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1. INTRODUCTION

Let Hy; and Hs be real Hilbert spaces with inner product (-,-) and norm || - |; let
K; and Q;, where i € {1,2,3,..., N} be nonempty, closed and convex subsets of H
and Hs, respectively, with N, K; # 0, N, Q; # 0. Let Y be a Hausdor{I topological
vector space, and for each i, let P; be a pointed, proper, closed and convex cone in Y’
with intP # @, where P =N, P;. Let L(H;,Y) be the space of all continuous linear
mappings from H; to Y.

The classical scalar nonlinear variational inequality problem (in short, VIP) is to
find z € K such that
<A1x,y—x> 207 VyEKl, (11)

where A; : K1 — H; is a nonlinear mapping.

Variational inequality theory introduced independently by Stampacchia [35] and
Fichera [17] in the early sixties in potential theory and mechanics, respectively, consti-
tutes a significant extension of variational principles. It was shown that the variational
inequality theory provides a natural, descent, unified and efficient framework for the
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general treatment of a wide class of unrelated linear and nonlinear problems arising
in elasticity, economics, transportation, optimization, control theory and engineering
sciences [4, 5, 2, 11, 21, 28]. In the last decades, considerable interest was shown in
developing various classes of variational inequality problems, both for its own sake
and for its applications.

An important generalization of VIP (1.1) which represents the boundary value
problem arising in the formulation of Signorini problem is the following:

find x € K7 such that
(Aiz,y — ) + g1, y) — 1 (z,2) > 0, Vy € Ky, (1.2)

where ¢, : Hx H — R is an appropriate nonlinear form. We call it a mixed variational
inequality problem (in short, MVIP). This type of problems was studied in Duvaut
and Lions [16] and Kikuchi and Oden [28]. For physical and mathematical formulation
of the inequality (1.2), see for example Oden and Pires [32]. For related work, see
also Baiocchi and Capelo [2] and Crank [11].

The vector version of MVIP(1.2) is called a mixed vector variational inequality
problem (in short, MVVIP), which is to find « € K; such that

<A1$»y_x>+¢1($ay)_¢1($7$) E-1317 vyEKlv (13)

where Ay : K1 — L(Hy,Y) and ¢ : Hy x Hy — Y are nonlinear vector valued
mappings.

Vector variational inequality theory, initiated by Giannessi [18], has emerged as a
powerful tool for the study of a wide class of vector optimization problems and vector
equilibrium problems. Further, vector variational inequality problem (in short, VVIP)
provides a unified model of several problems, for example, vector optimization, vector
complementarity problem, and vector saddle point problem, see [19, 20, 14].

Recently, Censor et al. [8] introduced the following split variational inequality
problem (in short, SpVIP): Find = € K; such that

(A1, 210 —x) >0, V21 € K7, (1.4)
and such that
y = Bz € Q solves (Asy, 20 —y) >0, V2o € Q1, (1.5)

where Ay : Hy — Hy and Ay : Hy — Hs are nonlinear mappings and B : H; — Hs is a
bounded linear operator. They studied some iterative methods for SpVIP(1.4)-(1.5).

SpVIP(1.4)-(1.5) is an important generalization of VIP(1.1). It also includes as a
special case, the split zero problem and split feasibility problem which has already
been studied and used in practice as a model in intensity-modulated radiation therapy

treatment planning; see [7, 10]. For further related work, we refer the reader to
Moudafi [30], Byrne et al. [6], Kazmi et al. [24, 25], Kazmi [26, 27].
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In this paper, we introduce and study the following new system of unrelated split
mixed vector variational inequality problems (in short, SSpMVVIP):

For each i = 1,2,37....,N, let Al : H1 — L(Hl,Y), Tz : H2 — L(HQ,Y), sz :
K, xK; =Y, ¢ :Q; XxQ; — Y be nonlinear mappings and B : H; — Hy be a
bounded linear operator. The SSpMVVIP is to find z* € NI | K; such that

(Aix™,xy — ™) + di(xy, %) — di(a™,2*) € Py, Vo, € K, 1<i< N (1.6)
and such that y* = Bx* € NI, Q; solves
(Tiy* v —y") +0i(ys, y™) — (Y™, y") € Py, Vys € Qs, 1 < i < N. (1.7)

When looked separately, (1.6) is the mixed vector variational inequality problem (in
short, MVVIP(A4;, ¢;, K;)), and we denote its solution set by Sol(MVVIP(A;, ¢;, K;)).
The SSpMVVIP(1.6)-(1.7) constitutes a pair of mixed vector variational inequality
problems that have to be solved so that the image y* = Bz* of the solution z* of
MVVIP(4;, ¢;, K;) in Hy under a given bounded linear operator B, is the solution of
another MVVIP(T;, v;, Q;)(1.7) in another space Hy. We denote the solution set of

When ¢ = 1, SSpMVVIP(1.6)-(1.7) reduces to the split mixed vector variational
inequality problem (SpMVVIP): Find z* € K; such that

(Arz*, 21 — ™) + d1(z1, ") — p1 (2™, 2%) € Py, Vo, € Ky (1.8)
and such that y* = Bx* € Q1 solves
(Ty* g1 —y") + (v, y") — (Y™ y") € Pr, Yy € Q, (1.9)

which appears to be new, and is a natural extension of MVIP(1.2) and MVVIP(1.3).

When ¢ = 1 and ¢;,v; = 0, SSpMVVIP(1.6)-(1.7) reduces to the split vector
variational inequality problem (SpVVIP): Find «* € K3 such that

(Ajx* 21 —a*) € Py, Vo, € Ky (1.10)
and such that y* = Bz* € Q1 solves
(T, y1 —y") € P1, Yy1 € Qu, (1.11)

which appears to be new, and is a vector version of SpVIP(1.4)-(1.5), and VVIP
introduced by Giannessi [18].

For each i = 1,2, ..., N, the solution set of SSpMVVIP(1.6)-(1.7) is denoted by ; =
{p € SOl(MVVIP(A4;,¢;, K;)) : Bp € Sol((MVVIP(T;,v;,Q;))}. Thus the solution set
of SSPMVVIP(1.6)-(1.7) is NN, Q.

Further, Censor et al. [9] considered and studied some iterative methods for the
following system of unrelated multivalued variational inequality problem (in short,
SMuVIP): For each i = 1,2,3,....,N, let G; : H; — 2H* be multivalued mappings,
then find z* € NY; K; such that, for each i = 1,2,3,...., N, there exists w} € G;(z*)
such that

(wf,z; —x*y >0, Vo; € K;, i =1,2,3,...., N. (1.12)
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We denote by Sol(MuVIP(G;, K;)) the solution set of the multivalued variational
inequality problem (in short, MuVIP(1.12)) corresponding to the mapping G;
and the set K;. Then the set of solutions of SMuVIP (1.12) is given by N},
Sol(MuVIP(G;, K;)). For related work, see Djafari-Rouhani et al. [15].

