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Abstract. In this paper, we first introduce a self-adaptive projection algorithm by adopting Armijo-

like searches to solve the spit equality problem (SEP), then we propose a relaxed self-adaptive
projection algorithm by using projections onto half-spaces instead of those onto the original convex

sets, which is much more practical. Weak convergence results for both algorithms are analyzed.
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1. Introduction

Recently, Moudafi [15] introduced a new convex feasibility problem, which was
named the split equality problem (SEP) by Byrne and Moudafi [7]. Its interest covers
many situations, for instance in domain decomposition for PDE’s, game theory and
intensity-modulated radiation therapy (IMRT). In domain decomposition for PDE’s,
this equals to the variational form of a PDE’s in a domain that can be decomposed into
two non overlapping subdomains with a common interface (see e.g. [2]). In decision
sciences, this allows to consider agents who interplay only via some components of
their decision variables (see e.g. [3]). In (IMRT), this amounts to envisage a weak
coupling between the vector of doses absorbed in all voxels and that of the radiation
intensity (see [8] for further details). Attouch [4] pointed more applications of the
SEP in optimal control theory, surface energy and potential games, whose variational
form can be seen as a SEP. Algorithms for solving the split equality problem receive
great attention; see for instance [15, 7, 2, 3, 10, 16, 11].

Let H1, H2, H3 be real Hilbert spaces, let C ⊂ H1, Q ⊂ H2 be two nonempty
closed convex sets, let A : H1 → H3, B : H2 → H3 be two bounded linear operators.
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The SEP can mathematically be formulated as the problem of finding x, y with the
property

x ∈ C, y ∈ Q, such that Ax = By, (1.1)

which allows asymmetric and partial relations between the variables x and y. If
H2 = H3 and B = I, then the split equality problem (1.1) reduces to the split
feasibility problem (originally introduced in Censor and Elfving [9]) which is to find
x ∈ C with Ax ∈ Q.

For solving the SEP (1.1), Moudafi [15] introduced the following alternating CQ
algorithm (ACQA for short){

xk+1 = PC(xk − γkA∗(Axk −Byk)),
yk+1 = PQ(yk + γkB

∗(Axk+1 −Byk)),
(1.2)

where γk ∈ (ε,min( 1
λA
, 1
λB

)− ε), λA and λB are the spectral radius of A∗A and B∗B,

respectively. By studying the projected Landweber algorithm of the SEP (1.1) in
a product space, Byrne and Moudafi [7] obtained the following algorithm (PSA for
short): {

xk+1 = PC(xk − γkA∗(Axk −Byk)),
yk+1 = PQ(yk + γkB

∗(Axk −Byk)),
(1.3)

where γk, the stepsize at the iteration k, is chosen in the interval (ε, 2
λA+λB

− ε). It

is easy to see that the alternating CQ algorithm (1.2) is sequential (like Gauss-Seidel
iteration iteration) while the algorithm (1.3) is simultaneous (like Jacob iteration).

Observe that in the algorithms (1.2) and (1.3), the determination of the stepsize γn
depends on the operator (matrix) norms ‖A‖ and ‖B‖ (or the largest eigenvalues of
A∗A and B∗B). This means that in order to implement the alternating CQ algorithm
(1.2), one has first to compute (or, at least, estimate) operator norms of A and B,
which is in general not an easy work in practice.

Consider this, Qu and Xiu [17] modified the CQ algorithm by adopting the Armijo-
like searches to get the step-size for solving the split feasibility problem. Based on
their algorithm, Zhao and Yang [20] presented self-adaptive projection algorithms for
the multiple-sets split feasibility problem.

