‖ds, t ≤ d,∫ t

t−d(t− s)
q−1‖T (t− s)‖ · ‖ηn(s)‖ds, t > d.

Then, for p ∈ ( 1
q ,∞) the above inequalities may be continued in the following way:

≤


(∫ t

0
(t− s)

(q−1)p
p−1 ds

) p−1
p
(∫ t

0
‖T (t− s)‖p · ‖ηn(s)‖pds

) 1
p

, t ≤ d,(∫ t
t−d(t− s)

(q−1)p
p−1 ds

) p−1
p
(∫ t

t−d ‖T (t− s)‖p · ‖ηn(s)‖pds
) 1
p

t > d

≤ qMd(q− 1
p )

Γ(1 + q)

[ p− 1

qp− 1

] p−1
p ‖ηn‖Lp .
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For p =∞ the corresponding continuation yields

≤ qMdq

Γ(1 + q)
‖ηn‖L∞ .

(The constant M here is taken from (3.1)).
Therefore, for an arbitrary ε > 0, we may choose such d > 0 that the following

estimate holds true:

‖S (ηn)− Sd (ηn)‖C([0,a];E) ≤
ε

4 ‖ψ‖C∗([0,a];E)

. (3.6)

By virtue of (3.4), (ψ, Sd (ηn)) → (ψ, Sd (η0)) , but then for a given ε, we may
choose number n0 such that

(ψ, Sd (ηn0
)− Sd (η0)) < ε/2 (3.7)

Now, by using (3.5), (3.6), (3.7), we obtain:

(ψ, S (ηn)− S (η0)) = (ψ, Sd (ηn)− Sd (η0))

+ (ψ, S (ηn)− Sd (ηn)) + (ψ, Sd (η0)− S (η0))

<
ε

2
+ 2 ‖ψ‖C∗([0,a];E)

ε

4 ‖ψ‖C∗([0,a];E)

= ε,

concluding the proof. �

Lemma 3.5. Let {fn}∞n=1 be a bounded sequence in L∞([0, a];E) such that

χ({fn(t)}) ≤ κ(t) a.e. t ∈ [0, a],

where κ ∈ L∞+ (0, a). Then

χ({Sfn(t)}) ≤ 2
qM

Γ(1 + q)

∫ t

0

(t− s)q−1
κ(s)ds

Proof. Let ‖fn‖∞ ≤ K for all n = 1, 2, ... Then the sequence {Sdfn}, by virtue of

estimate (3.2), is an qMdqK
Γ(1+q) -net in the space C([0, a];E) of the sequence {Sfn}. By

Theorem 4.2.2 of [8] and (3.2) we have

χ({Sdfn(t)}∞n=1) ≤ 2
qM

Γ(1 + q)

∫ t−d

0

(t− s)q−1
k(s)ds. (3.8)

The result now follows from the arbitrariness of d. �

Lemma 3.6. The operator S obeys the following properties:
(S1) if 1

q < p <∞, then there exists a constant C > 0 such that

‖S(ξ)(t)− S(η)(t)‖pE ≤ C
p

∫ t

0

‖ξ(s)− η(s)‖pE ds, ξ, η ∈ Lp([0, a]);

(S2) for each compact set K ⊂ E and bounded sequence {ηn} ⊂ L∞([0, a];E) such
that {ηn(t)} ⊂ K for a.e. t ∈ [0, a], the weak convergence ηn ⇀ η0 in L1([0, a];E)
implies the convergence S(ηn)→ S(η0) in C([0, a];E).
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Proof. (S1) By using the Hölder inequality, we get:

‖S(ξ)(t)− S(η)(t)‖E ≤
∫ t

0

(t− s)q−1T (t− s) ‖ξ(s)− η(s)‖E ds

≤ qM

Γ(1 + q)

[∫ t

0

(t− s)
(q−1)p
p−1 ds

] p−1
p
[∫ t

0

‖ξ(s)− η(s)‖pE ds
] 1
p

Then

‖S(ξ)(t)− S(η)(t)‖pE ≤ C
p

∫ t

0

‖ξ(s)− η(s)‖pE ds,

where

C =

[
p− 1

qp− 1

] p−1
p qMaq−

1
p

Γ(1 + q)

(S2) Applying Lemma 3.3, we obtain:

χ

({
S (ηn) (t)

})
≤
∫ t

0

(t− s)q−1χ({T (t− s) ηn})ds = 0

This means that the sequence {S (ηn) (t)}∞n=1 ⊂ E is relatively compact for each
t ∈ [0, a].

From the other side, if we take t1, t2 ∈ [0, a] such that 0 < t1 < t2 ≤ a, then we
have: ∥∥∥∥∥S (ηn (t2))− S (ηn (t1))

∥∥∥∥∥
E

=

∥∥∥∥∥
∫ t2

0

(t2 − s)q−1 T (t2 − s) ηn(s)ds−
∫ t1

0

(t1 − s)q−1 T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

=

∥∥∥∥∥
∫ t2

t1

(t2 − s)q−1 T (t2 − s) ηn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t1

0

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
ηn(s)ds

∥∥∥∥∥
E

≤

∥∥∥∥∥
∫ t2

t1

(t2 − s)q−1 T (t2 − s) ηn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t1

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t1

0

(t2 − s)q−1
(T (t2 − s)− T (t1 − s)) ηn(s)ds

∥∥∥∥∥
E

= Z1 + Z2 + Z3,

where

Z1 =

∥∥∥∥∥
∫ t2

t1

(t2 − s)q−1 T (t2 − s) ηn(s)ds

∥∥∥∥∥
E

,



SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS 277

Z2 =

∥∥∥∥∥
∫ t1

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

,

Z3 =

∥∥∥∥∥
∫ t1

0

(t2 − s)q−1
(T (t2 − s)− T (t1 − s)) ηn(s)ds

∥∥∥∥∥
E

.

