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1. Introduction

Iterated function systems were introduced in their present form by J. Hutchinson
([8]) and popularized by M. Barnsley ([1]). Infinite iterated function systems were
introduced in ([15]) and some results have been obtained by N. A. Secelean for the case
when the attractor is compact ([13]). Also R. Miculescu and A. Mihail ([11]) studied
the shift space associated to the attractors of infinite iterated function systems, which
are nonempty closed and bounded subsets of complete metric spaces. Topological
properties of the attractors of infinite iterated function systems have also been studied
in ([2], [3], [5], [10], [11]). Generalizations of infinite iterated function systems can be
found in ([4], [9]). In fact, in ([9]), K. Leśniak presented a multivalued approach of
infinite iterated function systems. For a nonempty set X we will denote by P(X) the
set of nonempty subsets of X, by K(X) the set of nonempty compact subsets of X
and by B(X) the set of nonempty bounded closed subsets of X.

Definition 1.1. Let (X, d) be a metric space. The Hausdorff-Pompeiu semidis-
tance is the application h : P(X)× P(X)→ [0,+∞] defined by

h(A,B) = max{d(A,B), d(B,A)} = inf {r ∈ [0,∞] | A ⊂ B(B, r)and B ⊂ B(A, r)} ,

where d(A,B) = sup
x∈A

d(x,B) = sup
x∈A

(
inf
y∈B

d(x, y)

)
.

Theorem 1.1. ([1], [6], [14]) Let (X, d) be a metric space and h : P(X) × P(X) →
[0,∞] the Hausdorff-Pompeiu semidistance. Then:
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1) (B(X), h) and (K(X), h) are metric spaces with (K(X), h) closed in (B(X), h).
2) If (X, d) is complete, then (B(X), h) and (K(X), h) are complete metric spaces.

In this paper by K(X) and B(X) we will refer to (K(X), h) and (B(X), h), respec-
tively.

Definition 1.2. Let (X, d) be a metric space. For a function f : X → X let us
denote by Lip(f) ∈ [0,+∞] the Lipschitz constant associated to f, which is:

Lip(f) = sup
x,y∈X; x 6=y

d(f(x), f(y))

d(x, y)
.

We say that f is a Lipschitz function if Lip(f) < +∞ and a contraction if
Lip(f) < 1.

Proposition 1.1. ([14]) Let (X, d) be a metric space. Then:
1) If H and K are two nonempty subsets of X, then h(H,K) = h(H,K),
2) If (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X, then:

h

(⋃
i∈I

Hi,
⋃
i∈I

Ki

)
= h

(⋃
i∈I

Hi,
⋃
i∈I

Ki

)
≤ sup

i∈I
h(Hi,Ki).

3) If H and K are two nonempty subsets of X and f : X → X is a Lipschitz
function, then h(f(K), f(H)) ≤ Lip(f) · h(K,H).

Definition 1.3. A family (fi)i∈I of continuous functions fi : X → X for every i ∈ I,
is said to be bounded if for every bounded set A ⊂ X the set

⋃
i∈I

fi(A) is bounded.

Definition 1.4. a) An infinite iterated function system consists of a bounded
family of continuous functions (fi)i∈I on X and it is denote by S = (X, (fi)i∈I).

b) For an infinite iterated function system S = (X, (fi)i∈I), the fractal operator

is the function defined by FS : B(X)→ B(X), FS(B) =
⋃
i∈I

fi(B) for every B ∈ B(X).

Remark 1.1. Let S = (X, (fi)i∈I) be an infinite iterated function system. If the
functions fi are contractions for every i ∈ I with c = sup

i∈I
Lip(fi) < 1, then the

function FS is a contraction that satisfies Lip(FS) ≤ sup
i∈I

Lip(fi) < 1.

Using Banach’s contraction theorem one can prove the following:

Theorem 1.2. ([15]) Let (X, d) be a complete metric space and S = (X, (fi)i∈I) an
infinite iterated function system such that c = sup

i∈I
Lip(fi) < 1. Then there exists a

unique set A ∈ B(X), which is called the attractor of S, such that FS(A) = A.

We remind the following well-known definitions.

