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Abstract. Let A and B be maximal monotone operators defined on a real Hilbert space H, and let

Fix(JAµ J
B
µ ) 6= ∅, where JAµ y := (I + µA)−1y and µ is a given positive number. [H. H. Bauschke, P.

L. Combettes and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear

Anal. 60 (2005), no. 2, 283-301] proved that any sequence (xn) generated by the iterative method

xn+1 = JAµ yn, with yn = JBµ xn converges weakly to some point in Fix(JAµ J
B
µ ). In this paper, we

show that the modified method of alternating resolvents introduced in [O. A. Boikanyo, A proximal

point method involving two resolvent operators, Abstr. Appl. Anal. 2012, Article ID 892980, (2012)]

produces sequences that converge strongly to some points in Fix(JAµ J
B
µ ) and Fix(JBµ J

A
µ ).
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1. Introduction

Iterative methods have been widely used to approximate solutions of nonlinear oper-
ator inclusions of the form 0 ∈ Ax, where A is a maximal monotone operator, see for
example [11, 14, 18, 20, 21, 4] and the references therein. The set of solutions of this
inclusion, denoted by A−1(0), is closed and convex. Other iterative methods have
been developed to approximate solutions of the inclusion 0 ∈

⋂n
i=1Ai, where each Ai

is maximal monotone (or m-accretive in the case of Banach space setting), refer to
[23, 9, 22] and the references therein. Of immediate interest to us is the method of
alternating projections introduced by von Neumann in the early 1930s. Given any
starting point x0 ∈ H, this method generates a sequence (xn) iteratively by

x0 7→ x1 = PK1x0 7→ x2 = PK2x1 7→ x3 = PK1x2 7→ x4 = PK2x3 7→ · · · ,
where PC : H → C is the projection operator onto a nonempty, closed and convex
subset C. In his paper, von Neumann showed that if K1 and K2 are subspaces of
H, then (xn) will converge strongly to the point in K1 ∩ K2 that is closest to the
starting point x0. For recent proofs of this classical result, we refer the reader to
[2, 12]. If K1 and K2 are two arbitrary nonempty, closed and convex subsets in
H with nonempty intersection, then the sequence (xn) generated from the method
of alternating projections converges weakly to a point in K1 ∩ K2 [8], but strong
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convergence cannot be obtained in general [10, 13]. Since the projection operator
coincides with the resolvent of a normal cone, one can extend this iterative method
as follows: Given any starting point x0 ∈ H, generate a sequence (xn) iteratively as

x2n+1 = JAµ x2n for n = 0, 1, . . . , (1.1)

x2n = JBµ x2n−1 for n = 1, 2, . . . , (1.2)

where A and B are two maximal monotone operators and µ is a positive real number.
In this case, it can be shown that the above sequence converges weakly to some point
in A−1(0)∩B−1(0), provided that this set is not empty, see for example [6]. Note that
strong convergence of this method fails in general, (the same counter example given
in [10] applies). Bauschke et al. [1] proved a weak convergence result of the method
of alternating resolvents (1.1), (1.2) to some point in Fix(JAµ J

B
µ ), provided that the

fixed point set of the composition mapping JAµ J
B
µ is nonempty. We emphasize that if

K1 and K2 are two nonempty, closed and convex subsets in H, then the set K1 ∩K2

coincides with the set Fix(PK1PK2). However, the fixed point set Fix(JAµ J
B
µ ) is larger

than the set A−1(0) ∩B−1(0), see for example [6, Remark 5].

Recently, an attempt was made in [3, 6, 5] to modify algorithm (1.1), (1.2) in order to
enforce strong convergence to some point in A−1(0)∩B−1(0). One such modification
introduced in [3] defines a sequence (xn) iteratively by

x2n+1 = αnu+ (1− αn)JAµ x2n + en for n = 0, 1, . . . , (1.3)

x2n = JBµ (λnu+ (1− λn)x2n−1 + e′n) for n = 1, 2, . . . , (1.4)

where αn, λn ∈ [0, 1], (en) and (e′n) are sequences of computational errors and µ is a
positive real number. Our purpose in this paper is to investigate strong convergence
of the iterative method (1.3), (1.4) to some point in Fix(JAµ J

B
µ ). Note that the set

Fix(JAµ J
B
µ ) is in general larger than the set A−1(0)∩B−1(0), see for example, Remark

5 [6].