We also observe that if A; =0,T; =0, ¢; = 0,1; = 0 for all i then SSpMVVIP(1.6)-
(1.7) reduces to the problem of finding a point z* € N, K; such that Bx* € NI, Q;
which is the well known split convex feasibilty problem (in short, SpCFP). If the sets
K;, Q; are the fixed point sets of a family of operators S; : Hy — Hy, R; : Hy — Ho,
respectively, then SpCFP is the split common fixed point problem (in short, SpCFPP).
SpCFPP includes as a special case, the common fixed point problem (CFPP).

Recall that a mapping S; : K; — K; is said to be nonexpansive if || S;x2—S;y|| < ||lz—
yll, Vx,y € K;. We denote the fixed point set of S; by Fix(S;) for each i =1,2,...,N.
We note that Fix(S;) is closed and convex, possibly empty.

Motivated by the work of Nadezhkina and Takahashi [31], Censor et al. [9] and
Djafari-Rouhani et al. [15], we introduce an iterative scheme for approximating a
common solution to SSpMVVIP(1.6)-(1.7), SMuVIP(1.12) and CFPP for a finite
family of nonexpansive mappings in a real Hilbert space. We establish a strong
convergence theorem for the sequence generated by the proposed iterative scheme.
The results presented in this paper extend and unify previously known results in this
area.

2. PRELIMINARIES

We recall some concepts and results needed in the sequel. The symbols — and —
denote strong and weak convergence, respectively.

In a real Hilbert space Hq, it is well known that
Az + (1= Nyl* = Mz]? + (1 = Vyl* = A1 =Nz -y (2.1)
for all z,y € Hy and A € [0,1].
It is also known that every Hilbert space satisfies the Opial’s condition [33], i.e.,
for any sequence {z"} with 2™ — x the inequality
liminf ||2" — z|| < liminf ||z" — y|| (2.2)
n—oo n—oo
holds for every y € Hy with y # x.

Furthermore, any Hilbert space H; has the Kadec-Klee property [22], i.e., if {z"}
is a sequence in H such that 2™ — z and ||2"|| — ||z|| as n — oo, then ||z™ —z| — 0
as n — 0.

For every point © € H, there exists a unique nearest point in Ky denoted by Pk, z
such that
|z — Pr,z|| < ||l —yll, Yy € K;. (2.3)
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The mapping Py, is called the metric projection of H; onto K;. It is well known
that P, is nonexpansive and satisfies

<.’E - y7PK1‘T - PK1y> > ”Ple - PKlyH27 V:my € Hl' (24)
Moreover, P,z is characterized by the fact that Pk, € K; and
(x — Pr,z,y — P,y <0, Vy € K. (2.5)

This implies that:
|z —yl|* > |z — Pr,z||* + ||y — Pr,z|?, Yo € Hi, Vy € K;. (2.6)

Further, it is well known that every nonexpansive operator T : H; — H; satisfies,
for all (z,y) € Hy x Hy, the inequality

(@ =T() = (y=Ty), T(y) = T(2)) < S I(T(2) —2) = (T(y) = )II*  (27)
and therefore, we get, for all (z,y) € Hy x Fix(T),
(o= T@),y ~ T(@) < 5|T() ~ ol (28)
see, e.g. [[12], Theorem 3.1] and [[13], Theorem 2.1].

Definition 2.1. A mapping A : H; — H; is said to be
(i) monotone, if
(Az — Ay, z —y) >0, Vx,y € Hy;
(ii) mazimal monotone if it is monotone and its graph, denoted by graph(A), is
not properly contained in the graph of any other monotone mapping.
(iii) firmly nonexpansive, if

(Az — Ay, x —y) > || Az — Ay||?, Va,y € Hy;
(iv) B-Lipschitz continuous, if there exists a constant 8 > 0 such that

Az — Ay|| < Bllz —yll, Va,y € H.

Remark 2.1. The mapping A : H; — 21 is maximal monotone if and only if A is
monotone and we have:

(u—wv,z—y) >0,Y(y,v) € graph(4) = u € Azx.

Definition 2.2. [36, 29] Let X and Y be two Hausdorff topological vector spaces
and let D be a nonempty, convex subset of X and C be a pointed, proper, closed
and convex cone of Y with intC # ). Let 0 be the zero point of Y, U(0) be a base
of neighborhoods of 0, U(zg) be a base of neighborhoods of zg and f: D — Y be a
mapping.

(i) If, for any V € U(0) in Y, there exists U € U(xg) such that

f(z) € flag) +V+C, YV eUND,

then f is called upper C-continuous at xg. If f is upper C-continuous for
all x € D, then f is called upper C-continuous on D;
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(ii) If, for any V € U(0) in Y, there exists U € U(xg) such that
f(z) e f(xg)+V —-C, Ve €eUND,

then f is called lower C-continuous at xo. If f is lower C-continuous for

all x € D, then f is called lower C-continuous on D;
(iil) If, for any x,y € D and t € [0,1], the mapping f satisfies

f(x) € fltz + (L —=t)y) + C or f(y) € f(te+ (1 —t)y) +C,

then f is called proper C-quasiconvex;

(iv) If, for any x,y € D and t € [0, 1], the mapping f satisfies
tf(z) + (1 =t)f(y) € fltz + (1 = t)y) + C,

then f is called C-convezx.

Lemma 2.1. [23] Let X and Y be two real Hausdorff topological vector spaces, D be
a nonempty, compact and convex subset of X, and C be a pointed, proper, closed and
convex cone of Y with intC # 0. Assume that g: D x D —Y and ® : D — Y are
two nonlinear mappings. Suppose that g and @ satisfy

(i) g(z,x) € C, Yx € D;

(ii) @ is upper C-continuous on D;

(iii) g(.,y) is lower C-continuous, Vy € D;

(iv) g(x,.) + ®(.) is proper C-quasiconvex, Yx € D.
Then there exists a point x € D satisfying

G(z,y) € C\ {0}, Vy € D,
where
G(z,y) = g(z,y) + @(y) — ®(z), Vz,y € D.

Now, we recall two definitions; see Definitions 2.5 and 2.6 in Censor et al. [9]. Let K
be a nonempty, closed and convex subset of H;. Let CB(K) denote the family of all
nonempty, closed, convex and bounded subsets of K.