Definition 1.5. a) A metric space (X, d) is called connected if there are no non-
empty sets B,C ⊂ X such that X = B ∪ C and B ∩ C = C ∩B = ∅.

b) A metric space (X, d) is called arcwise connected if for every x, y ∈ X there
exists a continuous function ϕ : [0, 1]→ X such that ϕ(0) = x and ϕ(1) = y.
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c) A metric space (X, d) is called locally connected if for every x ∈ X and every
neighbourhood V of x, there exists a connected neighbourhood U such that x ∈ U ⊂ V.

Definition 1.6. Let (X, τ) be a nonempty topological space. Then:
a) Two paths ϕ and ψ in X, ϕ : [a, b]→ X and ψ : [α, β]→ X are called equivalent

if there exists h : [α, β]→ [a, b] a homeomorphism strictly increasing such that ϕ◦h =
ψ.

b) The relation from a) is indeed an equivalence on X because the following con-
ditions are fulfilled : reflexivity (if h = Id then ϕ ◦h = ϕ); simetry (if ϕ ◦h = ψ then
ϕ = ψ◦h−1); tranzitivity (if ϕ◦h = ψ and ψ◦h1 = χ then ϕ◦(h◦h1) = (ϕ◦h)◦h1 =
ψ ◦ h1 = χ). In these conditions, an equivalence class of paths is called curve.

c) If X is a compact, connected and locally connected space, then X is called den-
drite if for every x, y ∈ X there exists an injective path ϕ : [0, 1] → X such that
ϕ(0) = x, ϕ(1) = y and every injective path ψ : [0, 1] → X with ψ(0) = x and
ψ(1) = y is equivalent to ϕ (i.e. there exists a unique injective curve joining x to y).

Definition 1.7. Let (X, d) be a metric space and (Ai)i∈I a family of nonempty subsets
of X. The family (Ai)i∈I is said to be connected if for every i, j ∈ I there exists
(ik)k=1,n ⊂ I such that i0 = i, in = j and Aik∩Aik+1

6= ∅ for every k ∈ {1, . . . , n−1}.
If the family is not connected, it is said to be disconnected.

Next we shortly present the shift space of an infinite iterated function system. For
more details one can see ([11]). We start with some set notations: N denotes the
natural numbers, N∗ = N − {0}, N∗n = {1, 2, . . . , n}. For two nonempty sets A and
B, BA denotes the set of functions from A to B. By Λ = Λ(B) we will understand
the set BN∗ and by Λn = Λn(B) we will understand the set BN∗n . The elements
of Λ = Λ(B) = BN∗ will be written as infinite words ω = ω1ω2 . . . ωmωm+1 . . . ,
where ωm ∈ B and the elements of Λn = Λn(B) = BN∗n will be written as finite
words ω = ω1ω2 . . . ωn. By λ we will understand the empty word. Let us remark
that Λ0(B) = {λ}. By Λ∗ = Λ∗(B) we will understand the set of all finite words
Λ∗ = Λ∗(B) =

⋃
n≥0

Λn(B). We denote by |ω| the length of the word ω. An element of

Λ = Λ(B) is said to have length +∞.
If ω = ω1ω2 . . . ωmωm+1 . . . or if ω = ω1ω2 . . . ωn and n ≥ m, then [ω]m =

ω1ω2 . . . ωm. More generally, [ω]lm = ωl+1ωl+2 . . . ωm and, therefore, we have
[ω]m = [ω]l[ω]lm for ω ∈ Λn(B) and n ≥ m > l ≥ 1 or for ω ∈ Λ(B) and
m > l ≥ 1. For two words α, β ∈ Λ∗(B) ∪ Λ(B), α ≺ β means |α| ≤ |β| and
[β]|α| = α. For α ∈ Λn(B) and β ∈ Λm(B) or β ∈ Λ(B), by αβ we will understand
the joining of the words α and β namely αβ = α1α2 . . . αnβ1β2 . . . βm and respectively
αβ = α1α2 . . . αnβ1β2 . . . βmβm+1 . . ..