By using Lemma 3.3 and condition (F3), we can for each ε1 > 0 choose δ1 > 0 such
that |t2 − t1| < δ1 implies the following estimate:

Z1 ≤
qM ‖ωK‖∞

Γ (1 + q)

(t2 − t1)q

q
< ε1.

To estimate Z2, take constant d > 0, for which we have:

Z2 ≤

∥∥∥∥∥
∫ t1−d

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t1

t1−d

(
(t2 − s)q−1 − (t1 − s)q−1

)
T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

= I1 + I2,

where

I1 =

∥∥∥∥∥
∫ t1−d

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

,

I2 =

∥∥∥∥∥
∫ t1

t1−d

(
(t2 − s)q−1 − (t1 − s)q−1

)
T (t1 − s) ηn(s)ds

∥∥∥∥∥
E

.

Consider the function v : [d, a]→ R, v(τ) = τ q−1. The given function is continuous
on the interval [d, a], hence, by the Cantor theorem, it is uniformly continuous on this
interval, i.e., for each γ > 0 there exists δ2 > 0, such that |τ2 − τ1| < δ2 < d, τ1, τ2 ∈
[d, a] implies ∣∣∣τ q−1

2 − τ q−1
1

∣∣∣ < γ.

Now, taking τ = t− s, we get:

I1 ≤
qM ‖ωK‖∞ γ(t1 − d)

Γ (1 + q)
< ε2.

By direct integration, for I2 we obtain:

I2 ≤
M ‖ωK‖∞ dq (2 + 2q)

Γ (1 + q)
< ε3

Taking into account that the family of operators T (t) is strongly continuous for
x ∈ K, i.e., for each γ1 > 0 there exists δ3 > 0 such that |t2 − t1| < δ3 implies

‖T (t2 − s)x− T (t1 − s)x‖ < γ1, x ∈ K,

we get the following estimate:

Z3 ≤ γ1a
q < ε4.
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Therefore, for each ε > 0 we may choose δ = min{δ1, δ2, δ3} such that∥∥∥∥∥S (ηn (t2))− S (ηn (t1))

∥∥∥∥∥
E

≤ Z1 + Z2 + Z3 < ε1 + ε2 + ε3 + ε4 < ε

So, the sequence {S (ηn)} is equicontinuous. From the Arzela-Ascoli theorem we
conclude that the sequence {S (ηn)} ⊂ C ([0, a] ;E) is relatively compact. From
Lemma 3.4 we know that the weak convergence ηn ⇀ η0 implies S (ηn) ⇀ S (η0).
Since the sequence {S (ηn)} is relatively compact, we conclude that S (ηn) → S (η0)
in C ([0, a] ;E). �

To prove that the multioperator G is condensing, define the vector measure of
noncompactness in the space C([0, a];E)

ν : P (C([0, a];E))→ R2
+

with the values in the cone R2
+ defined as

ν(Ω) = max
D∈∆(Ω)

(ϕ(D),modC(D)) ,

where ∆(Ω) denotes the collection of all countable subsets of Ω,

modC(D) = lim
δ→0

sup
x∈D

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖,

ϕ(D) = sup
t∈[0,a]

e−ptχ(D(t)),

and the constant p > 0 is chosen so that

% := 2
qM ‖µ‖∞
Γ(1 + q)

∫ t

0

(t− s)q−1
e−p(t−s)ds < 1.

Such a choice can be justified in the following way. Take d > 0 such that

2
qM ‖µ‖∞
Γ(1 + q)

dq

q
<

1

2

and then, choose p > 0 such that

2
qM ‖µ‖∞
Γ(1 + q)

1

pd1−q <
1

2
.

Now we have

2
qM ‖µ‖∞
Γ(1 + q)

∫ t

0

(t− s)q−1
e−p(t−s)ds

2
qM ‖µ‖∞
Γ(1 + q)

(∫ t−d

0

(t− s)q−1
e−p(t−s)ds+

∫ t

t−d
(t− s)q−1

e−p(t−s)ds

)

≤ 2
qM ‖µ‖∞
Γ(1 + q)

(
1

d1−q
e−pd

p
+
dq

q

)
≤ 2

qM ‖µ‖∞
Γ(1 + q)

(
1

pd1−q +
dq

q

)
< 1.

Lemma 3.7. The operator G is condensing w.r.t. the measure of noncompactness ν.
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Proof. Let Ω ⊂ C([0, a];E) be a nonempty bounded set and

ν(G(Ω)) ≥ ν(Ω), (3.9)

where the inequality is taken in the sense of the order in R2 induced by the cone R2
+.