Inspired by them, in this paper, we introduce a self-adaptive projection algorithm
for solving the SEP (1.1). The advantage of our choice of the stepsizes lies in the fact
that no prior information about the operator norms of A and B is required, and still
convergence is guaranteed. Since the projections on closed convex sets C and Q is
generally difficult to compute, we also practise a relaxed version of the self-adaptive
projection algorithm, where the closed convex sets C and Q are both level sets of
convex functions,

The rest of this paper is organized as follows. In the next section, some useful facts
and tools are given. The weak convergence theorem of the proposed self-adaptive
projection algorithm is obtained in section 3. In section 4, we consider a relaxed
self-adaptive projection algorithm where the sets C and Q are level sets of convex
functions.
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2. Preliminaries

In this section, we review some definitions and lemmas which will be used in this
paper.

Let H be a Hilbert space and I be the identity operator on H. If f : H → R is
a differentiable functional, then denote by ∇f the gradient of f . If f : H → R is
a subdifferentiable functional, then denote by ∂f the subdifferential of f . Given a
sequence (xk, yk) in H1 × H2, ωw(xk, yk) stands for the set of cluster points in the
weak topology. ′xk → x′ (resp., ′xk ⇀ x′) means the strong (resp., weak) convergence
of (xk) to x.

The projection is an important tool for our work in this paper. Let Ω be a closed
convex subset of real Hilbert space H. Recall that the (nearest point or metric)
projection from H onto Ω, denoted PΩ, is defined in such a way that, for each x ∈ H,
PΩx is the unique point in Ω such that

‖x− PΩx‖ = min{‖x− z‖ : z ∈ Ω}.
The following two lemmas are useful characterizations of projections.

Lemma 2.1. Given x ∈ H and z ∈ Ω. Then z = PΩx if and only if

〈x− z, y − z〉 ≤ 0, for all y ∈ Ω.

Lemma 2.2. For any x, y ∈ H and z ∈ Ω, it holds

(i) ‖PΩ(x)− PΩ(y)‖2 ≤ 〈PΩ(x)− PΩ(y), x− y〉;
(ii) ‖PΩ(x)− z‖2 ≤ ‖x− z‖2 − ‖PΩ(x)− x‖2.

Throughout this paper, assume the split equality problem (1.1) is consistent and
denote by Γ the solution of (1.1), i.e.

Γ = {x ∈ C, y ∈ Q : Ax = By},
then Γ is closed, convex and nonempty. The split equality problem (1.1) can be
written as the following minimization problem:

min
x∈H1,y∈H2

ιC(x) + ιQ(y) +
1

2
‖Ax−By‖2,

where ιC(x) is a indicator function of the set C defined by

ιC(x) =

{
0, x ∈ C
+∞, otherwise.

Observe that ∇x{ 1
2‖Ax−By‖

2} = A∗(Ax−By), ∇y{ 1
2‖Ax−By‖

2} = −B∗(Ax−By)
and ∂ιC(x) = NC(x), ∂ιQ(y) = NQ(y), where NC , NQ are the normal cone to the
convex sets C and Q, respectively. By writing down the optimality conditions we
obtain {

0 ∈ ∇x{ 1
2‖Ax−By‖

2}+ ∂ιC(x) = A∗(Ax−By) +NC(x),
0 ∈ ∇y{ 1

2‖Ax−By‖
2}+ ∂ιQ(y) = −B∗(Ax−By) +NQ(y),

which implies, for γ > 0, β > 0,{
x− γA∗(Ax−By) ∈ x+ γNC(x),
y + βB∗(Ax−By) ∈ y + βNQ(y),
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which in turn leads to the fixed point formulation{
x = (I + γNC)−1(x− γA∗(Ax−By)),
y = (I + βNQ)−1(y + βB∗(Ax−By)).

Since (I + γNC)−1 = PC and (I + βNQ)−1 = PQ, we have{
x = PC(x− γA∗(Ax−By)),
y = PQ(y + βB∗(Ax−By)).

(2.1)

We will see that solutions of the fixed point equations (2.1) are exactly the solutions
of the SEP (1.1).

Proposition 2.1. Given x∗ ∈ H1 and y∗ ∈ H2. Then (x∗, y∗) solves the SEP (1.1)
if and only if (x∗, y∗) solves the fixed point equations (2.1).