Let I be a nonempty set. On Λ = Λ(I) = (I)N
∗

we can consider the metric

ds(α, β) =
∞∑
k=1

1− δβk
αk

3k
, where δyx =

{
1, if x = y
0, if x 6= y

, α = α1α2 . . . and β = β1β2 . . . .

Definition 1.8. The metric space (Λ(I), ds) is called the shift space associated with
an infinite iterated function system.



206 DAN DUMITRU

The relation between the attractor of an infinite iterated function system and the
shift space is studied in ([11]).

2. Main results

In this section we investigate some topological properties of the attractors of infinite
iterated function system. We establish sufficient conditions under which the attractor
of an infinite iterated function system becomes a dendrite. We will start with some
general properties of the dendrites. We remind the notion of infinite graph and
establish some relation between the attractor and the graph of intersections associated
with it.

Definition 2.1. a) By an infinite graph (I,G), we understand an infinite set I of
vertices and a subset G of I × I = {(i, j) | i, j ∈ I}. An element of G will be called
an edge.

b) A graph (I,G) is called symmetric if for every (i, j) ∈ G we have (j, i) ∈ G.
From now on, throughout this paper we will consider only symmetric infinite graphs

and when there is no confusion upon the set of vertices, we will denote them only by
G.

c) Let (I,G) be a graph and x, y ∈ I arbitrarily chosen. Un path from x to y is a
family of vertices (v0, v1, . . . , vk) with v0 = x, vk = y and for every i ∈ {1, . . . , k} we
have (vi−1, vi) ∈ G. By the length of path we will understand the number of edges
which form the path.

d) Let (I,G) be a graph. A path (v0, v1, . . . , vk) is called a cycle if: k ≥ 3, v0 = vk
and v0, v1, . . . , vk−1 are different.

e) A graph (I,G) is called connected if for every x, y ∈ I, x 6= y, there exists a
path from x to y.

f) A graph (I,G) is called an infinite tree if it is connected and has no cycles.

Definition 2.2. Let X be a nonempty set and (Ai)i∈I a family of nonempty subsets
of X. Then:

a) The graph (I,G), where G = {(i, j) | i, j ∈ I, i 6= j such that Ai ∩Aj 6= ∅} is
called the graph of the intersections associated to the family of sets (Ai)i∈I . We
remark that the graph of intersections is symmetric.

b) The family (Ai)i∈I is said to be a tree of sets if for every i, j ∈ I, i 6= j, there
exists a unique sequence (ik)k=1,n ⊂ I with i1, i2, . . . , in different such that i1 = i,

in = j, and Aik ∩Aik+1
6= ∅ for every k ∈ {1, 2, . . . , n− 1}.

Remark 2.1. a) The family (Ai)i∈I is a tree of sets if and only if the graph of the
intersections associated to the family (Ai)i∈I is a tree.

b) If the family of sets (Ai)i∈I is a tree of sets, then the intersection of three
different sets of the family is empty.

c) The family (Ai)i∈I is connected if and only if the graph of intersections associated
to it is connected.

Notation 2.1. Let a, b be real numbers such that a < b. Then D([a, b]) denotes
the set of the divisions of the interval [a, b]. For a division of the interval [a, b],
∆ = (a = y0 < y1 < . . . < yn = b), the norm of ∆ will be ||∆|| = max

k=0,n−1
|yk − yk+1|.
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We prove now some preliminary lemmas.
Lemma 2.1. Let (X, d) be a metric space and ϕ,ϕ

′
: [0, 1] → X continuous and

injective functions such that there exist two sequences of divisions of the interval
[0, 1], (∆l)l∈N, (∆

′

l)l∈N ∈ D([0, 1]) satisfying the following properties:

a) ∆l = (0 = yl0 < yl1 < . . . < ylnl
= 1) and ∆

′

l = (0 = zl0 < zl1 < . . . < zlnl
= 1)

have the same number of elements for all l ∈ N,
b) ||∆l||

l→∞−−−→ 0 and ||∆′l||
l→∞−−−→ 0,

c) max
k=0,nl

d(ϕ(ylk), ϕ
′
(zlk))

l→∞−−−→ 0.

Then there exists a unique continuous, bijective and increasing function u : [0, 1]→
[0, 1] such that ϕ

′ ◦ u = ϕ ( i.e. ϕ and ϕ
′

are equivalent).

