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1. Introduction

Let X be a Banach space. By BX we denote the closed unit ball of X. For notation
and terminology concerning Banach lattices we refer the reader to [11]. Let us recall
that if an inequality involves lattice and algebraic operations, then it is enough to
check its validity for real numbers to be sure that it holds for vectors in arbitrary
Banach lattice (see [11] p.1). In the next lemma we collect some lattice inequalities
which will be used in the sequel.

Lemma 1.1. Let X be a Banach lattice. Then

(i) for every x, y ∈ X
|x| − |x| ∧ |y| ≤ |x− y|,

(ii) for every z, x1, . . . , xN ∈ X and N ≥ 2, N ∈ N

|z| ≤
∧

i,j=1,...,N
i6=j

(|z − xi| ∨ |z − xj |) +

N∑
i,j=1
i6=j

|xi| ∧ |xj | (see [2]).

Given a Banach lattice X and ε ∈ [0, 1], we put

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ ≤ 1, ‖y‖ ≥ ε}.
We say that X is uniformly monotone if δm,X(ε) > 0 for all ε ∈ (0, 1]. The coefficient

ε0,m(X) = sup{ε ∈ [0, 1) : δm,X(ε) = 0}
is called the characteristic of monotonicity of the lattice X.
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In [10], the modulus of order smoothness of a Banach lattice X was introduced as
follows ρm,X(t) = sup{‖x ∨ ty‖ − 1 : x, y ∈ BX , x, y ≥ 0}, where t ∈ [0, 1].

A Banach lattice X is called order uniformly smooth if limt→0
ρm,X(t)

t = 0. The
coefficient

ρm,X(1) + 1 = sup{‖x ∨ y‖ : x, y ∈ BX , x, y ≥ 0}
is called the Riesz angle of X and denoted by α(X) (see [4]).

Kurc [10] proved the duality formulae

ρm,X∗(t) = sup
0≤ε≤1

(εt− δm,X(ε)) and δm,X(ε) = sup
0≤t≤1

(εt− ρm,X∗(t)),

for all ε, t ∈ [0, 1]. They show that a Banach lattice X is uniformly monotone (resp.
order uniformly smooth) if and only if the dual lattice X∗ is order uniformly smooth
(resp. uniformly monotone). Using the above formulae it is also easy to see that
ρm,X∗(1) < 1 if and only if ε0,m(X) < 1.

In [1] it was proved that if ρm,X(1) < 1 and ε0,m(X) < 1, then X is superreflex-
ive. In particular, if a Banach lattice X is order uniformly smooth and uniformly
monotone, then X is superreflexive.

In [2] a generalization of Riesz angle was introduced in the following way.

Definition 1.2. Let X be a Banach lattice and N ∈ N, N ≥ 2. The N -dimensional
Riesz angle of X is defined as

αN (X) = sup


∥∥∥∥∥ ∧
i,j=1,...,N

i6=j

(xi ∨ xj)

∥∥∥∥∥ : x1, . . . , xN ∈ BX , x1, . . . , xN ≥ 0

 .

Of course αN (X) ≥ 1. Moreover, α2(X) = α(X) and αN (X) ≤ αN−1(X) for every
N ≥ 3. Hence αN (X) ≤ α(X). This estimate is not sharp. It was shown in [2] that,
for every Banach lattice X and every natural N ≥ 2, we have

αN (X) ≤ N

N − 1
.

The following class of Banach lattices was introduced in [2].

Definition 1.3. Let r ∈ (0, 1]. A Banach lattice X is said to be r-N -order uniformly
noncreasy (r-N -OUNC) if for all u1, . . . , uN ∈ N−1

N BX such that ‖ui − uj‖ ≤ 1 we
have either ∥∥∥∥∥ ∧

i,j=1,...,N
i 6=j

(|ui| ∨ |uj |)

∥∥∥∥∥ ≤ r
or there exist i 6= j such that for every y ∈ X the conditions |y| ≤ |ui − uj |, ‖y‖ ≥ r
imply ‖|ui − uj | − |y|‖ ≤ r. A Banach lattice X is N -order uniformly noncreasy
(N -OUNC) if it is r-N -OUNC for some r ∈ (0, 1).