Let us show that Ω is the relatively compact set.
Since the measure of noncompactness ν is nonsingular (see [8]), it is sufficient to

prove the assertion for the multioperator S ◦ P∞F .
Let the maximum of the left-hand side of the inequality be achieved on the count-

able set D′ = {gn}∞n=1. Then

gn(t) = Sfn(t), fn ∈ P∞F (xn), n ≥ 1,

where {xn}∞n=1 ⊂ Ω.
By virtue of (3.9) we have:

ϕ({gn}∞n=1) ≥ ϕ({xn}∞n=1). (3.10)

Now, we can give a upper estimate for ϕ({gn}∞n=1).
The χ-regularity property (F4) implies

χ({fn(s)}∞n=1) ≤ µ(s) · χ({xn(s)}∞n=1)

= epsµ(s)e−ps · χ({xn(s)}∞n=1)

≤ epsµ(s) · sup
ξ∈[0,a]

e−pξχ({xn(ξ)}∞n=1) = epsµ(s) · ϕ({xn}∞n=1).

Applying Lemma 3.5 and estimate (3.2), we obtain

χ({Sfn(t)}∞n=1) ≤ 2
qM ‖µ‖∞
Γ(1 + q)

(∫ t

0

(t− s)q−1
epsds

)
· ϕ({xn}∞n=1). (3.11)

Now, from estimates (3.10), (3.11) it follows that

ϕ({xn}∞n=1) ≤ 2
qM ‖µ‖∞
Γ(1 + q)

sup
t∈[0,a]

(∫ t

0

(t− s)q−1
e−p(t−s)ds

)
· ϕ({xn}∞n=1)

≤ % · ϕ({xn}∞n=1),

implying

ϕ({xn}∞n=1) = 0,

and therefore

χ({xn(t)}∞n=1) = 0

for all t ∈ [0, a].
Now, from inequality (3.9) we have

modC({xn}∞n=1) ≤ modC ({Sfn}∞n=1) . (3.12)

Now prove that

modC ({Sfn}∞n=1) = 0.

To do it, let us show that the set{∫ t

0

(t− s)q−1T (t− s)fn(s)ds : fn(s) ∈ P∞F (xn)

}



280 M. KAMENSKII, V. OBUKHOVSKII, G. PETROSYAN AND J.-C. YAO

is equicontinuous. If we take t1, t2 ∈ [0, a] such that 0 < t1 < t2 ≤ a, then for
arbitrary fn we will have ∥∥∥∥∥S (fn (t2))− S (fn (t1))

∥∥∥∥∥
E

=

∥∥∥∥∥
∫ t2

0

(t2 − s)q−1 T (t2 − s) fn(s)ds−
∫ t1

0

(t1 − s)q−1 T (t1 − s) fn(s)ds

∥∥∥∥∥
E

=

∥∥∥∥∥
∫ t2

t1

(t2 − s)q−1 T (t2 − s) fn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t1

0

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

= Z1 + Z2,

where

Z1 =

∥∥∥∥∥
∫ t2

t1

(t2 − s)q−1 T (t2 − s) fn(s)ds

∥∥∥∥∥
E

,

Z2 =

∥∥∥∥∥
∫ t1

0

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

,

By using Lemma 3.3 and condition (F3) we may find, for each ε1 > 0, such δ1 > 0,
that for |t2 − t1| < δ1, we will have the following estimate:

Z1 ≤
qM ‖ωK‖∞

Γ (1 + q)

(t2 − t1)q

q
< ε1.

To estimate Z2 take any ε2 > 0 and choose

d < d1 =

[
ε2Γ(1 + q)

M‖ωK‖∞(2q + 1)

] 1
q

.

Then, if t1 < d and t2 − t1 < d, we have the following estimate

Z2 ≤
∫ t1

0

(t2 − s)q−1‖T (t2 − s)‖ · ‖fn(s)‖ds+

∫ t1

0

(t1 − s)q−1‖T (t1 − s)‖ · ‖fn(s)‖ds

≤
∫ t2

0

(t2 − s)q−1‖T (t2 − s)‖ · ‖fn(s)‖ds+

∫ t1

0

(t1 − s)q−1‖T (t1 − s)‖ · ‖fn(s)‖ds

≤ M‖ωK‖∞
Γ(1 + q)

(2q + 1) dq < ε2

If t1 > d we have

Z2 ≤

∥∥∥∥∥
∫ t1−d

0

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t1

t1−d

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

= I1 + I2,
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where

I1 =

∥∥∥∥∥
∫ t1−d

0

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

,

I2 =

∥∥∥∥∥
∫ t1

t1−d

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

.

Choose d < d1 so that

I2 ≤
M ‖ωK‖∞ dq (2 + 2q)

Γ (1 + q)
< ε2

for a given ε2 > 0. Since χ ({xn (t)}∞n=1) ≡ 0, then, by Lemma 2.11 for each δ > 0
there exist a compact set Kδ ⊂ E, and a set mδ ⊆ [0, a], of the Lebesgue measure
mes(mδ) < δ such that {xn (t)}∞n=1 ⊂ Kδ for t ∈ [0, a] \mδ, and so, for I1, we have
the estimate

I1 ≤

∥∥∥∥∥
∫

[0,t1−d]\mδ

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

+

∥∥∥∥∥
∫

[0,t1−d]∩mδ

(
(t2 − s)q−1 T (t2 − s)− (t1 − s)q−1 T (t1 − s)

)
fn(s)ds

∥∥∥∥∥
E

.