Proof. Let t ∈ [0, 1]. Then there exists a sequence (kl(t))l∈N of natural numbers such

that ylkl(t) ≤ t ≤ ylkl(t)+1. It is easy to see that d(ϕ(ylkl(t)), ϕ(t))
l→∞−−−→ 0. Therefore

from point c) d(ϕ′(zlkl(t)), ϕ(t))
l→∞−−−→ 0. If u ∈ [0, 1] is a limit point of the sequence

(zlkl(t))l∈N then, from the continuity of ϕ′, we have that ϕ′(u) = ϕ(t). Since [0, 1] is a

compact set and (zlkl(t))l∈N ⊂ [0, 1] it follows that the sequence (zlkl(t))l∈N has at least

one limit point.
If u′ ∈ [0, 1] is such that ϕ′(u′) = ϕ(t), we should have ϕ′(u′) = ϕ(t) = ϕ′(u).

Since ϕ′ is injective, it follows that u = u′. Since the sequence (zlkl(t))l∈N has a unique

limit point, (zlkl(t))l∈N ⊂ [0, 1] and [0, 1] is a compact set it follows that zlkl(t)
l→∞−−−→ u.

Thus, we have proved that for every t ∈ [0, 1] there exists a unique u(t) ∈ [0, 1] such
that ϕ(t) = ϕ′(u(t)). This means that there exists a unique function u : [0, 1]→ [0, 1]

such that ϕ
′ ◦ u = ϕ. Since ϕ is injective it results that u is also injective.

We will prove that u is strictly increasing. Let t1, t2 ∈ [0, 1] be such that t1 < t2.
Then there exist the sequences (kl(t1))l∈N ⊂ N and (kl(t2))l∈N ⊂ N such that ylkl(t1) ≤
t1 ≤ ylkl(t1)+1 and ylkl(t2) ≤ t2 ≤ y

l
kl(t2)+1.

It follows that ylkl(t1) ≤ y
l
kl(t2)+1 and so zlkl(t1) ≤ z

l
kl(t2)+1. Since zlkl(t1)

l→∞−−−→ u(t1),

zlkl(t2)

l→∞−−−→ u(t2) and |zlkl(t2)−z
l
kl(t2)+1| ≤ ||∆

′

l||
l→∞−−−→ 0 it follows that u(t1) ≤ u(t2).

Interchanging ϕ
′

with ϕ, there exists a unique function v : [0, 1]→ [0, 1] such that

ϕ
′

= ϕ ◦ v. Since ϕ and ϕ′ are injective functions, it follows that v is the inverse of
u. Therefore u is bijective. Also u is a continuous function, since every bijective and
increasing function between two closed intervals is continuous.

Lemma 2.2. Let (X, d) be a complete metric space such that X =
n⋃
i=1

Ai with Ai

compact sets satisfying card(Ai ∩ Aj) ∈ {0, 1} for every i, j ∈ {1, . . . , n} different.
We suppose that the graph of intersections associated to the family (Ai)i=1,n, is a

tree. Then for any continuous and injective function ϕ : [0, 1] −→ X such that there
exists l ∈ {1, . . . , n} for which ϕ(0) ∈ Al and ϕ(1) ∈ Al, we have that ϕ([0, 1]) ⊂ Al.

Proof. Let ϕ : [0, 1] → X be an injective path such that ϕ(0) ∈ Al and ϕ(1) ∈ Al,
where l ∈ {1, . . . , n}. We remark first that Al has at least two elements since ϕ is
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injective. If one of the sets, namely Aj , has one element it follows that Aj ⊂
n⋃
i=1;
i 6=j

Ai,

since the family of sets (Ai)i=1,n is connected and so Aj ∩
(

n⋃
i=1;
i 6=j

Ai

)
6= ∅. Therefore

we can suppose that the sets Ai have at least two elements for all i ∈ {1, . . . , n}.
Let us suppose that there exists t ∈ (0, 1) such that ϕ(t) /∈ Al. It results that

t ∈ Aj for j ∈ {1, . . . , n}\{l}. Then there exists a unique sequence (ik)k=1,m ⊂ I

such that i1 = l, im = j, Aik ∩Aik+1
6= ∅ , k ∈ {1, . . . ,m− 1} and i1, . . . , im different.