Proof. We have already proved that if (x∗, y∗) solves SEP (1.1), then it also solves the
fixed point equations (2.1). Conversely, assume that (x∗, y∗) solves the fixed point
equations (2.1), it is obvious that x∗ ∈ C and y∗ ∈ Q. (2.1) and Lemma 2.1 imply
that {

〈x∗ − γA∗(Ax∗ −By∗)− x∗, u− x∗〉 ≤ 0, u ∈ C,
〈y∗ + βB∗(Ax∗ −By∗)− y∗, v − y∗〉 ≤ 0, v ∈ Q.

That is, {
〈A∗(Ax∗ −By∗), x∗ − u〉 ≤ 0, u ∈ C,
〈B∗(Ax∗ −By∗), v − y∗〉 ≤ 0, v ∈ Q.

Hence, {
〈Ax∗ −By∗, Ax∗ −Au〉 ≤ 0, u ∈ C,
〈Ax∗ −By∗, Bv −By∗〉 ≤ 0, v ∈ Q. (2.2)

Adding up two inequalities in (2.2) gives

〈Ax∗ −By∗, Bv −Au+Ax∗ −By∗〉 ≤ 0, u ∈ C, v ∈ Q.

Letting (u, v) ∈ Γ, i.e. Au = Bv, we obtain Ax∗ = By∗, that is (x∗, y∗) ∈ Γ. �
Let F denote a mapping on H. For any x ∈ H and α > 0, define:

x(α) = PΩ(x− αF (x)), e(x, α) = x− x(α).

From the nondecreasing property of ‖e(x, α)‖ on α > 0 by Toint [18] (see Lemma
2(1)) and the nonincreasing property of ‖e(x, α)‖/α on α > 0 by Gafni and Bertsekas
[13] (see Lemma 1(a)), we immediately conclude a useful lemma.

Lemma 2.3. Let F be a mapping on H. For any x ∈ H and α > 0, we have:

min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1)‖.
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3. A self-adaptive projection algorithm

Based on Proposition 2.1, we construct a self-adaptive projection algorithms for the
fixed point equations (2.1) and prove the weak convergence of the proposed algorithm.

Define the function F : H1 ×H2 → H1 by

F (x, y) = A∗(Ax−By),

and the function G : H1 ×H2 → H2 by

G(x, y) = B∗(By −Ax).

The self-adaptive projection algorithm is defined as follows:

Algorithm 3.1. Given constants γ > 0, ρ ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H1 and
y0 ∈ H2 be arbitrary. For k = 0, 1, 2, . . . , compute{

uk = PC(xk − τkF (xk, yk)),
vk = PQ(yk − τkG(xk, yk)),

where τk = γρlk and lk is the smallest nonnegative integer l such that

‖F (xk, yk)− F (uk, vk)‖2 + ‖G(xk, yk)−G(uk, vk)‖2 ≤ µ2 ‖xk − uk‖2 + ‖yk − vk‖2

τ2
k

.

(3.1)
Set {

xk+1 = PC(xk − τkF (uk, vk)),
yk+1 = PQ(yk − τkG(uk, vk)).

(3.2)

Lemma 3.1. The Armijo-like search rule (3.1) is well defined. Besides, τ ≤ τk ≤ γ,

where τ = min

{
γ, µρ

‖A‖
√

2(‖A‖2+‖B‖2)
, µρ

‖B‖
√

2(‖A‖2+‖B‖2)

}
.

Proof. Obviously, τk ≤ γ. If τk = γ, then this lemma is proved; otherwise, if τk < γ,
by the search rule (3.1), we know that τk/ρ must violate inequality (3.1), i.e.

‖F (xk, yk)− F (uk, vk)‖2 + ‖G(xk, yk)−G(uk, vk)‖2 ≥ µ2 ‖xk − uk‖2 + ‖yk − vk‖2

τ2
k/ρ

2
.