Definition 2.3. (Hausdorff Metric) Let K1, Ky € CB(K). The Hausdorff metric on
CB(K) is defined by

H(Kl, K2) = max{supz€K2d(xv Kl)a SupyGKld(y7 K2)}7 (29)
where the distance function is defined by d(z, K) := inf{||z — z||; 2 € K}.
Definition 2.4. (Nonexpansive Mappings) Let A : H; — 21 be a mapping such

that A(x) € CB(H;),Vx € Hy. We say that
(i) A is Lipschitz continuous with constant L > 0 if

H(A(x), A(y)) < Lllz — yl|, Vo, y € H. (2.10)

Therefore, given x € Hy, u € A(zx), and y € Hy, there exists v € A(y) such
that |[u — || < Ll — .
(ii) A is nonexpansive if it is Lipschitz continuous with L = 1.
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3. MIXED VECTOR VARIATIONAL INEQUALITY PROBLEMS

Let K be a nonempty, compact, and convex subset of a real Hilbert space H; let
Y be a Hausdorff topological vector space, and let C' be a proper, closed and convex
cone of Y with intC # 0. Let A: K — L(H,Y) and ¢ : K x K — Y be two nonlinear
mappings.

Consider the mixed vector variational inequality problem (MVVIP) of finding x €
K such that

(Az,y —z) +¢Y(y,z) — Y(x,z) € C, Vy € K. (3.1)
Further, for any z € H, we define a mapping F, : K x K — Y as follows:
e
F.(z,y) = (Az,y — z) + ¥ (y,x) — (v, z) + ;(y —z,z— 2) (3.2)

where r is a positive real number and e € intC.

Then the auxiliary problem for MVVIP(3.1) is to find, for each z € H, an 2 € K such
that

F.(x,y) €C, Vy € K. (3.3)

Assumption 3.1. Let F,, A, and v satisfy the following conditions:

(1) A is a weakly continuous and C-monotone mapping, i.e.
(x —y, Ax — Ay) € C, Vz,y € K

(2) F.(.,y) is lower C-continuous, Vy € K and z € H;
(3) ¥(.,.) is weakly continuous and ¢(.,y) is C-convez, i.e.,

tp(x1,y) + (L= 0)Y(22,y) € Y(tzr + (1 = t)az,y) + C, Vai, x5 € K, VL € [0, 1];

(4) F.(z,.) is proper C-quasiconvez, Yo € K and z € H;
(5) ¢ is C-skew symmelric, i.e.,

¢(xax) - 1/)(%31) - 1/1(%3”) ‘H/’(y,y) € C, V%y € K.

Remark 3.1. (-skew-symmetric bimappings are natural extensions of skew-
symmetric bifunctions. The skew-symmetric bifunctions have the properties that can
be considered analogous to the monotonicity of the gradient and the non-negativity
of the second derivative for convex functions. For the properties and applications of
the skew-symmetric bifunctions, we refer the reader to [1].

We now discuss the properties of the mapping T,gA’w) defined below, which also
show the existence and uniqueness of solutions to MVVIP(3.1).

Theorem 3.1. Let H be a real Hilbert space; let K be a nonempty, compact, and
convex subset of H; letY be a Hausdorff topological vector space and let C' be a proper,
closed and convex cone of Y with intC' # (). Let A: K — L(H,Y) be a continuous
and C-monotone mapping, where L(H,Y') is the set of all bounded linear operators
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from H to Y ; let ¢ : K Xx K =Y be a nonlinear mapping satisfying Assumption 3.1,
along with F, defined by (3.2). Let UL s N K, where r > 0, be defined as

T (z) ={r e K : <Ax,yfx>+¢(y,x)f¢(x,x)+§<yfx,r72> €C, Ve K}

Then the following hold:
(i) TT(A’W(Z) is nonempty for each z € H;
(ii) T s single-valued;
(iii) TAY) s firmly nonexpansive;
(iv) Fix(T))= Sol(MVVIP(3.1));
(v) Sol(MVVIP(3.1)) is closed and convex.

Proof. (i) For each z € H, let g(x,y) = F.(x,y), where F, is defined by (3.2), and let
®(x) =0, for all x € K. Then it is easy to see that g(z,y) and ®(z) satisfy all the
conditions of Lemma 2.1. Hence there exists z € K such that

9(z,y) + @(y) — @(z) € C, Vy € K,

and thus 7" (2) # 0, for each z € H.
(ii) Since, for each z € H, T\ (2) # 0, then if 21,25 € T\ (2), we have:

(Az1,y — z1) + U(y,x1) — Y(z1,21) + §<y —z,21—2) €C, Vye K (3.4)
and

(Aza,y — x2) + Y(y, x2) — Y(z2, T2) + S(y —Ig,29 — 2) € C, Yy € K. (3.5)
Letting y = x2 in (3.4) and y = 2 in (3.5), then adding, we get:

(Ax1, o — 1) + (Amo, x1 — T2) + V(x9,21) — VY(x1,21)
+p(x1,2) — (22, 22) + §<x2 — 21,21 —Ta) € C

(Az1 — Azg, 20 — 1) + (22, 21) — (21, 1)

e
+(z1, 22) — P(22, T2) + ;<Z‘2 — 1z, —22) € C. (3.6)

Since A is C-monotone, we have
<A1’1 — AZL’Q,ZL'Q — 1’1> e —C. (37)

Since v is C-skew symmetric
—(x1,21) + (21, 22) + Y(a2, 21) — (22, 22) € —C. (3.8)

Using (3.7) and (3.8) in (3.6), we get:

e
;<I‘2 — X1,T1 71172> eC.

Since e € intC, we have %<(E2 — x1,21 — 22) > 0 which implies that x; = zo. Thus

TﬁA’w) is single-valued.
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(iii) For any z1,22 € H, let x; = TT(A’w)(zl) and zg = TT(AJZ})(ZQ). Then
(Az1,y — z1) + U(y,x1) — ¥(z1,21) + §<y —xz1,x1—21) €C, Vy € K, (3.9)
and
(Ao, y — x2) + ¥(y, 2) — Y(22, x2) + §<y —z9,m3—2) €C, Vye K. (3.10)
Letting y = z2 in (3.9) and y = x; in (3.10), then adding, we get:
(Azy — Azo, o — 1) + Y(z2, 21) — Y(T1, 1)
+ U(z1, x2) — P(22,22) + §<.’E2 —x1,T1 — Tg — 71 + 22) € C.

By using the C-monotonocity of A, C-skew symmetry of ¢, and the property of C,
we have .
;<£C2 —I1,T] — Ty — 21 + 22> eC.