Take δ so small that mes(mδ) < 2ε3d
1−q for any given ε3 > 0. By using condition

(S2) from Lemma 3.6 and, taking into account that F (s, x(s)) ⊂ F ([0, a] × Kδ) we
claim that for each ε4 > 0, we can choose γ > 0 such that |t2 − t1| < γ will imply
that the first summand in the above estimate for I1 will be less than ε4.

So, for each ε > 0 we may choose δ′ = min{δ1, δ, γ} such that∥∥∥∥∥Sfn (t2)− Sfn (t1)

∥∥∥∥∥
E

≤ Z1 + Z2 + Z3 ≤ Z1 + I1 + I2 < ε

Since the set {Sfn}∞n=1 is equicontinuous, we have modC ({xn}∞n=1) = 0, hence
ν(Ω) = (0, 0). So, we conclude that Ω is relatively compact set yielding that the
multioperator G is condensing w.r.t. the MNC ν. �

Lemma 3.8. The multioperator G is u.s.c.

Proof. Since the family G(t) is strongly continuous, it is sufficient to prove the asser-
tion for the multioperator S ◦ P∞F .

Take a sequence {xn}∞n=1 ⊂ C([0, a];E) such that xn → x. Then for each se-
quence fn ∈ P∞F (xn), n ≥ 1 for a.e. t ∈ [0, a], according to condition (F4),
the set {fn(t)}∞n=1 , is relatively compact in E, hence the sequence {fn}∞n=1 is L1-
semicompact. By the Diestel criterion of weak relative compactness (see [5]), we can

assume, w.l.o.g. that fn
L1

⇀ f0. It remains to use property (S2) from Lemma 3.6 �

Now we can prove the local existence theorem for Cauchy problem (1.1)-(1.2).
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Theorem 3.9. Under conditions (A), (F1) − (F4) there exists τ ∈ (0, a] such that
the set of mild solutions of Cauchy problem (1.1)-(1.2) ΣFx0

[0, τ ] on the interval [0, τ ]
is a nonempty subset of the space C([0, τ ];E).

Proof. Take a number r > 0. Since the family of operators G(t) is equicontinuous we
may choose 0 < τ1 < a such that

‖(G(t)− G(0))x0‖E ≤ r/2 for all t ∈ [0, τ1]. (3.13)

Let Br(G(0)x0) ⊂ E be a closed ball and R = ‖G(0)x0‖E + r, take τ2 ∈ (0, a] such
that

M ‖ωR‖∞ τ q2
Γ(1 + q)

≤ r/2, (3.14)

where M is the constant from condition (A), and ωR is the function from condition
(F3).

From Lemmas 3.7 and 3.8 we know that the multioperator G is u.s.c. and ν-
condensing. Take τ = min (τ1, τ2). Consider the ball Br(x

0) ⊂ C([0, τ ];E), where x0

is the function identically equal to G(0)x0.
We will show that the multioperator G transforms the ball Br(x

0) into itself. In
fact, if x ∈ Br(x0), then ‖x‖C([0,τ ];E) ≤ R for all t ∈ [0, τ ] and from condition (F3)

we have

‖f(t)‖E ≤ ωR(t), a.e. t ∈ [0, τ ],

for all f ∈ P∞F (x).
Now, for y ∈ G(x) we have

y(t) = G(t)x0 +

∫ t

0

(t− s)q−1T (t− s)f(s)ds, f ∈ P∞F (x).

By using (3.13)-(3.14) and Lemma 3.3, we have the following estimate:

‖y(t)− x0‖E ≤ ‖(G(t)− G(0))x0‖E +

∫ t

0

(t− s)q−1 ‖T (t− s)‖L(E) ‖f(s)‖E ds

≤ ‖(G(t)− G(0))x0‖E +
M ‖ωR‖∞ τ q

Γ(1 + q)
≤ r/2 + r/2 ≤ r,

from which it follows that y ∈ Br(x0). Now we can apply Theorem 2.9 �

Let us prove the global existence result.

Theorem 3.10. Under conditions (A), (F1), (F2), (F4), and sub-linear growth
condition

(F ′3) there exists a function α ∈ L∞+ ([0, a]) such that

‖F (t, x)‖E ≤ α(t)(1 + ‖x(t)‖E) for a.e. t ∈ [0, a],

the set of all mild solutions to Cauchy problem (1.1)-(1.2) ΣFx0
[0, a] is a nonempty

compact subset of the space C([0, a];E).
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Proof. Introduce the equivalent norm in the space C([0, a];E) :

‖x‖∗ = max
t∈[0,a]

e−pt ‖x(t)‖E ,

where the constant p > 0 is chosen so that for a certain d > 0 the following inequality
holds

qM ‖α‖∞
Γ(1 + q)

(
1

pd1−q +
dq

q

)
≤ N < 1

In the space C([0, a];E) with the norm ‖·‖∗ , consider the ball

Br(0) = {x ∈ C([0, a];E)| ‖x‖∗ ≤ r} ,
where r > 0 is taken so that

r ≥
(
M ‖x0‖E +

M ‖α‖∞ aq

Γ(1 + q)

)
(1−N)

−1
.

Notice that the last inequality implies the following:

M ‖x0‖E +
M ‖α‖∞ aq

Γ(1 + q)
+Nr ≤ r.