Let a ∈ X be such that {a} = Ai1 ∩ Ai2 . Then there exists t1 ∈ (0, t) such that

ϕ(t1) = a. Indeed, if we suppose that a /∈ ϕ([0, t]), then ϕ([0, t]) ⊂
n⋃
i=1

Ai\{a}. We

consider the sets Ãi = Ai \ {a} for i ∈ {1, . . . , n}. Since the family of sets (Ai)i=1,n

is a tree, it results from Remark 2.1 that the family of sets (Ãi)i=1,n is disconnected

and the sets Ãl and Ãj belong to different connected components of the family of

sets (Ãi)i=1,n. Let (Ãi)i∈J be the connected component which contains the set Ãj .

We consider B =
⋃
i∈J

Ãi and C =
n⋃

i=1;i/∈J
Ãi. Then ϕ(0) ∈ Ãl ⊂ C, ϕ(1) ∈ Ãj ⊂ B,

ϕ([0, t]) ⊂ B ∪ C and B ∩ C = B ∩ C = ∅. This contradicts the fact that ϕ([0, t]) is
a connected set. In a similar way there exists t2 ∈ (t, 1) such that ϕ(t2) = a. Hence
ϕ(t1) = ϕ(t2) = a and t1 < t2 which contradicts the injectivity of ϕ.

Lemma 2.3. Let (X, d) be a complete metric space such that X =
⋃
i∈I

Ai where Ai

are compact sets for every i ∈ {1, . . . , n}. We suppose that the graph of intersections
associated to the family (Ai)i∈I is a tree. Let x, y ∈ X, x 6= y and a chain of sets
{Aij}j=0,m such that i0, i1, . . . , im are different, x ∈ Ai0 , x /∈ Ai1 , y ∈ Aim , y /∈ Aim−1

and Aij ∩ Aij+1 6= ∅ for every j ∈ {1, . . . ,m − 1}, m ∈ N. Then for any continuous
and injective function ϕ : [0, 1] → X such that ϕ(0) = x and ϕ(1) = y there exists
a division ∆ = (0 = y0 < y1 < . . . < y

m
= 1) of the interval [0, 1] such that

ϕ(yj) ∈ Aij ∩Aij+1
for every j ∈ {0, . . . ,m− 1}.

Proof. We suppose that for every t ∈ (0, 1) we have ϕ(t) /∈ Aij ∩ Aij+1 for some
j ∈ {0, . . . ,m−1}. Then there exists Av such that Av ∩Aij 6= ∅, Av ∩Aij+1

6= ∅ and
Av ∩ Imϕ 6= ∅. Then Ai0 , . . . , Aij , Av, Aij , . . . , Aim is a new chain of sets that joining
x to y. But this contradicts the fact that the family (Ai)i=1,n is a tree of sets.Thus

there exists yj ∈ (0, 1) such that ϕ(yj) ∈ Aij ∩Aij+1 for every j ∈ {0, . . . ,m− 1}. Let
us suppose now that y1 < y0.

From Lemma 2.2 applied to the interval [0, y0], it results that ϕ([0, y0]) ⊂ Ai0 . But
since ϕ(y1) ∈ Ai1∩Ai2 , we obtain that ϕ(y1) ∈ Ai0∩Ai1∩Ai2 . Thus Ai0∩Ai1∩Ai2 6= ∅
which is a contradiction with Remark 2.1. Hence y1 > y0 and inductively yi+1 > yi
for every i ∈ {0, . . . ,m−1} and thus ∆ = (0 < y0 < y1 < . . . < ym−1 < 1) is a division
of the interval [0, 1] such that ϕ(yj) ∈ Aij ∩Aij+1 for every j ∈ {0, . . . ,m− 1}.
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Notation 2.2. a) Let (X, d) be a complete metric space, S = (X, (fi)i∈I) an infinite
iterated function system onX and A the attractor of S. For ω = ω1ω2 . . . ωm ∈ Λm(I),
fω denotes fω1