Since e € intC', we have:

1
;<{L‘2—LL‘1,LE1 —$2—21+22> ZO

(T2 — 1,01 — 22) + (T2 —¥1,22 — 21) > 0
(rg — 21,01 — w2) > —(T2 — 1,22 — 21)
(1 — w2, 21 — 2) < (1 — X2, 21 — 22)
(T (20) = T (22), T (21) = T (29)) < (T (20) = T (29), 21 — 22).
Thus TT(A’w) is firmly nonexpansive.
(iv) Assume x = TT(A’w)(;v). Then
(Az,y — @) + 0y, ) — U(a,2) + =y —w.x —a) € C, Wy € K,
and so
(Az,y — x) + ¥(y,x) — Y(z,z) € C, Yy € K.
Thus z € Sol(MVVIP(3.1)).
Conversely, let € Sol(MVVIP(3.1)). Then
(Az,y —z) + ¢¥(y,z) — Y(x,z) € C, Vy € K,
and so
(Az,y — x) + ¥(y,x) — Y(x,z) + §<yfx,x —z)eC, Vy e K.
Thus 2 = T\ (). Hence Fix(T*)) = Sol(MVVIP(3.1)).

(v) Since TT(A’W is firmly nonexpansive, TT(A’w) is also nonexpansive, and hence
Sol(MVVIP(3.1)) = Fix(TT(-A’w)) is closed and convex; see [22].

Next, we prove the following lemma which is used to prove our main result.
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Lemma 3.1. Let A, o, and F, satisfy Assumption 3.1 and let TT(A’w) be defined as
in Theorem 3.1. Let z1,z90 € H and r1,r9 > 0. Then:

ro —T
T ) = T )l < Dz = 21l + 20 ) — o),

Proof. For any 21,20 € H and r1,r5 > 0, let 1 = T,SA’w)(zl) and x9 = TﬁA’w)(zg).
Then we have:

(Azq,y —z1) +¥(y,21) — (21, 21) + %(y —x,11— ) €C, VYye K, (3.11)
and

(Aza,y — x2) + Y(y,x2) — Y(x2, 22) + %(y —Ig,x2 —22) €C, Yy K. (3.12)
Letting y = x5 in (3.11) and y = 2 in (3.12), then adding, we get:

(Ax1—Azg, xo—x1) +p(22, 1) — (21, 21) + (21, 3?2)—1#(332»$2)+%<$2—$17$1—Z1>

—l—i(xl — 9,29 — 29) € C
T2
T — 2
(Azy — Axg, o — 1) +(22, 1) =P (21, 21) (21, 22) =Y (T2, 22) +e(x2 — 21, 17"1 1>
+e(ry — xa, 2 - ZQ} eC
T2

Tl — 21 T2 — 22
e(xy — a1, - )
1 T2

+(z1,21) — P(22, 1) — (21, 22) + (T2, 2).
Using the C-monotonocity of A and the C-skew symmetry of 1, we have

c P+ <A.’L‘1 — AIQ,SCl — .T2>

T — 21 T2 — 22
ez — 21, - yeC.
™ T2

Since e € intC', we have
1
(T — 1,01 — 21 — 7(332 —22)) >0,
2
which implies that
r
(2 — 1,21 — @2 + 29 — 21 — 71(332 —22)) >0,
2
and so ,
|22 — 21 ® < (w2 — 21,22 — 20+ 20 — 21 — 771(962 — 22))
2
2 T1
|ze — 21]|° < {9 — 21,20 — 21 + (1 — T—)(mg — 22))
2

T2

- T
2o — 21 [|* < llwe — 21 [|[ll22 — 20l + Til‘sz — 2l|].
2

This completes the proof.
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4. MAIN RESULT

We establish a strong convergence theorem for approximating a common solution to
SSpMVVIP(1.6)-(1.7), SMuVIP(1.12) and CFPP for a finite family of nonexpansive
mappings.

Assume that A4; : K; — L(H,,Y), ¢; : K; x K; — Y, and for any r > 0 and
z € Hy, Fy,: K; x K; =Y defined by

e
Fi (i) = (Aixs, i — a3) + 0i(Yi, 23) — dil(wa, i) + ;<yz — X, T — 2),

and T; : Q; — L(H2,Y), 9 : Q; x Q; — Y, and for any s > 0 and w € Ho,
Giw: Qi x Q; = Y, defined by

Giw(ui, vi) = (Tiui, v — us) + Vi (vi,uq) — Pi(ug, ;) + E<Ui — Ui, up — W),
s
satisfy Assumption 3.1.
For r» > 0 and for all z € Hy, define a mapping T Ai#9)
TA) () = {a; € K; - Fy.(2i,y:) € P, Vyi € K;}.

: Hi — K; as follows:

Then, it follows from Theorem 3.1 that TT(A""Q&")(Z) # () for each z € Hy; TT(A"’@)

is single-valued and firmly nonexpansive; Fix(TT(Ai’d)i)) =Sol(MVVIP(1.6)) which is
closed and convex.

Further, for s > 0 and for all w € Hs, define a mapping 75D Hy — Q; as
follows:

T§Ti’wi)(w) = {UZ c Qi : Gi’w(uhvi) S P, V’UZ‘ S Qz}
Again, it follows from Theorem 3.1 that TéTi7¢i)(z) # () for each w € Ho; TS(T""w"’)
is single-valued and firmly nonexpansive; Fix(Tszi’d”)) =Sol(MVVIP(4.1)) which is
closed and convex, where Sol(MVVIP(4.1)) is the solution set of the following problem:
Find u; € @; such that

(Tiug, vi — wi) + ¥i(vi, ui) — ¥i(ui, ug) € Py, Vg € Q. (4.1)

We denote by I, the identity operator on H; as well as on Hs.

We easily observe that for each 4, €2; is a closed and convex subset of H;. Further,
we note that for each i = 1,2,...N, Sol(MuVIP(G;, K;)) is a closed and convex subset
of Hy (see Lemma 2.4(ii) in [3]). Hence (NXY,Q;) N (NX(Sol(MuVIP(G;, K3)))) is
closed and convex. Assume that (NY;Q;) N (MY, (Sol(MuVIP(G;, K;)))) # 0.