2. Preliminary Results

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 and norm ‖ · ‖.
Consider a nonlinear (and possibly set-valued) operator A : D(A) ⊂ H → H whose
graph is G(A) = {(x, y) ∈ H ×H : x ∈ D(A), y ∈ Ax}. The operator A is called (i)
monotone if 〈x− x, y− y〉 ≥ 0 for all (x, y), (x, y) ∈ G(A) and (ii) maximal monotone
if it is monotone and its graph is not properly contained in the graph of any other
monotone operator. LetK be a nonempty, closed and convex subset ofH. The normal
cone to K at the point z, denoted by NK(z), is the set {w ∈ H |〈w, z−v〉 ≥ 0∀v ∈ K}.
It is known that NK is maximal monotone. Given any maximal monotone operator
A and a positive real number c, one can always define the map JAc : H → H by
x 7→ (I + cA)−1x, where I is the identity operator. This map is called the resolvent
operator of A. It is well known that the Yosida approximation of A, an operator
defined by Ac := c−1(I−JAc ) is maximal monotone for every c > 0. The weak ω-limit
set of a sequence (xn), denoted by ωw((xn)), is the set

ωw((xn)) = {x ∈ H : xnk
⇀ x for some subsequence (xnk

) of (xn)}.
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The notation xn → x will be used to indicate that the sequence (xn) converges
strongly to x whereas xn ⇀ x will be used to indicate that (xn) converges weakly to
x.

The following two lemmas will be useful in proving our main results.

Lemma 2.1 (Boikanyo and Moroşanu [7]). Let (sn) be a sequence of non-negative
real numbers satisfying

sn+1 ≤ (1− αn)(1− λn)sn + αnbn + λncn + dn, n ≥ 0, (2.1)

where (αn), (λn), (bn), (cn) and (dn) satisfy the conditions: (i) αn, λn ∈ [0, 1], with∏∞
n=0(1− αn) = 0, (ii) lim supn→∞ bn ≤ 0, (iii) lim supn→∞ cn ≤ 0, and (iv) dn ≥ 0

for all n ≥ 0 with
∑∞
n=0 dn <∞. Then limn→∞ sn = 0.

Remark 2.2. It can be easily verified that if limn→∞ αn = 0, then
∏∞
n=0(1−αn) = 0

if and only if
∑∞
n=0 αn =∞.

Lemma 2.3 (Maingé [16]). Let (sn) be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence (snj

) of (sn) such
that snj < snj+1 for all j ≥ 0. Define an integer sequence (τ(n))n≥n0 as

τ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.

Then τ(n)→∞ as n→∞ and for all n ≥ n0

max{sτ(n), sn} ≤ sτ(n)+1. (2.2)

3. Main Results

Let (αn) and (λn) be non-zero sequences of real numbers in (0, 1), and suppose that
v0, u ∈ H are given. Consider the sequence (vn) generated iteratively by

v2n+1 = αnu+ (1− αn)JAµ v2n for n = 0, 1, . . . , (3.1)

v2n = JBµ (λnu+ (1− λn)v2n−1) for n = 1, 2, . . . , (3.2)

for any µ > 0, where A and B are maximal monotone operators. We investigate (in
Theorem 3.2 below) the convergence properties of the sequence (vn) to some fixed
point of the composition mappings JAµ J

B
µ and JBµ J

A
µ .

Let us note that if Fix(JAµ J
B
µ ) is non-empty, then so is Fix(JBµ J

A
µ ). Indeed, if

Fix(JAµ J
B
µ ) 6= ∅, then we can find p ∈ H such that p = JAµ J

B
µ p. Since JBµ is sin-

gle valued and defined on the whole space H, it then follows that JBµ p = JBµ (JAµ J
B
µ p).

Setting z = JBµ p, we see that z = JBµ J
A
µ z. That is, z ∈ Fix(JBµ J

A
µ ), and so

Fix(JBµ J
A
µ ) 6= ∅. Similarly, it can be shown that if Fix(JBµ J

A
µ ) is non-empty, then

so is Fix(JAµ J
B
µ ). This note can be summarized in the following remark.