◦ fω2
◦ . . . ◦ fωm

and Hω denotes fω (H) for a subset H ⊂ X. By Hλ

we will understand the set H. In particular Aω = fω (A).
b) Let (X, d) be a complete metric space and S = (X, (fi∈I)i∈I) an infinite iterated

function system on X. For every m ∈ N∗, we denote by Sm the infinite iterated
function system Sm = (X, (fω)ω∈Λm(I)) and we remark that A(S) = A(Sm).

c) By Gm we will denote the graph of intersections associated to the family of sets
(Aω)ω∈Λm(I) for every m ∈ N∗.

The following result gives a characterization of the arcwise connected attractors of
infinite iterated function systems and it is proven in ([5]).

Theorem 2.1. ([5]) Let (X, d) be a complete metric space and S = (X, (fk)k∈I) an
infinite iterated function system such that c = sup

k∈I
Lip(fk) < 1. We denote by A the

attractor of S and by Ak the set fk(A) for every k ∈ I . If A =
⋃
k∈I

Ak and the

family of sets (Ak)k∈I is connected, then A is arcwise connected.

Now we can give the main result which is a sufficient condition for the attractor of
an infinite iterated function system to become a dendrite.

Theorem 2.2. Let (X, d) be a complete metric space and S = (X, (fi)i∈I) an infinite
iterated function system with c = sup

i∈I
Lip(fi) < 1. We denote by A the attractor of S

and by Gm the graph of intersections associated with the family of sets (Aω)ω∈Λm(I)

for every m ∈ N∗. If A is compact, locally connected, A =
⋃
i∈I

Ai and the associated

graphs Gm are infinite trees for every m ∈ N∗, then A is a dendrite.

Proof. Since G is an infinite tree, it results that G is connected. Thus, from the
hypothesis and Theorem 2.1, it follows that A is arcwise connected. We will prove that
A is a dendrite. Let x, y ∈ A, x 6= y. We suppose that there exist two continuous and
injective functions ϕ,ϕ

′
: [0, 1]→ A such that ϕ(0) = ϕ

′
(0) = x and ϕ(1) = ϕ

′
(1) = y.

To prove that A is a dendrite it is enough to prove that ϕ and ϕ
′

are equivalent. We
intend to use Lemma 2.1 to prove the equivalence. For that, we will construct two
sequences (∆l)l≥0 and (∆′l)l≥0 of divisions of the unit interval [0, 1] such that:

a) ∆l = (0 = yl0 < yl1 < . . . < ylnl
= 1) and ∆

′

l = (0 = zl0 < zl1 < . . . < zlnl
= 1)

have the same number of elements for all l ∈ N,
b) ||∆l||

l→∞−−−→ 0 and ||∆′l||
l→∞−−−→ 0,

c) max
k=0,nl

d(ϕ(ylk), ϕ
′
(zlk))

l→∞−−−→ 0.

Let l ∈ N be fixed. If there exists an α ∈ Λl(I) such that x, y ∈ Aα then we take
∆0 = (y0

0 = 0 < y0
1 = 1) and ∆′0 = (z0

0 = 0 < z0
1 = 1). We have ϕ(y0

0) = ϕ(0) =

ϕ
′
(0) = ϕ

′
(z0

0) = x and ϕ(y0
1) = ϕ(1) = ϕ

′
(1) = ϕ

′
(z0

1) = y. If there does not exist
an α ∈ Λl(I) such that x, y ∈ Aα then there exists αx, αy ∈ Λl(I) such that x ∈ Aαx

,
y ∈ Aαy

and αx 6= αy. Since Gl is a tree, the sets Aαx
and Aαy

are joined by a unique
chain of sets {Aωj}j=1,ml

such that αx = ω1, αy = ωml
, ωj ∈ Λl(I), Aωj ∩Aωj+1 6= ∅
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for j ∈ {1, . . . ,ml − 1} and i1, i2, . . . , iml
∈ I different. We can suppose that x /∈ Aω2

and y /∈ Aωml−1 by replacing αx with ω2 if x ∈ Aω2 and αy with ωm−1 if y ∈ Aωml−1 .