Theorem 4.1. Let H; and Hy be two real Hilbert spaces; let K; C Hy and QQ; C Ho,
where i € {1,2,3,..., N} be nonempty, compact and convex subsets with NI K; # 0,
and NY.1Q; # 0; let Y be a Hausdorff topological vector space, and for each i, let
P; be a proper, closed and convex cone of Y with intP # 0, where P = NN, P;.
Let B : Hi — Hy be a bounded linear operator; let G; : Hi — 21 be a monotone
and Lipschitz continuous mapping with constant B; such that G;(x) € CB(Hy),Vx €
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Hl,' let A1 : K1 — L(Hl,Y), ,_Tl : Qz — L(HQ,Y), ¢z : Kz X Kl — Y, and l/}l :
Qi X Q; — Y be nonlinear mappings satisfying the Assumption 3.1. For each fized
i, let S; : K; — Hjp be a nonexpansive mapping. Assume that T := (NY,Q;) N
(ML (Sol(MuVIP(Gj, K3)))) N (N, Fix(Sy)) # 0.

For a given 2° = z € NN, K;, let the iterative sequence {x"} be generated by the

following iterative scheme:

up = Tf;““ﬁ‘)(x” +0B* (T ") — I)Ba™) (4.2)
= P, (uf = N'w}'), w € Gi(uf) (4.3)
find vl € G;(y?) which satzsﬁes Definition 2.4(1) with wy,
2z =alz™ + (1 — al')S; Pk, (ul — Ato}), (4.4)
Cp ={z € Hy: |2 — 2|2 < " — 2|2}, (45)
cr=nd,cr, (4.6)
Q" ={z€ H : {(x" — 2,z —a") > 0}, (4.7)

2" = Ponngna, (4.8)
forn = 1,2,...., and for each i = 1,2,....N. 6 € (0,1/L), where L is the spectral
radius of the operator B*B and B* is the adjoint of B. {al} C [0,c], for some
c € 10,1) and {r} C [a,b] for some a,b € (0,a™'), where a := maxi<;<n fi and
{AI"} C [a,b]. Then, the sequence {x"™} converges strongly to z = Prx.

Proof. We divide the proof into four claims.

Claim 4.1. The projection Pr(z) and {z"} are well defined. Further, the sequences
{z"}, {ul'}, {t?} and {2I'} are bounded, where {t!'} := Pk, (ul» — A\?v ")

Proof. Evidently, Pr(z) is well defined, since I' is a nonempty, closed and convex
subset of H;. Now we show that {"} is well defined. Indeed, let & € T'; then Z € Q;,

and hence & = TT(:‘"’@)JZ‘ and B = Tr(nTi’%)(Ba%). We estimate

lup —2l2 = 7% ~¢’><x +0B* (T} ") — ) Ba) — i
i:Pi * is A i
= ||Tn ) (gn +5B (T( Y _ 1)Bam) — T 32
< am 4 6BH(TEY) — I)Bam — & (4.9)

la® — ]2 + &2 BT — 1) Ban|?
+25(z" — &, B*(T\F W—I)Bm ).

Thus, we have

luf = 8l* < fla” — &) + (T — DBe" BB*(T*) = DBa") -\
+26(z" —x,B*(TT(_T“W I)Bz™). '
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Now, we have

52<( 171/11) _ I)an ’ BB*(T(T i) )an>
L62((T(T V) _ NBan (T — 1)Bam)y  (4.11)
L52|| Tzawz B )an”Z.

IN

(T,
Denoting A = 26(z™ — & B*(T( Y ) — I)Bz™) and using (2.8), we have

A = 26(B(a" — &), (T — I)Ban >
25<B(£En _ ) (T(Tzﬂpz) _ ) (T(Tuwz _ )Bl‘n (T(Tza¢z) _ I)an>
26{(T4"") Ba — Bi, (T4 — I)Ba™) — ||(T, 7o) _ 1) Ban|2)

T“ n T, n
26{ (T — D Ban |2 = (1) - 1) Ban |2}
Tl,
6||<T§1. Y — 1) Ba"|.

IA

(4.12)
Using (4.11) and (4.12) in (4.10), we have
5 - (T i) n |2
luf? = &[* < [la™ — &[|* + 6(L8 — DT — I)Ba™|*. (4.13)
Since § € (0,1/L), we obtain
it — &) < [l — &[] (4.14)

Again since £ € T, then there is w} € G;(&) such that w} satisfies (1.12). Setting
' = Pg, (ul» — AM') and applying (2.6) with u — AP0 and &, we get

[t —2)* = [P, (uff — Afop) — 22
<l = A 2~ — A — o2
= g =& = fluf — 712 + 227 (o & — 7)
= fluf = 22 = Jlul = 7)? + 202 [0 — wi, @ —y7)
[ = &% = [Jui® = €712 + 203 (v)", g7 — 87')

I IA

uf —&)” — flup =yl — 2(uf -y, y — 1)
=y = t211* + 2A7 oty — £7)

luf — 2% — [luf - ”||2 lyp — 12
—|—2<u?—)\?vn_yl ’ _yz >

By (2.5), we have

(up — Afof =yttt — yit) (ui = ANtwi —yit 7 — yit) + A (wi — o, 1 =yl

< )\:‘( i — vy t"—yz>.

177
By the Cauchy-Schwartz inequality, it follows that
(ui = Mo =it 87 —ui') < A [Jwi” — o [[18 — il
Each mapping G;, i = 1,2,3,..., N, is Lipschitz continuous with constant f;.

Therefore G; is obviously Lipschitz continuous with constant a. Using this fact in
the above inequality, we have

(uf = Noi =y, 87 — ') < Alallui’ =y |[[It — il
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Using it in (4.15), we have
65 = &1 < fluf = 21 = lu? =y 1 = g = 11 + 23 allu? — P16 —yi']- (4.16)
Since

0 < (A;‘a||2u? =7l —2||t? —y'l)? ,
= (Ao llui =y I® =20 allui =yl — o3l + Nl — o l1%

we obtain that
X olluit =yl I =yt < (P a)? [l — g 1 + N6 — wi'lI”.
Thus from (4.16), we have

e = S IIIZ = [lu =y = llyi — £211?
+(APa)? uft =y || + [t — ||2
< = 2P = fluf — 7P + (Aa)? Il =yt I (4.17)
=l = 22 = (1= (Afe)?)luf -y
< - 22

Using (4.14), we also have
167 = 2> < Jla™ — 2|2 (4.18)

Since & € T, then for each fixed i, & = S;&. Next, using (2.1) and (4.18), we get
the following estimates:

Iz =217 = Jofa™ + (1 - o)t} — 2|
= |lof(@" — &) + (1 — o) (Sit} — )|
= affa" = 2| + (1 — o) Sity — 2|* — of (1 — o) || Sit — 2]
< aflla” =22+ (1 - af)||Sit} — 2|
< affla” =22+ (1—af) |t} - 2
< affla™ = &P+ (1 - af) [z — 22

Jam — &2,
(4.19)
Therefore £ € C}* for each fixed i, and hence £ € C". Thus I' C C", for every
n=0,1,2,... Further, since I' C C° and I cQ’=H,it follows that T C C%N Q°,
and hence CO NQ° ia a nonempty, closed, and convex set. Thus z! = = Prongox is well
defined. Now, suppose that T' C C* 1 N Q™! for some n > 1. Let & € T'; it follows
from (2.5) that

<J) — x",xn — JA?> = <Z‘ — Pcn—lan—l.’I}, Pcn—lﬁQn—lx - Z O7

we conclude that & € Q™. Therefore I' C C™ N Q™ for every n = 0,1, 2,.. and hence
2" = Ponngna is well defined for every n = 0,1,2,.. . Thus the sequence {z"} is
well defined.