Remark 3.1. Let A and B be maximal monotone operators, and µ be any positive
real number. Then Fix(JAµ J

B
µ ) 6= ∅ ⇔ Fix(JBµ J

A
µ ) 6= ∅.
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Theorem 3.2. Let A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be maximal
monotone operators with Fix(JAµ J

B
µ ) =: S 6= ∅. For arbitrary but fixed vectors v0, u ∈

H, let (vn) be the sequence generated by (3.1), (3.2), where αn, λn ∈ (0, 1) and µ >
0. Assume that limn→∞ αn = 0, limn→∞ λn = 0, and either

∑∞
n=0 αn = ∞ or∑∞

n=0 λn = ∞. Then the subsequence (i) (v2n+1) of (vn) converges strongly to the
point q ∈ S that is nearest to u, and (ii) (v2n) of (vn) converges strongly to the point
z = JBµ q in Fix(JBµ J

A
µ ).

Proof. (The proof of the following theorem makes use of some ideas of the papers
[16, 19, 7, 3]). Let p be any point in Fix(JAµ J

B
µ ). Then from (3.1), we have

‖v2n+1 − p‖ ≤ αn ‖u− p‖+ (1− αn)
∥∥JAµ v2n − p∥∥

≤ αn ‖u− p‖+ (1− αn)
∥∥v2n − JBµ p∥∥ , (3.3)

where the last inequality follows from the fact that the resolvent operator JAµ : H → H

is nonexpansive. But from the nonexpansive property of JBµ , we have from (3.2)∥∥v2n − JBµ p∥∥ ≤ ‖λn(u− p) + (1− λn)(v2n−1 − p)‖
≤ λn ‖u− p‖+ (1− λn) ‖v2n−1 − p‖ .

Therefore, from this inequality and (3.3), we get

‖v2n+1 − p‖ ≤ [αn + (1− αn)λn] ‖u− p‖+ (1− αn)(1− λn) ‖v2n−1 − p‖
= [1− (1− αn)(1− λn)] ‖u− p‖+ (1− αn)(1− λn) ‖v2n−1 − p‖ .

By a simple induction argument, we arrive at

‖v2n+1 − p‖ ≤

[
1−

n∏
k=1

(1− αk)(1− λk)

]
‖u− p‖+ ‖v1 − p‖

n∏
k=1

(1− αk)(1− λk).

Therefore, if either
∑∞
k=0 αk =∞ or

∑∞
k=0 λk =∞, then we derive the boundedness

of the subsequence (v2n+1) of (vn). Note that if (v2n+1) is bounded, then so is (v2n).
Hence the sequence (vn) is bounded.

Now let q := PSu and z := JBµ q. Then q = JAµ J
B
µ q and q = JAµ z. Since the inequality

‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉

holds true for all x, y ∈ H, we have from (3.1)

‖v2n+1 − q‖2 ≤ (1− αn)
∥∥JAµ v2n − q∥∥2 + 2αn〈u− q, v2n+1 − q〉

≤ (1− αn)
[
‖v2n − z‖2 −

∥∥(I − JAµ ) v2n − (I − JAµ ) z∥∥2]
+ 2αn〈u− q, v2n+1 − q〉

= (1− αn)
[
‖v2n − z‖2 −

∥∥v2n − JAµ v2n − z + q
∥∥2]

+ 2αn〈u− q, v2n+1 − q〉, (3.4)

where the second inequality follows from the fact that the resolvent of a maximal
monotone operator A is firmly nonexpansive. If we denote wn := λnu+(1−λn)v2n−1,
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then using the firmly nonexpansive property of JBµ , we have from (3.2)

‖v2n − z‖2 =
∥∥JBµ wn − JBµ q∥∥2

≤ ‖wn − q‖2 −
∥∥(I − JBµ )wn − (I − JBµ ) q∥∥2

= λ2n ‖u− q‖
2

+ 2λn(1− λn)〈u− q, v2n−1 − q〉
+ (1− λn) ‖v2n−1 − q‖2 − ‖wn − v2n − q + z‖2 .