For N = 2 this definition coincides with the definition of an order uniformly non-
creasy Banach lattice given in [1]. Of course, each Banach lattice X is r-N -OUNC
with r = N−1

N αN (X). Therefore, if αN (X) < N
N−1 , then X is N -OUNC. It is also
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easy to see that X is r-N -OUNC where r = max {ε, 1− δm,X(ε)} for any ε ∈ (0, 1).
It follows that if ε0,m(X) < 1, then X is N -OUNC. The class of all N -OUNC Ba-

nach lattices contains therefore all Banach lattices X with αN (X) < N
N−1 and all

uniformly monotone lattices. In [1] and [2] we can find examples showing that this
class is essentially bigger, i.e. there exist Banach lattices which are N -OUNC, but
they are not uniformly monotone and αN (X) = N−1

N . Moreover it is shown that for
different values of N the classes of N -OUNC Banach lattices are essentially different.

Let K be a nonempty subset of a Banach space X. A mapping T : K → K is
said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for x, y ∈ K. We say that a Banach
space X has the weak fixed point property if every nonexpansive mapping defined
on a nonempty weakly compact convex subset of X has a fixed point. There is a
large literature concerning fixed point theory of nonexpansive mappings and their
generalizations (see [13] and references therein). Recently, Suzuki [16] defined a class
of generalized nonexpansive mappings as follows.

Definition 1.4. A mapping T : K → K is said to satisfy condition (C) if for all
x, y ∈ K,

1

2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖ .

Subsequently, the above definition has been extended in [14].

Definition 1.5. Let λ ∈ (0, 1). A mapping T : K → K is said to satisfy condition
(Cλ) if for all x, y ∈ K,

λ ‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖ .

We say thatX has the weak fixed point property for continuous mappings satisfying
condition (Cλ) if every such mapping defined on a nonempty weakly compact convex
subset of X has a fixed point.

It is not difficult to see that if λ1 < λ2, then condition (Cλ1
) implies condition

(Cλ2
). Several examples of mappings satisfying condition (Cλ) are given in [14, 16].

Moreover, if K is convex and T : K → K satisfies condition (Cλ) for some λ ∈ (0, 1),
then for every γ ∈ [λ, 1) the mapping Tγ : K → K defined by Tγx = γTx+ (1− γ)x
satisfies condition (Cλ

γ
).

A sequence (xn) is an approximate fixed point sequence for T (in short afps) if

lim
n→∞

‖xn − Txn‖ = 0.

2. Basic lemmas

Recall that a mapping T : M → M acting on a metric space (M,d) is said to be
asymptotically regular if

lim
n→∞

d(Tnx, Tn+1x) = 0, for all x ∈M.

Lemma 2.1. [14, Theorem 4] Let K be a bounded convex subset of a Banach space X.
Assume that T : K → K satisfies condition (Cλ) for some λ ∈ (0, 1). For γ ∈ [λ, 1)
define a sequence (xn) in K by taking x1 ∈ K and xn+1 = γTxn + (1 − γ)xn for
n ≥ 1.
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Then (xn) is an approximate fixed point sequence for T , that is Tγ is asymptotically
regular.

In [3] the following theorem was proven which is the uniform version of the above
theorem.

Theorem 2.2. Let K be a bounded convex subset of a Banach space X. Fix λ ∈
(0, 1), γ ∈ [λ, 1) and let F denote the collection of all mappings which satisfy condition
(Cλ). Let Tγ = (1− γ)I + γT for T ∈ F . Then for every ε > 0, there exists a positive
integer n0 such that

∥∥Tn+1
γ x− Tnγ x

∥∥ < ε for every n ≥ n0, x ∈ K and T ∈ F .