Let us demonstrate now that that the multioperator G transforms the ball Br(0) into
itself. In fact, if we will take x ∈ Br(0) and y ∈ G(x), by using Lemma 3.3, we have,
for any f ∈ P∞F (x) :

e−pt ‖y(t)‖E ≤ e
−pt ‖G(t)x0‖E + e−pt

∫ t

0

(t− s)q−1 ‖T (t− s)‖L(E) ‖f(s)‖E ds

≤M ‖x0‖E + e−pt
Mq

Γ(1 + q)

∫ t

0

(t− s)q−1α(t)(1 + ‖x(s)‖E)ds

≤M ‖x0‖E + e−pt
Mq ‖α‖∞
Γ(1 + q)

(∫ t

0

(t− s)q−1ds+

∫ t

0

(t− s)q−1epse−ps ‖x(s)‖E ds
)

≤M ‖x0‖E + e−pt
Mq ‖α‖∞
Γ(1 + q)

aq

q
+ ‖x‖∗

Mq ‖α‖∞
Γ(1 + q)

e−pt
∫ t

0

(t− s)q−1epsds

≤M ‖x0‖E +
M ‖α‖∞ aq

Γ(1 + q)

+ ‖x‖∗
Mq ‖α‖∞
Γ(1 + q)

e−pt

(∫ t−d

0

(t− s)q−1epsds+

∫ t

t−d
(t− s)q−1epsds

)

≤M ‖x0‖E +
M ‖α‖∞ aq

Γ(1 + q)
+ ‖x‖∗

Mq ‖α‖∞
Γ(1 + q)

(
e−pt

1

d1−q
ep(t−d) − 1

p
+
dq

q

)
≤M ‖x0‖E +

M ‖α‖∞ aq

Γ(1 + q)
+ ‖x‖∗

Mq ‖α‖∞
Γ(1 + q)

(
1

pd1−q +
dq

q

)
≤M ‖x0‖E +

M ‖α‖∞ aq

Γ(1 + q)
+ ‖x‖∗N ≤ r.

So, ‖y‖∗ ≤ r.
From Lemmas 3.7 and 3.8 we know that the multioperator G is u.s.c. and ν-

condensing. From Theorem 2.9 we obtain that the set ΣFx0
[0, a] is nonempty.
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Now we can show that the set ΣFx0
[0, a] is a priori bounded. In fact, from the above

estimate it follows that for x ∈ ΣFx0
[0, a] and f ∈ P∞F (x), we have for each t ∈ [0, a]:

‖x‖∗ ≤M ‖x0‖E +
M ‖α‖∞ aq

Γ(1 + q)
+ ‖x‖∗N,

implying the following estimate:

‖x‖∗ ≤
(
M ‖x0‖E +

M ‖α‖∞ aq

Γ(1 + q)

)
(1−N)

−1
.

Applying Lemma 2.8 we obtain that the set ΣFx0
[0, a] is compact. �

4. Continuous dependence of the solutions set on parameter
and initial data

Consider now the dependence of the solutions set of our problem on the parameter
λ from a metric space (Λ, ρ) :

Dqx(t) ∈ Ax(t) + F (t, x(t), λ), (4.1)

x(0) = x0. (4.2)

We will assume that the operator A satisfies condition (A) and the multimap
F : [0, a]× E × Λ→ Kv(E) obeys the following conditions:

(F1λ) for all (x, λ) ∈ E × Λ the multifunction F (·, x, λ) : [0, a] −→ Kv (E) admits
a strongly continuous selection;

(F2λ) for a.e. t ∈ [0, a] the multimap F (t, ·, ·) : E −→ Kv (E) is u.s.c.;
(F3λ) for each n ∈ N there exists a function ωn ∈ L∞([0, a]) such that for each

function x ∈ B(0, n) ⊂ C([0, a];E) we have:

‖F (t, x, λ)‖ := sup {‖f‖E : f ∈ F (t, x, λ)} ≤ ωn(t)

for a.e. t ∈ [0, a];
(F4λ) there exists a function µ ∈ L∞([0, a]) such that for each bounded set Q ⊂ E

we have:

χ(F (t, Q,Λ)) ≤ µ(t)χ(Q),

for a.e. t ∈ [0, a], where χ is the Hausdorff measure of noncompactness in E.

Theorem 4.1. Assume that conditions (A), (F1λ) − (F4λ) are satisfied. Suppose

that for a certain value λ0 ∈ Λ of the parameter, the solutions set Σ
F (·,·,λ0)
x0 [0, a] of

problem (4.1)-(4.2) is bounded and satisfies the following condition of extendability:

ΣF (·,·,λ0)
x0

[0, τ ] = ΣF (·,·,λ0)
x0

[0, a]|[0,τ ] for each τ ∈ (0, a]. (4.3)

Then for every r > 0 there exists δ > 0 such that for each λ ∈ Λ : ρ(λ, λ0) < δ, the

set
∑F (·,·,λ)
x0

[0, a] is non-empty and, moreover,

ΣF (·,·,λ)
x0

[0, a] ⊂Wr

(
ΣF (·,·,λ0)
x0

[0, a]
)
,

i.e., the multioperator λ( Σ
F (·,·,λ)
x0 [0, a] is u.s.c. at the point λ0.



SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS 285

Proof. Let C > 0 be a constant such that :∥∥∥ΣF (·,·,λ0)
x0

[0, a]
∥∥∥ ≤ C, (4.4)

and

M = max
t∈[0,a]

‖T (t)‖ .