This inequality together with (3.4) implies that

‖v2n+1 − q‖2 ≤ (1− αn)(1− λn) ‖v2n−1 − q‖2 + λnbn + αncn

− (1− αn)
(∥∥v2n − JAµ v2n − z + q

∥∥2 + ‖wn − v2n − q + z‖2
)
,(3.5)

where bn := (1−αn)[λn ‖u− q‖2+2(1−λn)〈u−q, v2n−1−q〉] and cn := 2〈u−q, v2n+1−
q〉. Note that if we denote sn := ‖v2n−1 − PSu‖2, then we can find a positive constant
M such that

sn+1 − sn +
∥∥v2n − JAµ v2n − z + q

∥∥2 + ‖wn − v2n − q + z‖2 ≤ (αn + λn)M. (3.6)

Our aim is to show that (sn) converges to zero strongly. In order to prove this, we
shall consider two possible cases on the sequence (sn) of real numbers.

CASE I: (sn) is eventually decreasing (i.e., there exists N ≥ 0 such that (sn) is
decreasing for all n ≥ N). In this case, (sn) is convergent. Letting n → ∞ in (3.6),
we get

lim
n→∞

‖wn − v2n + z − q‖ = 0 = lim
n→∞

∥∥v2n − JAµ v2n − z + q
∥∥ . (3.7)

On the other hand,∥∥(I − JAµ JBµ )wn
∥∥ =

∥∥wn − JAµ v2n∥∥
≤ ‖wn − v2n + z − q‖+

∥∥v2n − JAµ v2n − z + q
∥∥ ,

which implies that

lim
n→∞

∥∥(I − JAµ JBµ )wn
∥∥ = 0. (3.8)

If (wnk
) is a subsequence of (wn) converging weakly to some w ∈ H, then it follows

from the demiclosed property of (I − JAµ JBµ ) that the weak limit w ∈ FixJAµ JBµ , (see
for example [17, p. 20]). Thus ωw((v2n+1)) = ωw((wn)) ⊂ S. Now take a subsequence
(v2nl+1) of (v2n+1) converging weakly to some w ∈ S such that

lim sup
n→∞

〈u− q, v2n+1 − q〉 = lim
l→∞

〈u− q, x2nl+1 − q〉.

Then, we have from one of the properties of projections

lim sup
n→∞

〈u− q, v2n+1 − q〉 = 〈u− q, w − q〉 ≤ 0.

Since λn → 0 as n→∞, the above inequality implies that

lim sup
n→∞

bn ≤ 0.
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From (3.5), we have

‖v2n+1 − q‖2 ≤ (1− αn)(1− λn) ‖v2n−1 − q‖2 + λnbn + αncn.

Using Lemma 2.1 we get ‖v2n+1 − q‖ → 0 as n→∞. That is, (sn) converges to zero
strongly.

CASE II: (sn) is not eventually decreasing, that is, there is a subsequence (snj
) of (sn)

such that snj
< snj+1 for all j ≥ 0. We then define an integer sequence (τ(n))n≥n0

as
in Lemma 2.3 so that sτ(n) ≤ sτ(n)+1 for all n ≥ n0. It then follows from (3.6) that

lim
n→∞

∥∥v2τ(n) − JAµ v2τ(n) − z + q
∥∥ = 0 = lim

n→∞

∥∥wτ(n) − v2τ(n) − q + z
∥∥ .

From these two limits, we derive∥∥wτ(n) − JAµ v2τ(n)∥∥ ≤ ∥∥wτ(n) − v2τ(n) − q + z
∥∥+

∥∥v2τ(n) − JAµ v2τ(n) − z + q
∥∥→ 0,

as n→∞. In addition, we have∥∥v2τ(n)−1 − JAµ v2τ(n)∥∥ ≤
∥∥v2τ(n)−1 − wτ(n)∥∥+

∥∥wτ(n) − JAµ v2τ(n)∥∥
= λτ(n)

∥∥v2τ(n)−1 − u∥∥+
∥∥wτ(n) − JAµ v2τ(n)∥∥→ 0,

as n→∞. Therefore, from (3.1) we get∥∥v2τ(n)+1 − v2τ(n)−1
∥∥ ≤ ατ(n)

∥∥u− v2τ(n)−1∥∥+ (1− ατ(n))
∥∥JAµ v2τ(n) − v2τ(n)−1∥∥

→ 0,

as n→∞. As in Case I, we derive ωw((v2τ(n)+1)) ⊂ S. As a result, we have

lim sup
n→∞

〈u− q, v2τ(n)+1 − q〉 ≤ 0.