Let D be a nonempty weakly compact convex subset of a Banach space X and
T : D → D. It follows from the Kuratowski-Zorn lemma that there exists a minimal
(in the sense of inclusion) convex and weakly compact set K ⊂ D which is invariant
under T. The lemma below is a counterpart of the Goebel-Karlovitz lemma (see [8, 9]).
It was proved by Dhompongsa and Kaewcharoen [6, Theorem 4.14] in the case of
mappings which satisfy condition (C), and from Butsan, Dhompongsa and Takahashi
result in[5, Lemma 3.2] and Lloréns Fuster and Moreno Gálvez result in [12, Th. 4.7]
we have the same conclusion in the case of continuous mappings satisfying condition
(Cλ) for some λ ∈ (0, 1). Denote by

r(K, (xn)) = inf{lim sup
n→∞

‖xn − x‖ : x ∈ K}

the asymptotic radius of a sequence (xn) relative to K.

Lemma 2.3. Let K be a nonempty convex weakly compact subset of a Banach space
X which is minimal invariant under T : K → K. If T is continuous and satisfies con-
dition (Cλ) for some λ ∈ (0, 1), then there exists an approximate fixed point sequence
(xn) for T such that

lim
n→∞

‖xn − x‖ = inf{r(K, (yn)) : (yn) is an afps in K}

for every x ∈ K. In the case λ = 1
2 continuity assumption can be dropped.

Now let (x1n), . . . , (xNn ) be sequences in K. Put

vn =
1

N
x1n + . . .+

1

N
xNn .

The following technical lemma deals with the behavior of sequences (T kγ vn)n∈N, k =
1, 2, . . . , N .

Lemma 2.4. Let K be a convex subset of Banach lattice X and let T : K → K
satisfy condition (Cλ) for some λ ∈ (0, 1). Fix γ ∈ (λ, 1), integers M > 1, N ≥ 3 and
ε > 0 such that (M + 3)ε < 1

N . Suppose that (x1n), . . . , (xNn ) are sequences in K such
that

lim
n→∞

‖xin‖ = 1, lim
n→∞

‖xin − xjn‖ = 1 and lim
n→∞

‖|xin| ∧ |xjn|‖ = 0

for every i, j = 1, . . . , N, i 6= j and the following conditions are satisfied for every
n ∈ N

(i) min
i,j=1,...,N,i6=j

{‖xin‖, ‖xin − xjn‖} > 1− ε
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(ii) ‖Txin − xin‖ < ε, i = 1, . . . , N .

Let vn = 1
N x

1
n + . . . + 1

N x
N
n . Then there exists n0 ∈ N such that for every natural

n ≥ n0, k = 1, . . . ,M and i = 1, . . . , N

1

N
− (k + 2)ε ≤ ‖T kγ vn − xin‖ ≤

N − 1

N
+ (k + 1)ε,

where T kγ is the kth iterate of Tγ .

Proof. First, note that if N is even then

lim
n→∞

‖vn‖ ≤
1

N
lim
n→∞

(
‖|x1n|+ |x2n|‖+ ‖|x3n|+ |x4n|‖+ . . .+ ‖|xN−1n |+ |xNn |‖

)
=

1

N
lim
n→∞

(
‖x1n − x2n‖+ ‖x3n − x4n‖+ . . .+ ‖xN−1n − xNn ‖

)
=

1

N
· N

2
=

1

2
≤ N − 1

N
.

It follows from the fact that if limn→∞ ‖|xin|∧ |xjn|‖ = 0, then limn→∞ ‖|xin|+ |xjn|‖ =
limn→∞ ‖xin − xjn‖. For odd N

lim
n→∞

‖vn‖ ≤
1

N
lim
n→∞

(
‖|x1n|+ |x2n|‖+ . . .+ ‖|xN−2n |+ |xN−1n |‖+ ‖xNn ‖

)
=

1

N
lim
n→∞

(
‖x1n − x2n‖+ . . .+ ‖xN−2n − xN−1n ‖+ ‖xNn ‖

)
=

1

N
· N + 1

2
≤ N − 1

N
.

Moreover,

lim
n→∞

‖vn − xin‖ = lim
n→∞

∥∥∥∥ 1

N
x1n + . . .+

1

N
xNn − xin

∥∥∥∥
≤ 1

N
lim
n→∞

(‖x1n − xin‖+ . . .+ ‖xi−1n − xin‖+ ‖xi+1
n − xin‖+ . . .+ ‖xNn − xin‖)

≤N − 1

N
.