On the other hand, we have

‖F (xk, yk)− F (uk, vk)‖2 + ‖G(xk, yk)−G(uk, vk)‖2

= ‖A∗(Axk −Byk)−A∗(Auk −Bvk)‖2 + ‖B∗(Byk −Axk)−B∗(Bvk −Auk)‖2

≤ (‖A‖2 + ‖B‖2)(‖A‖‖xk − uk‖+ ‖B‖‖yk − vk‖)2

≤ 2(‖A‖2 + ‖B‖2)(‖A‖2‖xk − uk‖2 + ‖B‖2‖yk − vk‖2)

≤ 2(‖A‖2 + ‖B‖2) max{‖A‖2, ‖B‖2}(‖xk − uk‖2 + ‖yk − vk‖2).

Consequently, we get

τk ≥
µρ√

2(‖A‖2 + ‖B‖2)
min

{
1

‖A‖
,

1

‖B‖

}
,

which completes the proof. �
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Theorem 3.1. Let (xk, yk) be the sequence generated by the Algorithm 3.1. Then
(xk, yk) converges weakly to a solution of the SEP (1.1).

Proof. Let (x∗, y∗) ∈ Γ, i.e., x∗ ∈ C, y∗ ∈ Q, Ax∗ = By∗. It is obvious that
F (x∗, y∗) = 0 and G(x∗, y∗) = 0. Using the fact Ax∗ = By∗, we have

〈F (uk, vk), uk − x∗〉+ 〈G(uk, vk), vk − y∗〉
= 〈A∗(Auk −Bvk), uk − x∗〉+ 〈B∗(Bvk −Auk), vk − y∗〉
= 〈Auk −Bvk, Auk −Ax∗〉+ 〈Bvk −Auk, Bvk −By∗〉
= ‖Auk −Bvk‖2

≥ 0,

which implies

〈F (uk, vk), xk−x∗〉+ 〈G(uk, vk), yk−y∗〉 ≥ 〈F (uk, vk), xk−uk〉+ 〈G(uk, vk), yk−vk〉.
(3.3)

Thus, we obtain

‖xk+1 − x∗‖2 = ‖PC(xk − τkF (uk, vk))− x∗‖2

≤ ‖xk − τkF (uk, vk)− x∗‖2 − ‖xk+1 − xk + τkF (uk, vk)‖2

= ‖xk − x∗‖2 − 2τk〈F (uk, vk), xk − x∗〉
− ‖xk+1 − xk‖2 − 2τk〈F (uk, vk), xk+1 − xk〉,

(3.4)

where the first inequality follows from the property of projection mappings (Lemma
2.2 (ii)). Similarly, we have

‖yk+1 − y∗‖2 ≤ ‖yk − y∗‖2 − 2τk〈G(uk, vk), yk − y∗〉
− ‖yk+1 − yk‖2 − 2τk〈G(uk, vk), yk+1 − yk〉.

(3.5)

Adding up (3.4) and (3.5) yields

‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2

≤ ‖xk − x∗‖2 + ‖yk − y∗‖2 − 2τk〈F (uk, vk), xk − x∗〉 − 2τk〈G(uk, vk), yk − y∗〉
− 2τk〈F (uk, vk), xk+1 − xk〉 − 2τk〈G(uk, vk), yk+1 − yk〉
− ‖xk+1 − xk‖2 − ‖yk+1 − yk‖2

≤ ‖xk − x∗‖2 + ‖yk − y∗‖2 − 2τk〈F (uk, vk), xk+1 − uk〉 − 2τk〈G(uk, vk), yk+1 − vk〉
− ‖xk+1 − uk + uk − xk‖2 − ‖yk+1 − vk + vk − yk‖2

= ‖xk − x∗‖2 + ‖yk − y∗‖2 − 2τk〈F (uk, vk), xk+1 − uk〉 − 2τk〈G(uk, vk), yk+1 − vk〉
− ‖xk+1 − uk‖2 − ‖uk − xk‖2 − ‖yk+1 − vk‖2 − ‖vk − yk‖2