Next we show that the sequences {z"}, {ul'}, {y7} and {2]'} are bounded. Indeed,
let d = Prz. From 2"*! = Ponngna and d € T C C™ N Q™, we have

lz™* — f| < [ld - =], (4.20)

for every n =0,1,2,... Therefore {2"} is bounded.
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Further, it follows from (4.14), (4.18), and (4.19) that the sequences {ul'}, {tI'},
and {z"} are bounded for each i = 1,2,..., N.

Claim 4.2. We have

: n_on|_ | n_,n| — T Tii n|| —
Jim [z =2 = lim o =yl = lim (T = 1) Ba"|| = 0,
Jim ([ =yt = lim [[Sitf = =l — 2" =0,

Vi=1,2,.., N, where t? = Py, ( — Anym).
Proof. From (4.7) and (4.8), we have that 2" € C"NQ™ and "™ = Pgnx. Therefore

" — z|| < ||z"T! — z||, for every n =0,1,2,.... (4.21)

It follows from (4.20), and (4.21) that the sequence {||z™ — z||} is nondecreasing and
bounded, hence convergent. Therefore lim ||z" — z|| exists.
n—oo

Since 2" = Pgnx and 2" € Q, using (2.4), we have
||1:”+1 - x”||2 < ||:z:"+1 - :z:H2 —||lz™ = :::||27 for every n = 10,1, 2,

This implies that
lim ||z"* — 2| = 0. (4.22)

n—oo

Since for every i = 1,2,..., N, 2" € CP, it follows from (4.5) that

20 —a™[? < 2(2f —a™ 2"t —an)
< 20 —a|[lantt - am.

Therefore

27 = 2"||* < 22" *t — 2|

and hence using (4.22), we have

lim ||z —z"|| =0, for every i =1,2,..., N. (4.23)
n—oo
It follows from (4.17) and (4.19) that
1=y =yl < fla" = 2* - It~ 2|2
< e = al? + i lle™ - 2 - =l - 2P
= ar(lla® =2l = [l27 — 2]%)

Now,
N7 (2™ = &)* = |27 — 2]|?)

L—a?)(1 = (Afa)?)]”
); Hllz™ =2l = 1= = 1)

( a)?
(|1*0<)( (A\fa)?
(

lui =y l* <

2" — | + [|z7" —

[
[
(
[

< (@ =a)@ = (A Hla™ = 22l = 21 + 127 = 2])).
Since {z"} and {z"}, i =1,2,..., N, all are bounded and lim ||2]' —z"| = 0, we have
n— oo

lim |lu} —y*|| =0, for every i =1,2,...,N. (4.24)
n— oo



182

B. DJAFARI-ROUHANI, K.R. KAZMI AND MOHD. FARID

By the same process as in (4.16), we have

18 —2l1* < fluf —2)* = lup —yPlI” = [y — )2
+2/\?04||U2? =y llle —:y?H )
< g =20 =l =y |17 = [lyg — 22
gl s 4.25
Hiur P+ O g (429
< ol - (12 (el g P
< e =2l = (1= (APa)?) it -yl
Now, from (4.19) and (4.24), we get
Iz — 2] < Oé?lll””*3}”||2+(1*a?)||t?*33”[|22 , )
< ajf=" jQ»Tll + (1 —af)[[]a" — 962|| -(1- ()2\?@) e =i 1]
< e =2l = (1= o) (1 = (W) It =y I
which implies that
17 —ypll? < [1-af)(1- (A?Oé)z)}f(ﬂfﬂ —&|? = |l2F - ]?)
= [ =af)(1 = (AFa)*)] " ([l2" — 2| — [l — 2[])
(J=* = 2]+l = 2[l) A
< (1= am)(1 - Ora))]lam — 2 (2" — & + 127 — ).
(4.26)
Again, since the sequences {z"} and {z'}, i = 1,2,...,N, are bounded and
lim ||z — 2| =0, it follows from (4.26) that
n—oo
lim ||t} —y'|| =0, for every i =1,2,...,N. (4.27)
n—roo
Further, it follows from (4.24), (4.27), and the triangle inequality that
lim ||u} — ¢t} =0, for every i =1,2,..., N. (4.28)
n—oo
Next, we show that
lim ||S;t} — || =0, for every i =1,2,..., N.
n—oo

From (4.12), (4.13) and (4.17), we have

Iz — 212

A IAIA

IN

||oz?a:" + (1 —aM) St — 2||?

K2

la (2" = &) + (1 = a7 ) (St — 2)]|?
o ]lz™ — ]| + (1 — o) || Sit — ]2

[ ||z —w||+(1—a7)\|t"—wl\]2
o'l 2" —w||+(1—a?)\|uz 2l
(@)?[la" = &[> + (1 — of)?|Ju — 2|
+2ag (1 = af)||z" —wHHu 2l
(@7)?[la" — 2|2 ( ap)?[lla" — 2|
+8(L8 — 1)|[(Ty0 )BI”II ]

+2a7 (1—a")|| —xHHu 2l
(a)2llz™ — 22 + (1 — a2 2| — 2]
+(1—a) (L —1)||(TT“1“— I)Bz"||?

+2a2 (1= a?)[la" = &l [Jup - 2.
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Now
(1= ap)?6(1 = L)|(T," — I)Ba"||?