Note that we may write (3.5) as

‖v2n+1 − q‖2 ≤ (1− αn)(1− λn) ‖v2n−1 − q‖2 + λnbn

+ 2[αn + λn(1− αn)]〈u− q, v2n+1 − q〉, (3.9)

where

bn := ‖v2n−1 − v2n+1‖L+ λn(1− αn)[‖u− q‖2 − 2〈u− q, v2n+1 − q〉]
≤ ‖v2n−1 − v2n+1‖L+ λnM

′,

for some positive constants L and M ′. Clearly,

lim sup
n→∞

bτ(n) ≤ 0.

Since sτ(n) ≤ sτ(n)+1 for all n ≥ n0, we derive from (3.9)

sτ(n)+1 ≤ 2〈u− q, v2τ(n)+1 − q〉+
λτ(n)bτ(n)

λτ(n)(1− ατ(n)) + ατ(n)

≤ 2〈u− q, v2τ(n)+1 − q〉+ bτ(n).

Passing to the limit as n → ∞ in the above inequality, we see that sτ(n)+1 → 0.
Hence from (2.2) it follows that sn → 0 as n → ∞. That is, v2n+1 → q = PSu as
n → ∞. This proves the result for the case when (sn) is not eventually decreasing.
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Therefore, from Case I and Case II above, we conclude that the subsequence (v2n+1)
of (vn) converges strongly to some point q ∈ S that is nearest to u.

(ii) We now show that the subsequence (v2n) of (vn) converges strongly to the point
z = JBµ q in Fix(JBµ J

A
µ ). Note that we have from (3.2) and the nonexpansive property

of JBµ

‖v2n − z‖ =
∥∥JBµ (λnu+ (1− λn)v2n−1)− JBµ q

∥∥
≤ λn ‖u− q‖+ (1− λn) ‖v2n−1 − q‖ .

Since v2n+1 → q as n → ∞, it follows that ‖v2n − z‖ → 0 as n → ∞. This shows
that (v2n) converges strongly to z = JBµ q, as desired. This completes the proof of the
theorem. �

We now show that strong convergence properties of the sequence (xn) generated by the
inexact iterative process (1.3), (1.4) can be derived from the convergence properties
of the sequence (vn) generated by algorithm (3.1), (3.2).

Theorem 3.3. Let A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be maximal
monotone operators with Fix(JAµ J

B
µ ) =: S 6= ∅. For arbitrary but fixed vectors x0, u ∈

H, let (xn) be the sequence generated by (1.3), (1.4), where αn, λn ∈ (0, 1) and
µ > 0. Assume that limn→∞ αn = 0, limn→∞ λn = 0, and either

∑∞
n=0 αn = ∞ or∑∞

n=0 λn =∞. Suppose that any of the following conditions is satisfied

(a)
∑∞
n=0 ‖en‖ <∞ and

∑∞
n=1 ‖e′n‖ <∞;

(b)
∑∞
n=0 ‖en‖ <∞ and ‖e′n‖/αn → 0;

(c)
∑∞
n=0 ‖en‖ <∞ and ‖e′n‖/λn → 0;

(d) ‖en‖/αn → 0 and
∑∞
n=1 ‖e′n‖ <∞;

(e) ‖en‖/λn → 0 and
∑∞
n=1 ‖e′n‖ <∞;

(f) ‖en‖/αn → 0 and ‖e′n‖/αn → 0;

(g) ‖en‖/αn → 0 and ‖e′n‖/λn → 0;

(h) ‖en‖/λn → 0 and ‖e′n‖/αn → 0;

(i) ‖en‖/λn → 0 and ‖e′n‖/λn → 0;

(j) ‖en‖/αn → 0 and ‖e′n‖/αn−1 → 0;

(k) ‖en−1‖/λn → 0 and ‖e′n‖/αn−1 → 0;

(l) ‖en−1‖/λn → 0 and ‖e′n‖/λn → 0;

(m)
∑∞
n=0 ‖en‖ <∞ and ‖e′n‖/αn−1 → 0;

(n) ‖en−1‖/λn → 0 and
∑∞
n=1 ‖e′n‖ <∞.