− 2〈xk+1 − uk, uk − xk〉 − 2〈yk+1 − vk, vk − yk〉
= ‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk+1 − uk‖2 − ‖uk − xk‖2

− ‖yk+1 − vk‖2 − ‖vk − yk‖2

+ 2〈xk − uk − τkF (uk, vk), xk+1 − uk〉+ 2〈yk − vk − τkG(uk, vk), yk+1 − vk〉,
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where the second inequality comes from (3.3).
Since uk = PC(xk − τkF (xk, yk)) and xk+1 ∈ C, we have by Lemma 2.1 that

〈uk − xk + τkF (xk, yk), xk+1 − uk〉 ≥ 0.

Similarly, we get

〈vk − yk + τkG(xk, yk), yk+1 − vk〉 ≥ 0.

It follows that

‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2

≤ ‖xk−x∗‖2 + ‖yk−y∗‖2 − ‖xk+1−uk‖2 − ‖uk−xk‖2−‖yk+1 − vk‖2 − ‖vk−yk‖2

+ 2〈xk − uk − τkF (uk, vk), xk+1 − uk〉+ 2〈yk − vk − τkG(uk, vk), yk+1 − vk〉
+ 2〈uk − xk + τkF (xk, yk), xk+1 − uk〉+ 2〈vk − yk + τkG(xk, yk), yk+1 − vk〉

= ‖xk−x∗‖2 + ‖yk−y∗‖2 − ‖xk+1−uk‖2 − ‖uk−xk‖2 − ‖yk+1−vk‖2 − ‖vk − yk‖2

+ 2τk〈F (xk, yk)− F (uk, vk), xk+1 − uk〉+ 2τk〈G(xk, yk)−G(uk, vk), yk+1 − vk〉
≤ ‖xk−x∗‖2 + ‖yk−y∗‖2 − ‖xk+1−uk‖2 − ‖uk−xk‖2 − ‖yk+1−vk‖2 − ‖vk−yk‖2

+ τ2
k‖F (xk, yk)− F (uk, vk)‖2 + ‖xk+1 − uk‖2

+ τ2
k‖G(xk, yk)−G(uk, vk)‖2 + ‖yk+1 − vk‖2

≤ ‖xk−x∗‖2 + ‖yk−y∗‖2 − ‖uk−xk‖2 − ‖vk−yk‖2 + µ2(‖uk−xk‖2 + ‖vk−yk‖2)

= ‖xk − x∗‖2 + ‖yk − y∗‖2 − (1− µ2)(‖uk − xk‖2 + ‖vk − yk‖2),

(3.6)
where the second inequality holds from 2〈u, v〉 ≤ ‖u‖2 + ‖v‖2, and the last inequality
follows from the search rule (3.1).

Consequently, the sequence Γk(x∗, y∗) := ‖xk−x∗‖2 +‖yk−y∗‖2 is decreasing and
lower bounded by 0 for that µ ∈ (0, 1) and thus converges to some finite limit, say
l(x∗, y∗). Moreover, (xk), (yk) are bounded. This implies

lim
k→∞

‖uk − xk‖ = 0 and lim
k→∞

‖vk − yk‖ = 0. (3.7)

On the other hand,

‖xk+1 − xk‖2 ≤ (‖xk+1 − uk‖+ ‖uk − xk‖)2

≤ 2‖xk+1 − uk‖2 + 2‖uk − xk‖2

≤ 2‖xk − τkF (uk, vk)− xk + τkF (xk, yk)‖2 + 2‖uk − xk‖2

= 2τ2
k‖F (uk, vk)− F (xk, yk)‖2 + 2‖uk − xk‖2.

Similarly, we have

‖yk+1 − yk‖2 ≤ 2τ2
k‖G(uk, vk)−G(xk, yk)‖2 + 2‖vk − yk‖2.