Now, from Lemma 2.3, there exist ∆l = (0 = yl0 < yl1 < . . . < ylml
= 1) and

∆′l = (0 = zl0 < zl1 < . . . < zlml
= 1) divisions of the interval [0, 1] such that

ϕ(ylj), ϕ
′
(zlj+1) ∈ Aωj ∩Aωj+1 . It results that

max
k=0,ml

d(ϕ(ylk), ϕ
′
(zlk)) ≤ max

k=0,ml

d(Aωk
) ≤ cld(A),

where c = sup
k∈I

Lip(fk) < 1. Therefore max
k=0,nl

d(ϕ(ylk), ϕ
′
(zlk))

l→∞−−−→ 0. We remark

now that dl = max
k=0,ml−1

d(ϕ(ylk), ϕ(ylk+1)) ≤ max
k=0,ml−1

d(Aωk
) ≤ cld(A). Therefore

dl = max
k=0,ml−1

d(ϕ(ylk), ϕ(ylk+1))
l→∞−−−→ 0. Let now δµ = inf

x,y∈[0,1];|x−y|≥µ
d(ϕ(x), ϕ(y))

for every µ ∈ [0, 1). It is obvious that δµ ≤ δν if µ ≤ ν. Since ϕ is injective and
[0, 1] is a compact set, we have δµ > 0 for every µ > 0. We suppose by contradiction
that the sequence (||∆l||)l≥0 is not convergent to 0. Then there exist ε > 0 and a
subsequence of divisions (||∆lk ||)k≥0 such that ||∆lk || ≥ ε. Then

dlk = max
j=0,nl−1

d(ϕ(ylkj+1), ϕ(ylkj )) ≥ δ||∆lk
|| ≥ δε > 0.

This contradicts the fact that dl
l→∞−−−→ 0. It follows that ||∆l||

l→∞−−−→ 0. In a similar

way one can prove that ||∆′l||
l→∞−→ 0.

Hence, A is compact, arcwise connected, locally connected and we have proved
that every two points of A can be joined by a unique continuous and injective curve.
Thus, according to Definition 1.5, A is a dendrite.

Example 2.1. (Attractors of infinite-von Koch type) (for more details see [14]).
We consider the set X = [0, 1] × [0, 1] ⊂ R2 and the contractions fn : X → X given
by:

fn(x, y)=


1

2p+1

(
x
3 + 2p+1 − 2, y3

)
, if n = 4p+ 1 and p ≥ 0

1
2p+1

(
x
6 −

y
√

3
6 + 2p+1 − 5

3 ,
x
√

3
6 + y

6

)
, if n = 4p+ 2 and p ≥ 0

1
2p+1

(
x
6 + y

√
3

6 + 2p+1 − 3
2 ,−

x
√

3
6 + y

6 +
√

3
6

)
, if n = 4p+ 3 and p ≥ 0

1
2p

(
x
3 + 2p − 4

3 ,
y
3

)
, if n = 4p and p ≥ 1

The attractor A of the countable iterated function system S = (X, {fn}n∈N∗) is an
infinite-von Koch curve obtained by smaller copies of Koch’s curve. We remark that
A is compact, arcwise connected, locally connected and, moreover, A =

⋃
n≥1

fn(A).

Also, the graphs of intersections associated to A have the following edges:
G1 : {(1, 2), (2, 3), (3, 4), (4, 5), . . .}.
G2 : {(11, 12), (12, 13), (13, 14), (14, 21), (21, 22), (22, 23), (23, 24), (24, 31), (31, 32),
(32, 33), (33, 34), (34, 41), (41, 42), (42, 43), (43, 44), (44, 55), (55, 56), (56, 57), . . .}.
G3 : {(111, 112), (112, 113), (113, 114), (114, 121), (121, 122), (12, 123), (123, 124),
(124, 131), (131, 132), (132, 133), (133, 134), (134, 141), (141, 142), (142, 143),
(143, 144), (144, 211), (211, 212), . . .}, . . .



ABOUT THE ATTRACTORS 211

Thus Gm is an infinite tree for every m ∈ N and from Theorem 2.2 it results that
A is a dendrite.
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