< (@) + (1= aP)?)lla” — | — |2} — 2|
+207 (1 = af)Ja” — &||uy — &|

< ((ap)? + (L= ap)?)a” = 2% - |12 - 2]
+207 (1 — af)Ja” — &

= " — & — ||z — 2|
(o™ — 2] — l|z7 — &)
(" = 2] + |7 — &) )

< 2 =2 li(llam = &)+ 12 - 1)

Since §(1 — Ld) > 0 and ||2™ — 2| — 0 as n — oo, therefore we have
lim ||(T5Y" — I)Bz"|| = 0, for every i = 1,2,..., N. (4.29)
n—oo @
Now, we estimate:
lu — | = |75 (@ + 6B*(T},"") — 1) Ba™ — &2
Ai,bi n * Ti n Ai i) 4
= TS0 @ 4 6 BH(TSY) — D Ban — T2
< (ut — &,2" 4+ BT — I)Ba™ — &)
= L{llup — &%+ a" — &% + 26(z" — &, B*(T}5 " — I)Ba")
+02|| B (T = D) Ba™|? = [[up — 2" — 6B*(TS") — 1) Ba"||?}
= 3laf = 3l]* + flo" = 2| + 202" = &, B (T — 1)Ba")
+02| B (T = 1) Ba™ || = [[lug — 2"||? + 6% BT — I) B |?
—26(u — 2", B*(T%"") — I)Ba")]}

n_ 4 n _ A n n n _ s px (T n
= ${llup = 22+ o™ = 2% = uP — 2”2 + 26¢up — &, BT — I)Ba")}.

Hence by using Cauchy-Schwartz inequality, we obtain

n A n A n n n A Ti,i n
= 2|2 < 2™ = ]| — [|uf — 2™ + 26| Bup — &)[[|(T5*) — 1)Ba™||. (4.30)

K2

Further, we estimate:

Iz = 2l* = llofa"™ + (1 - af)Sit} — 2|
= lof (@™ — &) + (1 — o) (Sit} — )|
< laflla™ = 2+ (1 = o)||Sit} — 2|]?
< laflle™ = 2| + (1 - o)} — 2]
= (af)?[la" = 2| + (1 — )2t} — &||?
+2a3 (1 — a7 [[2" — 2[[|t7 — 2|
(@)?fla” — &[> + (1 — af)?[||uf — 2|

IA
—
Q
=3
SN~—
>
EX
3
|
=

24 (1= af)len — &2 — [lup — 2"
+28|[B(up — )| [T = 1) Ba™|]
—(1— a2 (1= (\pa)?)|lup — g2 |2

+2al (1 — o) ||a™ — Z||||t? — Z|| using(4.30).
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Using (4.25), this implies that:

1= uf —a"[* < ((0f)? + (L —af)?)llz" — 2[* — ||z — &

+20(1 — o 2| B(u — 2)|| (T — 1) Ba|

7

—(1—=af)* (L — (\fa)) fup — yp >

2

+2a3 (1 = a7)[Ja™ — 2|[|t7 - 2|

7

< (@2 + (1 —am)? 4207 (1 — o))" — &2 — ||z —
+20(1 — a)?| B(up — @) [|(T5) = D) Ba"|
—(1—a)2(1 = (Ara)?)flup — )

= = &l = 2 — &2 + 201 = )2 B(up — 2)|[| (T - D) Ban|
—(1—a)2(1 = (Ara)?)[lup — )

< (l = &l + 1z = 2l (e = 2] — [l22 - &)
+26(1 — a2 B(uy — @)[|[(Ty " = 1) Ba"|
—(1 = a)2(1 = (Ara)?)[lup — 2

<l =2l = @l + [l - 2])

+26(1 — ag)?|| B(uy = &)[|[(Ty " = I)Ba"|
—(1 = a)2(1 = (Ara)?)[lup — 2.

Since ||z™ — 2| — 0, |lul —y?|| — 0, and ||(T7gw) — I)Bz"|| — 0 as n — oo,

i

therefore, we have
lim |u} —2"| =0.
n—oo

From (4.28) and (4.31), we have

[t =2l < [ — il + ot — 27|

Hence:
lim ||t} —z"| = 0.
n—oo
Now,
Zh—a" = alz™+ (1—a)Sitl —a™
= (1—=ap)(Sit} —a"),
we have
(L=o))Sit7 —a™| < (1 —af)[|Sit] — "]
=z =27
Since lim ||z — 2™|| = 0, therefore we have
n— oo
lim ||S;t} —z™| = 0.
n—oo

From (4.32) and (4.33), we have
1Sit7 =l < 1St — 2" + {1t — 2",

hence:
lim [|S;t? — || = 0.
n—oo

Also from(4.27) and (4.32), we have

lim |y —2"|| = 0.
n— oo

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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Claim 4.3. The weak limit of every weakly convergent subsequence of the se-
quences {a"}, {ul'}, {y!"} and {2} belongs to I

Proof. Since {z™} is bounded, it has a weakly convergent subsequence {x™*}, say
™ — . Then it follows from (4.31) that u;* — & and t* — w, for each i =
1,2,... N.

Since K; is closed and convex, u;* € K; and u;* — w for each i = 1,2,..., N, it
follows that € K;. Hence w € NI, K.

First, let’s show that @ € ﬂNlle(S ). Assume by contradiction that @ ¢
llelX(S) for some i = 1,2,...,N. Since S;w # w0, then by Opial’s condition
(2.2) and (4.34), we have

lim inf ||¢;"* — ||
k—o0

A

liminf ||t;* — S;w||

k—o0

liminf{[[7* — Sit™ || + [|S:t™ — Sy}
k—o0

= lwinf [l — ],

IN

which is a contradiction. Thus w € N, Fix(S;).
Now we show that w € €; for each i = 1,2, ..., N. Since
= T (@ 4+ 6B* (T — 1) Ba™),
by Theorem 3.1, we have

<y*u:lvA2uZL>+¢l(yauz) ¢2( Us s z)

+£ﬂ<y —u,ul — (2" + 6B*(Tr($i’¢i) —I)Bz")) e P, Yy e K; (4.36)
Tl i
and hence
<y - unk Aunk> + ¢1(ya ) ¢z( a )
€ n n LER &% n
o (g~ ut — (@™ 4 0B (T(T Vi) _[\Bax™)) € P, Vy € Ki.  (4.37)

Set v, = tv; + (1 —t)w for all ¢t € [0,1] and v; € K;, i =1,2,..., N. Then we have
vy € K;, i=1,2,...,N. From (4.37), it follows that

(i —uwi™, Agu™) + di(vig, ui™) — ¢i(ul™, ui™)
o v — ul s — (™ 4 6B (T — I)Ba™)) € P,

(Vig —ui®, Agul™ 4+ Ajvi e — Aivs o) + (i, up®) — ds(up™, up™)
o (0 — Ul U — (@ 4 6B (TP — 1) Ba™)) € P,
T, T'v

7

(Vig —u®, Avie) € (Vi — ui™, Ajvi e — Agul®) — 03 (Vi ™) + s (ug™, ui™)