Adding up two inequalities gives

‖xk+1−xk‖2+‖yk+1−yk‖2≤ 2τ2
k (‖F (uk, vk)−F (xk, yk)‖2+‖G(uk, vk)−G(xk, yk)‖2)

+ 2(‖uk − xk‖2 + ‖vk − yk‖2)

≤ 2(µ2 + 1)(‖uk − xk‖2 + ‖vk − yk‖2),
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which results in

lim
k→∞

‖xk+1 − xk‖ = 0 and lim
k→∞

‖yk+1 − yk‖ = 0. (3.8)

Let (x̂, ŷ) ∈ ωw(xk, yk), then there exist two subsequences (xkl) and (ykl) of (xk)
and (yk) which converge weakly to x̂ and ŷ, respectively. We will show that (x̂, ŷ) is
a solution of the SEP (1.1).

Let f(x, y, τ) = x−PC(x− τF (x, y)). Then f(xkl , ykl , τkl) = xkl −ukl , and we get
from lemmas 2.3, 3.1 and (3.7) that

lim
l→∞

‖f(xkl , ykl , 1)‖ ≤ lim
l→∞

‖xkl − ukl‖
min{1, τkl}

≤ lim
l→∞

‖xkl − ukl‖
min{1, τ}

= 0. (3.9)

Let g(x, y, τ) = y − PQ(y − τG(x, y)). Similarly, we obtain

lim
l→∞

‖g(xkl , ykl , 1)‖ ≤ lim
l→∞

‖ykl − vkl‖
min{1, τkl}

≤ lim
l→∞

‖ykl − vkl‖
min{1, τ}

= 0. (3.10)

On the other hand, given (x∗, y∗) as a solution point of the SEP (1.1), by using
the property of the projection mappings (Lemma 2.1), and noting that x∗ ∈ C, we
have

0 ≤ 〈xkl − F (xkl , ykl)− PC(xkl − F (xkl , ykl)), PC(xkl − F (xkl , ykl))− x∗〉
= 〈f(xkl , ykl , 1)− F (xkl , ykl), xkl − x∗ − f(xkl , ykl , 1)〉,

(3.11)

which implies

〈xkl − x∗, f(xkl , ykl , 1)〉 ≥ ‖f(xkl , ykl , 1)‖2 − 〈F (xkl , ykl), f(xkl , ykl , 1)〉
+ 〈F (xkl , ykl), xkl − x∗〉
= ‖f(xkl , ykl , 1)‖2 − 〈F (xkl , ykl), f(xkl , ykl , 1)〉
+ 〈Axkl −Bykl , Axkl −Ax∗〉.

Similarly, we have

〈ykl − y∗, g(xkl , ykl , 1)〉 ≥ ‖g(xkl , ykl , 1)‖2 − 〈G(xkl , ykl), g(xkl , ykl , 1)〉
+ 〈Bykl −Axkl , Bykl −By∗〉.

Adding up two inequalities and using the fact Ax∗ = By∗ yield

〈xkl − x∗, f(xkl , ykl , 1)〉+ 〈ykl − y∗, g(xkl , ykl , 1)〉
≥ ‖f(xkl , ykl , 1)‖2 + ‖g(xkl , ykl , 1)‖2

− 〈F (xkl , ykl), f(xkl , ykl , 1)〉 − 〈G(xkl , ykl), g(xkl , ykl , 1)〉+ ‖Axkl −Bykl‖2.
(3.12)

Since

‖F (xkl , ykl)‖ = ‖F (xkl , ykl)− F (x∗, y∗)‖ ≤ ‖A‖(‖A‖‖xkl − x∗‖+ ‖B‖‖ykl − y∗‖),

and the subsequencea (xkl), (ykl) are bounded, we know that (F (xkl , ykl)) is bounded.
Similarly, (G(xkl , ykl)) is bounded. Thereby, we get from (3.9), (3.10) and (3.12)

lim
l→∞

‖Axkl −Bykl‖ = 0, (3.13)
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The weak convergence of (Axkl −Bykl) to Ax̂−Bŷ and lower semicontinuity of the
squared norm imply