We will show that there exists δ0 > 0 such that for all λ ∈ Λ : ρ(λ, λ0) < δ0, we have:∥∥∥ΣF (·,·,λ)
x0

(t)
∥∥∥ ≤ 3C, (4.5)

where Σ
F (·,·,λ)
x0 is the solutions set of problem (4.1)-(4.2), i.e., x ∈ Σ

F (·,·,λ)
x0 if there

exists ∆ > 0 such that for each τ < ∆ and yτ = x|[0,τ ] ∈ C([0, τ ];E), yτ ∈ G(λ, yτ ),
where G(λ, ·) is the integral multioperator in the space C([0, τ ];E) corresponding to
the multimap F (·, ·, λ) defined for λ ∈ Λ and x ∈ C([0, τ ];E) by the formula

G(λ, x) =
{
y : y(t) = G(t)x0 + z(t), z ∈ S ◦ P∞Fλ(x)

}
.

Suppose that (4.5) fails, then we can choose sequences λn ∈ Λ, λn → λ0, tn ∈
[0, a], xn ∈ C([0, tn];E), such that :

xn ∈ G(λn, xn)(t) for t ∈ [0, tn]

and

dist
(
xn (tn) ,ΣF (·,·,λ0)

x0
(tn)

)
= 2C, (4.6)

dist
(
xn (tn) ,ΣF (·,·,λ0)

x0
(t)
)
< 2C, t ∈ [0, tn), (4.7)

where dist denotes the distance of a point from a set.
Let t∗ = limtn, from (F3λ) it follows that t∗ > 0. In fact, suppose the contrary.

Then there exists a subsequence of the sequence tn (without loss of generality, we can
assume that it is the sequence tn itself), which converges to zero. Then from (F3λ)
it follows that selections fn ∈ S∞F (·,xn(·),λn) satisfy:

‖fn(t)‖ ≤ ω3C(t) for a.e. t ∈ [0, tn].

From condition (4.3) it follows that the set Σ
F (·,·,λ0)
x0 [0, a] is compact, so we get

dist
(
x0,Σ

F (·,·,λ0)
x0

(tn)
)
→ 0. (4.8)

By using (4.6), we obtain

0 < 2C = dist
(
xn (tn) ,ΣF (·,·,λ0)

x0
(tn)

)
≤ ‖xn(tn)− x0‖E + dist

(
x0,Σ

F (·,·,λ0)
x0

(tn)
)
≤ ‖(G(tn)− I)x0‖E

+

∫ tn

0

(tn − s)q−1 ‖T (tn − s)‖L(E) · ‖fn(s)‖E ds+ dist
(
x0,Σ

F (·,·,λ0)
x0

(tn)
)

(4.9)
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Notice that the first term in the right-hand side of the last inequality tends to zero
while n → ∞. Since the operator family G(t) is equicontinuous and the last term
vanishes by virtue of (4.8). For the second term we have the following estimate:∫ tn

0

(tn − s)q−1 ‖T (tn − s)‖L(E) · ‖fn(s)‖E ds ≤
M ‖ω3C‖∞

Γ(1 + q)
tqn → 0.

Passing to the limit in (4.9) we get the contradiction.
Now, we prove that there exists α > 0, such that all solutions xn are defined on

the interval [0, t∗ − α] and for each xn there exists a point t′n ∈ [0, t∗ − α] at which
the following inequality holds:

dist
(
xn (t′n) ,ΣF (·,·,λ0)

x0
(t′n)

)
≥ C/2. (4.10)

The first part of this assertion follows from the just proved fact that t∗ > 0.
To prove the second part, notice that if at any point t1 ∈ [0, tn) for some solution

x0 ∈ Σ
F (·,·,λ0)
x0 , we have: ∥∥xn(t1)− x0(t1)

∥∥
E
< C/2,

then for t1 + τ ∈ [0, tn] we have the following estimate:∥∥xn(t1 + τ)− x0(t1 + τ)
∥∥
E

=
∥∥xn(t1 + τ)− xn(t1)− x0(t1 + τ) + x0(t1) + xn(t1)− x0(t1)

∥∥
E

≤ ‖xn(t1 + τ)− xn(t1)‖E +
∥∥x0(t1 + τ)− x0(t1)

∥∥
E

+
∥∥xn(t1)− x0(t1)

∥∥
E

≤
∥∥xn(t1)− x0(t1)

∥∥
E

+
2τ qM ‖ω3C‖∞

Γ(1 + q)
. (4.11)

From the last estimate, for a small τ > 0 we get:∥∥xn(t1 + τ)− x0(t1 + τ)
∥∥
E
< C. (4.12)

If we suppose that the desired α does not exists, then by using inequality (4.7) and
choosing t∗, we obtain the following inequality:∥∥xn(tn)− x0(tn)

∥∥
E
< C,

contradicting (4.6).
The family of integral multioperators G : Λ×C([0, t∗−α];E)→ Kv(C([0, t∗−α];E))
of problem (4.1)-(4.2) is ν-condensing in the second argument and hence the sequence{
xn|[0,t∗−α]

}
is relatively compact. It follows that for a limit point x∗ of this sequence

while tending t′n to t∗, we have:

x∗(t) ∈ G(λ0, x
∗)(t) for t ∈ [0, t∗ − α]

and

dist
(
x∗ (t∗) ,ΣF (·,·,λ0)

x0
(t∗)

)
≥ C/2. (4.13)

Inequality (4.13) contradicts to condition (4.3) and to the possibility to extend
the solution x∗ of problem (4.1)-(4.2) to the whole interval [0, a], since so extended

solution does not belong to Σ
F (·,·,λ0)
x0 .