There exists n0 ∈ N such that for every n ≥ n0

‖vn‖ ≤
N − 1

N
+ ε and ‖vn − xin‖ ≤

N − 1

N
+ ε, i = 1, . . . , N.

Fix n ≥ n0. We have

‖vn − xin‖ ≥ ‖xin‖ − ‖vn‖ ≥ 1− ε−
(
N − 1

N
+ ε

)
=

1

N
− 2ε.

Thus
1

N
− 2ε ≤ ‖vn − xin‖ ≤

N − 1

N
+ ε.

Since for every i = 1, . . . , N

λ‖Txin − xin‖ ≤ ‖Txin − xin‖ < ε <
1

N
− 2ε ≤ ‖vn − xin‖
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it follows from condition (Cλ) that

‖Txin − Tvn‖ ≤ ‖xin − vn‖
so

‖Tγxin − Tγvn‖ ≤ γ‖Txin − Tvn‖+ (1− γ)‖xin − vn‖ ≤ ‖xin − vn‖.
Now we proceed by induction on k. For k = 1, notice that

‖Tγvn − xin‖ ≤‖Tγvn − Tγxin‖+ ‖Tγxin − xin‖

≤‖vn − xin‖+ ε ≤ N − 1

N
+ 2ε.

To prove the lower estimate note that for i 6= j

‖Tγvn − xin‖ ≥‖xin − xjn‖ − ‖Tγvn − xjn‖

≥1− ε−
(
N − 1

N
+ 2ε

)
=

1

N
− 3ε.

Now we suppose that the lemma is true for a fixed k < M . Then by induction
assumption

λ

γ
‖Tγxin − xin‖ ≤ ‖Tγxin − xin‖ < ε <

1

N
− (k + 2)ε ≤ ‖xin − T kγ vn‖

and hence
‖T k+1

γ vn − Tγxin‖ ≤ ‖T kγ vn − xin‖.
We thus get

‖T k+1
γ vn − xin‖ ≤‖T k+1

γ vn − Tγxin‖+ ‖Tγxin − xin‖

≤‖T kγ vn − xin‖+ ε ≤ N − 1

N
+ (k + 2)ε.

Now we prove the lower estimate. For i 6= j

‖T k+1
γ vn − xin‖ ≥‖xin − xjn‖ − ‖T k+1

γ vn − xjn‖

≥1− ε−
(
N − 1

N
+ (k + 2)ε

)
=

1

N
− (k + 3)ε.

�

In the sequel we will need the following lemma.

Lemma 2.5. Let K be a convex weakly compact subset of a Banach lattice X. Suppose
that a mapping T : K → K satisfies condition (Cλ) for some λ ∈ (0, 1), N ≥ 3 is a
natural number and (x1n), . . . , (xNn ) are weakly null approximate fixed point sequences
for T in K such that for every i = 1, . . . , N and x ∈ K

r = lim
n→∞

‖xin − x‖ = inf{r(K, (yn)) : (yn) is an afps in K} (2.1)

and for every i, j = 1, . . . , N, i 6= j

lim
n→∞

‖|xin| ∧ |xjn|‖ = 0.

Then for every ε > 0 there exist subsequences of (x1n), . . . , (xNn ), denoted again
(x1n), . . . , (xNn ), and a sequence (zn) in K such that
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(i) ‖zn‖ > r(1− ε/2)
(ii) ‖zn − xin‖ ≤ rN−1N + ε, i = 1, . . . , N

for every n ∈ N.

Proof. Let us first notice that if S : 1
aK →

1
aK is defined by Sy = 1

aT (ay), then

‖Sy − y‖ =
1

a
‖T (ay)− ay‖

and S satisfies condition (Cλ). It follows that if the sequences (x1n), . . . , (xNn ) satisfy

the assumptions of Lemma 2.5, then the sequences (
x1
n

r ), . . . , (
xNn
r ) satisfy these as-

sumptions with S and a = 1, i.e., (
x1
n

r ), . . . , (
xNn
r ) are weakly null afps for S : 1

rK →
1
rK

and

1 = lim
n→∞

‖x
i
n

r
− y‖ = inf{r(1

r
K, (zn)) : (zn) is an afps for S in K}

for every y ∈ 1
rK. Therefore it suffices to prove the lemma for r = 1.