‖Ax̂−Bŷ‖ ≤ lim inf
l→∞

‖Axkl −Bykl‖ = 0,

that is, Ax̂ = Bŷ.
Combining (3.7) and (3.13) and using the fact that A,B are bounded operators,

we get

lim
l→∞

‖Aukl −Bvkl‖ = 0. (3.14)

By noting that the two equalities in (3.2) can be rewritten as
xkl − xkl+1

τkl
−A∗(Aukl −Bvkl) ∈ NC(xkl+1

),

ykl − ykl+1

τkl
−B∗(Bvkl −Aukl) ∈ NQ(ykl+1

),

that the graphs of the maximal monotone operators NC , NQ are weakly-strongly
closed and by passing to the limit in the last inclusions, we obtain, from (3.8) and
(3.14), that

x̂ ∈ C and ŷ ∈ Q.
Hence (x̂, ŷ) ∈ Γ.

To show the uniqueness of the weak cluster points, we will use the same strick
as in the celebrated Opial Lemma. Indeed, let (x̄, ȳ) be other weak cluster point of
(xk, yk). By passing to the limit in the relation

Γk(x̂, ŷ) = Γk(x̄, ȳ) + ‖x̂− x̄‖2 + ‖ŷ − ȳ‖2 + 2〈xk − x̄, x̄− x̂〉+ 2〈yk − ȳ, ȳ − ŷ〉,

we obtain

l(x̂, ŷ) = l(x̄, ȳ) + ‖x̂− x̄‖2 + ‖ŷ − ȳ‖2.
Reversing the role of (x̂, ŷ) and (x̄, ȳ), we also have

l(x̄, ȳ) = l(x̂, ŷ) + ‖x̂− x̄‖2 + ‖ŷ − ȳ‖2.

By adding the two last equalities, we obtain

‖x̂− x̄‖2 + ‖ŷ − ȳ‖2 = 0.

Hence (x̂, ŷ) = (x̄, ȳ), this implies that the whole sequence (xk, yk) weakly converges
to a solution of the SEP (1.1), which completes the proof. �

4. A relaxed self-adaptive projection algorithm

The computation of a projection onto a closed convex subset is generally difficult.
To overcome this difficulty, Fukushima [12] suggested a way to calculate the projection
onto a level set of a convex function by computing a sequence of projections onto half-
spaces containing the original level set.

Define the closed convex sets C and Q as level sets:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (4.1)
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where c : H1 → R and q : H2 → R are convex functions which are subdifferentiable
on C and Q respectively and we assume that their subdifferentials are bounded on
bounded sets.

Followed the ideas of Fukushima [12], Moudafi [16] introduced a relaxed alternating
CQ algorithm for solving the SEP (1.1).{

xk+1 = PCk
(xk − γkA∗(Axk −Byk)),

yk+1 = PQk
(yk + γkB

∗(Axk+1 −Byk)),
(4.2)

where (Ck), (Qk) are two sequences of closed convex sets defined by

Ck = {x ∈ H1 : c(xk) + 〈ξk, x− xk〉 ≤ 0}, (4.3)

where ξk ∈ ∂c(xk), and

Qk = {y ∈ H2 : q(yk) + 〈ηk, y − yk〉 ≤ 0}, (4.4)

where ηk ∈ ∂q(yk). Note that the stepsize γk in (4.2) is chosen in (0,min( 1
‖A‖2 ,

1
‖B‖2 )).

It is easy to see that Ck ⊃ C and Qk ⊃ Q for every k ≥ 0. More importantly, since
the projections onto half-spaces Ck and Qk have closed forms, the relaxed alternating
CQ-algorithm (4.2) is implementable. In what follows, we now introduce a relaxed
self-adaptive projection algorithm for solving the SEP (1.1) where C and Q are given
in (4.1). The stepsize is also chosen as in (3.1) which doesn’t depend on the norms
‖A‖ and ‖B‖.