Now, it remains only to refer to Lemma 2.7, taking the closed ball B3C(0) in the
space C([0, a];E) as X. �
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5. The averaging principle

Consider the Cauchy problem for a fractional semilinear differential inclusion in a
Banach space E :

Dqx(t) ∈ Ax(t) + F (t/ε, x(t)), (5.1)

x(0) = x0, (5.2)

where ε is a small parameter and linear operator A : D(A) ⊆ E → E satisfies condition
(A). We will assume that the multimap F : R×E → Kv(E), besides condition (F1)
satisfies the following additional conditions:

(FT ) the multimap F is T -periodic in the first argument, i.e., for a.e. t ∈ R :

F (t+ T, x) = F (t, x),

for all x ∈ E, where T > 0.
It is clear that this condition yields the existence of a T -periodic measurable selec-

tion for the multifunction F (·, x) for all x ∈ E;
(F ′2) the multimap F is u.s.c. in the second argument, uniformly w.r.t. the first

argument, i.e., for each x ∈ E and ε > 0 there exists δ > 0 such that

F (t, Bδ(x)) ⊂Wε(F (t, x)),

for a.e. t ∈ R;
(F ′4) for each bounded set Ω ⊂ E we have:

χ(F ([0, T ]× Ω)) ≤ k · χ(Ω),

where χ is the Hausdorff MNC in E and k > 0.
From condition (F ′4) it follows that the multimap F transforms bounded sets into

bounded ones and satisfies condition (F3).
Parallel to inclusion (5.1), we consider the averaged inclusion:

Dqx(t) ∈ Ax(t) + F0(x(t)), (5.3)

where

F0(x(t)) =
1

T

∫ T

0

F (s, x)ds.

From [8], we know the following result.

Lemma 5.1. The multimap F0 : E → Kv(E) is u.s.c.

For each bounded set Ω ⊂ E the following estimate holds true:

χ(F0(Ω)) ≤ k · χ(Ω), (5.4)

where k is the constant from condition (F ′4). Indeed, for each x ∈ Ω and f ∈ P∞F (x),
we obtain that f(t) ∈ F ([0, T ]× Ω) for a.e. t ∈ [0, T ]. Therefore

1

T

∫ T

0

f(s)ds ∈ coF ([0, T ]× Ω),

moreover, F0(Ω) ∈ coF ([0, T ] × Ω), hence, due to the definition of the MNC and
condition (F ′4), we get (5.4).
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Therefore, to study the solvability of inclusion (5.3), we can introduce the described
above integral multioperator G which, as it was proved, is ν-condensing.

To prove the concluding result, we will need the following important theorem which
is the ”multivalued” analogue of the Krasnoselskii-Krein lemma (see [8])

Theorem 5.2. Let F satisfy conditions (F1), (F ′2), (F ′4), (FT ) and sequences
{xn}∞n=1 ⊂ C([0, a];E) and fn ∈ P1

Fn , where Fn(s) = F ( s
εn
, xn(s)), for a.e. s ∈ [0, d]

be given. Suppose that εn → 0, xn
C→ x0, and fn

L1

⇀ f0. Then f0 ∈ P1
F0
, where

F0 = F0(x0(s)), for a.e. s ∈ [0, a].

Denote Fε(t, x) = F (t/ε, x), for ε > 0.

Theorem 5.3. Suppose that the multimap F obeys conditions (F1), (FT ),
(F ′2), (F ′4) and the solutions set ΣF0

x0
[0, a] satisfies the following condition of ex-

tendability:
ΣF0
x0

[0, τ ] = ΣF0
x0

[0, a]|[0,τ ] for each τ ∈ (0, a]. (5.5)

Then for every r > 0 there exists ε0 > 0 such that ΣFεx0
[0, a] 6= ∅ and

ΣFεx0
[0, a] ⊂Wr(Σ

F0
x0

[0, a]),

for a.e. ε ∈ (0, ε0].

Proof. Consider the family of multioperators

G : [0, 1]× C([0, a];E)→ Kv(C([0, a];E))

G(ε, x) =

{
y : y(t) = G(t)x0 +

∫ t

0

(t− s)q−1T (t− s)φε(s)ds, φε ∈ P∞Fε(x)

}
.

At first, prove that G is u.s.c. at each point (0, x). To do so, take sequences
{εn}∞n=1 ⊂ [0, 1], {xn}∞n=1 ⊂ C([0, a];E), such that εn → 0, xn → x. Then for each
sequence φn ∈ P∞Fεn (xn), n ≥ 1 for a.e. t ∈ [0, a], the set {φn}∞n=1 , by condition (F ′4),

lays in a relatively compact set F ([0, T ] × {xn}∞n=1), hence the sequence {φn}∞n=1 is
L1-semicompact. Moreover, by the Diestel criterion (see [5]) we may assume, w.l.o.g.,,

that φn
L1

⇀ φ0. By Theorem 5.2 we get φ0 ∈ P1
F0
, but the sequence φn is bounded,

hence φ0 ∈ P∞F0
. Now it remains to use condition (S2) from Lemma 3.6

Now, prove that the multioperator G is condensing w.r.t. the MNC ν :