(v — Ut = (@™ 4 6B (TS = 1)Ba™)) + P,

A Eat)
%

(Vi —wi™, Avig) € (Viy — wi*, Ajviy — Ag™) — Gi(vig, wi™) + ¢i(u™, ui'™)
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Tis4hi
T I BT — DBar
=i — " =)+ e{vig — ", T )+ Bi.
r r
ne_ng §B* (T 3% —1)Ba"*
From (4.29) and (4.31), we obtain that “—m— — 0 and S —0

as k — oo. Since A; is monotone, we also have that (Vi —uy™, Aviy = Aul*) € P
Thus, it follows that

(Vig — W, Ajvig) € ¢i(W, W) — @i (v, W) + P
(tv; + (1 — ) — W, Ay € (W, W) — ¢ (tv; + (1 — t)w,w) + P;
t{v; — W, Avi ) € ¢i(, W) — td;(vi, W) — (1 — 1)y (W, ) + P,
(" ¢; is convex in first argument)
t(v; — W, Aiv¢) € tdi(w, W) — tdi(v;, ) + P;
(vi =W, Aji ) € ¢i(, W) — ¢i(vi, W) + P
Letting t — 0 and using the weak continuity of A; in the above, we get:
(v; — W, A;) € ¢i(w, W) — ¢i(vi, W) + P, Yu; € K;
(v; — W, Ayd) + ¢i(v;, W) — ¢; (W, W) € P;, Yu; € K.
This implies that & € Sol(MVVIP(A4;, K;)), for each i = 1,2,..., N.

Next, we show that Bw € Sol(MVVIP(T}, @;)). Since B is a bounded linear operator,
we have Bx™ — Buw.

Now setting
v = Ba"™ — TG B (4.38)

and using (4.29) in (4.38), we get
nlgr;o v" =0 and Ba"* — " = Tr(zﬂ;’w"')B:r”’“.
Thus from Theorem 3.1, we have 1
(z— (Ba™ — ™), T;(Bx™ —v™)) +1;(z, Bx"" — v™*) — ip; (Bx™" — o™, Ba"™ —y"F)
—|—Tz%(z — (Bx™ —v™), (Bx"™ — ™) — Ba") € P;, Vz € Q.
Letting £ — oo, we get:
(z — Bw, T;(BW)) + (2, Bw) — ¢;(Bw, Bw) € P;, Vz € Q,

which means that Bw € Sol(MVVIP(T;,Q;)), and hence w € €, for each i =
1,2,.., N.
It has been proved in [9] that @ € N;Z;Sol(MuVIP(G;, K;)). Thus w € T

Claim 4.4. The sequences {z"}, {u?}, {y?} and {z"} converge strongly to Pr(x).

Proof. Since ™! = Ponngna, we have for any s € C" N Q"™

lz™* = 2f| < [|s — =]]. (4.39)
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Since I' C C"NQ™, and Pr(z) and the sequence {z"} are well-defined, for s = Pr(x)
we get:
[a" — x| < [|Pr(2) — 2| (4.40)
and furthermore,
lim 2" — 2| < |Pr(x) — 2. (4.41)

Now, since we already proved that the weak limit @ of every subsequence {z™ }recn
of {z"},cn belongs to T, it follows from (4.41) that:

o —z|] < liminf||z™ — ||
k—o00

lim ||z™ — z|
n—oo

1P (z) — 2|

IN

Since w € T, it follows that @ = Pr(x).

Since every weak cluster point of the sequence {z"},cn is equal to W, it follows
that
w— lim 2" =@ = Pp(x).

n—oo
Finally
| — z|| <liminf ||z™ — z|| = lm ||z" — | = ||[@ — z]|.
k— o0 n—00
Since w — lim (2" — ) =@ —x and lim ||z2™ — 2| = ||& — z||, it follows from the
n—o0 n—00

Kadec-Klee property that lim |z" —w| = 0.
n— oo
This completes the proof of Theorem 4.1.

The following corollary is due to Censor et al. [9].

Corollary 4.1. Let Hy be a real Hilbert space; let K; C Hy, wherei € {1,2,3,..., N},
be a nonempty, closed and conver subset with NI K; # 0; let G; : Hy — 27 be
a monotone and Lipschitz continuous mapping with constant B; such that G;(z) €
CB(H,,Vx € Hy. Assume that T := N, (Sol(MuVIP(G;, K;))) # 0. For a given
20 =z € NI K, let the iterative sequence {z"} be generated by the following iterative
scheme:
yi' = P, (2" = Nfwi), wi € Gi(z")

find v € G,;(y") which satisfies Definition 2.4(1) with w},

Z? = PKl(xn - )‘?’U;n)v

CP={z€Hi: | — 2| < 2" — 2|},

N
c" = mi:lcinv

Q"={z€H : (2" —z,xz—z") >0},

n

1
x + :PCann.’IJ,

forn=1,2,...., and for eachi =1,2,..., N, and {\*} C [a,b] for some a,b € (0,a™1),
where o := maxi<;<n B;. Then, the sequence {x™} converges strongly to z = Prx.
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Proof. The proof follows by taking Hy = H;, Y = R, P, = (0,400), 4; =0, T; = 0,
¢; =0,9; =0, 5; =1, and o] =0 in Theorem 4.1.

The following corollary is due to Nadezhkina and Takahashi [31].

Corollary 4.2. Let Hy be a real Hilbert space; let K1 C Hy be a nonempty, closed and
convex subset; let G1 : K1 — Ki be a monotone and Lipschitz continuous mapping
with constant . Let S1 : K1 — Kj be a nonexpansive mapping. Assume that
I' := Sol(VIP(1.1)) N Fix(S1)) # 0. For a given 2° = = € Ky, let the iterative
sequence {x"} be generated by the following iterative scheme:

Y = Pr, (2" = N G1(z")),

21 = afz" + (1 — af)S1 Pk, (" — AT G1(y7)),
C"={zeHy: | -2 < |a" — 2|},
Q"={z€H : (2" —z,z—2a") >0},

n

X = PCannl',
form =1,2,....; and {a}} C [0,¢], for some ¢ € [0,1) and {A\}'} C [a,b] for some
a,b € (0,a™t). Then, the sequence {x™} converges strongly to z = Pru.

Proof. The proof follows by taking ¢ = 1, Ho = Hy, Y = R, P, = (0,40), A; =0,
T, =0, ¢; =0, 1»; = 0 and G; as a single-valued mapping in Theorem 4.1.

Remark 4.1. Theorem 3.1 and Lemma 3.1 can be proved in the framework of convex
Banach space, while the proof of Theorem 4.1 needs further research effort because
many of the properties specific to Hilbert spaces were used in the paper, in particular
specific to the metric projection mapping.
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