Then the subsequence (i) (x2n+1) of (xn) converges strongly to the point q ∈ S that
is nearest to u, and (ii) (x2n) of (xn) converges strongly to the point z = JBµ q in

Fix(JBµ J
A
µ ).
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Proof. Clearly, the inequality

‖x2n − v2n‖ ≤ (1− λn) ‖x2n−1 − v2n−1‖+ ‖e′n‖ (3.10)

can be derived from the equations (1.3) and (3.1), as well as the fact that the resolvent
of B is nonexpansive. Similarly, from (1.4), (3.2) and the nonexpansive property of
JAµ , we derive

‖x2n+1 − v2n+1‖ ≤ (1− αn) ‖x2n − v2n‖+ ‖en‖ . (3.11)

Now substituting (3.10) into (3.11) yields

‖x2n+1 − v2n+1‖ ≤ (1− αn)(1− λn) ‖x2n−1 − v2n−1‖+ ‖en‖+ ‖e′n‖ .

Note that if the error sequence satisfy any of the conditions (a)-(i), then it readily
follows from Lemma 2.1 that ‖x2n+1 − v2n+1‖ → 0 as n→∞. Since v2n+1 → q = PSu
as n → ∞, it follows that x2n+1 → PSu as well. Now passing to the limit in (3.10),
we also derive ‖x2n − v2n‖ → 0. Since v2n → z = JBµ q as n → ∞, we conclude that
x2n → z as n→∞.

On the other hand, if the error sequence satisfy any of the conditions (j)-(n), then
from (3.10) and (3.11), we have

‖x2n − v2n‖ ≤ (1− αn−1)(1− λn) ‖x2n−2 − v2n−2‖+ ‖en−1‖+ ‖e′n‖ .

Lemma 2.1 guarantees that ‖x2n − v2n‖ → 0 as n → ∞. Again from the conclusion
of Theorem 3.2, we conclude that x2n → z as n→∞. Passing to the limit in (3.11),
we derive ‖x2n+1 − v2n+1‖ → 0 as n → ∞. Since v2n+1 → q as n → ∞, it follows
that x2n+1 → q as n→∞. This completes the proof of the theorem. �

Remark 3.4. We conclude by noting that any point in the fixed point set Fix(JAµ J
B
µ )

is a solution of the inclusion relation 0 ∈ Ax+Bµx, where Bµ is the Yosida approxi-
mation of B. Indeed,

p = JAµ J
B
µ p ⇔ p+ µAp 3 JBµ p ⇔ (I − JBµ )p+ µAp 3 0 ⇔ Bµp+Ap 3 0.

Note that the sum A+Bµ is maximal monotone. If the sum of two maximal monotone
operators is again maximal monotone, then one can always generate a sequence that
converges strongly to some zero of the sum of the two operators, refer to [23] for
details. It is well known that in general, the sum of two maximal monotone operators
is not maximal monotone.
The above remark leads us to the following open question.

Open Question. Can the inexact iterative process (1.3), (1.4), (or even the exact
algorithm (3.1), (3.2)), be used to approximate solutions of the inclusion relation
0 ∈ Ax+Bx, for arbitrary maximal monotone operators A and B?

It is worthy of note that for the case when one of the operators is α-inverse strongly
monotone, López et. al. [15] introduced an algorithm that converges strongly to some
solution of the above inclusion relation.
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[4] O.A. Boikanyo, G. Moroşanu, Inexact Halpern-type proximal point algorithm, J. Glob. Optim.,
51(2011), no. 1, 11-26.
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[15] G. López, V. Mart́ın-Márquez, F. Wang, H.K. Xu, Forward-Backward Splitting Methods for

Accretive Operators in Banach Spaces, Abstr. Appl. Anal. 2012, Article ID 109236, 2012, 25 p.
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