ν : P (C([0, a];E))→ R2
+

with the values in the cone R2
+ defined as

ν(Ω) = max
D∈∆(Ω)

(ϕ(D),modC(D)) , (5.6)

where ∆(Ω) denotes the collection of all countable subsets of Ω,

ϕ(D) = sup
t∈[0,a]

e−ptχ(D(t)),

and the constant p > 0 is chosen so that

% := 2
qMk

Γ(1 + q)

∫ t

0

(t− s)q−1
e−p(t−s)ds < 1,
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where k is the constant from condition (F ′4).
Such a choice can be justified in the following way. Take d > 0 such that

2
qMk

Γ(1 + q)

dq

q
<

1

2

and then, choose p > 0 such that

2
qMk

Γ(1 + q)

1

pd1−q <
1

2
.

Now we have

2
qMk

Γ(1 + q)

∫ t

0

(t− s)q−1
e−p(t−s)ds

= 2
qMk

Γ(1 + q)

(∫ t−d

0

(t− s)q−1
e−p(t−s)ds+

∫ t

t−d
(t− s)q−1

e−p(t−s)ds

)

≤ 2
qMk

Γ(1 + q)

(
1

d1−q
e−pd

p
+
dq

q

)
≤ 2

qMk

Γ(1 + q)

(
1

pd1−q +
dq

q

)
< 1.

Let Ω ⊂ C([0, a];E) be a nonempty bounded set and

ν(G([0, 1]× Ω)) ≥ ν(Ω). (5.7)

Let us show that Ω is relatively compact set.
Suppose that the maximum mentioned in formula (5.6) is achieved on the set

D′ = {yn}∞n=1 . Then there exist sequences {εn}∞n=1 ⊂ [0, 1] {xn}∞n=1 ⊂ Ω, such that

yn = G(t)x0 +

∫ t

0

(t− s)q−1T (t− s)φεn(s)ds, φεn ∈ P∞Fεn (xn)

Denote φεn = fn, n ≥ 1.
Since the MNC ν is nonsingular, it is sufficient to prove the assertion for the

sequence gn(t) = Sfn(t), fn ∈ P∞Fεn (xn), n ≥ 1 instead of the sequence {yn}∞n=1.

By virtue of (5.7) we get

ϕ({gn}∞n=1) ≥ ϕ({xn}∞n=1), (5.8)

modC({gn}∞n=1) ≥ modC({xn}∞n=1). (5.9)

Now, we can give a upper estimate for ϕ({gn}∞n=1).
The χ-regularity property (F ′4) implies

χ({fn(s)}∞n=1) ≤ χ(F ([0, T ])× {xn}∞n=1)

≤ k · χ({xn(s)}∞n=1)

= epske−ps · χ({xn(s)}∞n=1)

≤ epsk · sup
ξ∈[0,a]

e−pξχ({xn(ξ)}∞n=1) = epsk · ϕ({xn}∞n=1).

Applying Lemma 3.5 and estimate (3.2), we obtain

χ({Sfn(t)}∞n=1) ≤ 2
qMk

Γ(1 + q)

(∫ t

0

(t− s)q−1
epsds

)
· ϕ({xn}∞n=1). (5.10)
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Now, from estimates (5.8), (5.10) it follows that

ϕ({xn}∞n=1) ≤ 2
qMk

Γ(1 + q)
sup
t∈[0,a]

(∫ t

0

(t− s)q−1
e−p(t−s)ds

)
· ϕ({xn}∞n=1)

≤ % · ϕ({xn}∞n=1),

implying

ϕ({xn}∞n=1) = 0,

and therefore

χ({xn(t)}∞n=1) = 0 (5.11)

for all t ∈ [0, a].
The boundedness of the multimap F on bounded sets implies the boundedness of

the set
{
fn : fn ∈ P∞Fεn (xn)

}∞
n=1

. From condition (F ′4) and (5.11) it follows that the

set F ([0, T ]× {xn(t)}∞n=1) is relatively compact and hence the set {fn(t)}∞n=1 is also
relatively compact for a.e. t ∈ [0, a]. Therefore the set {fn}∞n=1 is weakly compact in
L1([0, a];E). From (5.11) it follows, by Lemma 2.11, that for each δ > 0 there exist
a compact set Kδ ⊂ E, and a set mδ ⊆ [0, a], of the Lebesgue measure mes(mδ) < δ
such that {xn(t)}∞n=1 ⊂ Kδ for t ∈ [0, a] \mδ. Then from assertion (S2) of Lemma 3.6
it follows that the set{∫ t

0

(t− s)q−1T (t− s)fn(s)ds| fn(s) ∈ P∞Fεn (Ω)

}∞
n=1

is relatively compact in C([0, a];E). Then, applying (5.9), we get

modC(Ω) ≤ modC (S ([0, T ]× Ω)) = modC

({
Sfn| fn(s) ∈ P∞Fεn (Ω)

})
= 0

where Sfn(t) =
∫ t

0
(t−s)q−1T (t−s)fn(s)ds. It means that ν(Ω) = (0, 0), and hence Ω

is the relatively compact set and the multioperator G is condensing w.r.t. the MNC ν.
Therefore, we may obtain the desired result following the lines of the proof of

Theorem 4.1 �
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