Algorithm 4.1. Given constants γ > 0, ρ ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H1 and
y0 ∈ H2 be arbitrary. For k = 0, 1, 2, . . . , compute{

uk = PCk
(xk − τkF (xk, yk)),

vk = PQk
(yk − τkG(xk, yk)),

where τk = γρlk and lk is the smallest nonnegative integer l such that

‖F (xk, yk)− F (uk, vk)‖2 + ‖G(xk, yk)−G(uk, vk)‖2 ≤ µ2 ‖xk − uk‖2 + ‖yk − vk‖2

τ2
k

.

(4.5)
Set {

xk+1 = PCk
(xk − τkF (uk, vk)),

yk+1 = PQk
(yk − τkG(uk, vk)).

(4.6)

Following the proof of Lemma 3.1, it is easy to show that the Armijo-like search
rule (4.5) is also well defined. Besides, τ ≤ τk ≤ γ, where τ = min{γ, µρ√

2(‖A‖2+‖B‖2)
}.

Theorem 4.1. Let (xk, yk) be the sequence generated by the Algorithm 4.1. Then
(xk, yk) converges weakly to a solution of the SEP (1.1).

Proof. Let (x∗, y∗) ∈ Γ, i.e., x∗ ∈ C, y∗ ∈ Q, Ax∗ = By∗. Following the similar proof
of Theorem 3.1, we obtain

‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2 ≤ ‖xk − x∗‖2 + ‖yk − y∗‖2

− (1− µ2)(‖uk − xk‖2 + ‖vk − yk‖2),
(4.7)
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Let Γk(x∗, y∗) := ‖xk−x∗‖2 +‖yk−y∗‖2. Then the sequence Γk(x∗, y∗) is decreasing
and lower bounded by 0 for that µ ∈ (0, 1) and thus converges to some finite limit,
say l(x∗, y∗). Moreover, (xk), (yk) are bounded. This implies

lim
k→∞

‖uk − xk‖ = 0 and lim
k→∞

‖vk − yk‖ = 0. (4.8)

Next we show the sequence (xk, yk) generated by Algorithm 4.1 weakly converges to
a solution of the SEP (1.1). Let (x̂, ŷ) ∈ ωw(xk, yk), then there exist two subsequences
(xkl) and (ykl) of (xk) and (yk) which converge weakly to x̂ and ŷ, respectively.
Following the similar proof of (3.13), we obtain

lim
l→∞

‖Axkl −Bykl‖ = 0. (4.9)

The weak convergence of (Axkl −Bykl) to Ax̂−Bŷ and the lower semicontinuity of
the squared norm imply

‖Ax̂−Bŷ‖ ≤ lim inf
l→∞

‖Axkl −Bykl‖ = 0,

that is, Ax̂ = Bŷ.
Since ukl ∈ Ckl , we have

c(xkl) + 〈ξk, ukl − xkl〉 ≤ 0.

Thus

c(xkl) ≤ −〈ξkl , ukl − xkl〉 ≤ ξ‖ukl − xkl‖,
where ξ satisfies ‖ξk‖ ≤ ξ for all k ∈ N. The lower semicontinuity of c and the first
formula of (4.8) lead to

c(x̂) ≤ lim inf
l→∞

c(xkl) ≤ 0,

and therefore x̂ ∈ C.
Likewise, since vkl ∈ Qkl , we have

q(ykl) + 〈ηkl , vkl − ykl〉 ≤ 0.

Thus

q(ykl) ≤ −〈ηkl , vkl − ykl〉 ≤ η‖vkl − ykl‖,
where η satisfies ‖ηk‖ ≤ η for all k ∈ N. Again, the lower semicontinuity of q and the
second formula of (4.8) lead to

q(ŷ) ≤ lim inf
l→∞

q(ykl) ≤ 0,

and therefore ŷ ∈ Q. Hence (x̂, ŷ) ∈ Γ.
Following the same argument of Theorem 3.1, we can show the uniqueness of the

weak cluster points and hence the whole sequence (xk, yk) weakly converges to a
solution of the SEP (1.1), which completes the proof. �
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