We claim that for every ε > 0 there exists δ(ε) > 0 such that if x ∈ K and
‖Tx − x‖ < δ(ε), then ‖x‖ > 1 − ε/2. Indeed, otherwise, arguing as in [7], there
exists ε0 > 0 such that we can find wn ∈ K with ‖Twn − wn‖ < 1

n and ‖wn‖ ≤
1 − ε0/2 for every n ∈ N. Then the sequence (wn) is an approximate fixed point
sequence in K, but lim supn→∞ ‖wn‖ ≤ 1 − ε0/2, which contradicts our assumption
that lim supn→∞ ‖wn‖ ≥ 1.

Fix ε > 0 and γ ∈ (λ, 1). From Theorem 2.2, there exists M > 1 such that

‖TM+1
γ x− TMγ x‖ < γδ(ε) (2.2)

for every x ∈ K. Choose η > 0 such that (M + 3)η < 1
N and (M + 1)η < ε. Put

vn = 1
N x

1
n+ . . .+ 1

N x
N
n and consider sequences (T kγ vn)n∈N for k = 1, . . . ,M . Applying

(2.1) (with r = 1) and passing to subsequences, we can assume that the assumptions
of Lemma 2.4 are satisfied, i.e., for every i = 1, . . . , N limn→∞ ‖xin‖ = 1 and for
i, j = 1, . . . , N, i 6= j

lim
n→∞

‖xin − xjn‖ = 1 and lim
n→∞

‖|xin| ∧ |xjn|‖ = 0

and for every n ∈ N
(i) min

i,j=1,...,N,i6=j
{‖xin‖, ‖xin − xjn‖} > 1− η,

(ii) ‖Txin − xin‖ < η, i = 1, . . . , N .

Denote zn = TMγ vn. It follows from Lemma 2.4 that there exists n0 ∈ N such that
for every n ≥ n0 and i = 1, . . . , N we have

‖zn − xin‖ = ‖TMγ vn − xin‖ ≤
N − 1

N
+ (M + 1)η ≤ N − 1

N
+ ε. (2.3)

Furthermore, by (2.2)

‖Tzn − zn‖ =
1

γ
‖TM+1

γ vn − TMγ vn‖ < δ(ε)

and consequently,

‖zn‖ > 1− ε/2. (2.4)
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Passing again to subsequences we can assume that (2.3) and (2.4) hold for every
n ∈ N. �

3. Fixed point theorems

Definition 3.1. A Banach lattice X is said to be weakly orthogonal if

lim inf
n→∞

lim inf
m→∞

‖|xn| ∧ |xm|‖ = 0

whenever (xn) is a sequence in X which converges weakly to 0.

This definition was given by Borwein and Sims in [4], but the reader should be
aware that also a different property is called weak orthogonality in the literature (see
[15]). It is easy to show that c0, c, lp (1 ≤ p < ∞) are weakly orthogonal while l∞
and Lp([0, 1]) do not have this property.

The Banach-Mazur distance of two isomorphic Banach spaces X and Y is defined
by the formula

d(X,Y ) = inf ‖S‖‖S−1‖
where the infimum is taken over all linear isomorphisms S of X onto Y . Borwein
and Sims in [4] proved that a Banach space X has the weak fixed point property
for nonexpansive mappings if there exists a weakly orthogonal Banach lattice Y such
that

d(X,Y )α(Y ) < 2.

This result was generalized in [1]. It was shown that a Banach space X has the weak
fixed point property if there exists a weakly orthogonal 2-r-OUNC Banach lattice Y
such that d(X,Y )r < 1. S. Dhompongsa and A. Kaewcharoen in [6] proved the same
result for continuous mappings satisfying condition (C). Their result was generalized
for the class of N -OUNC Banach lattices in [2]. Now we are ready to prove our main
theorem which is a generalization of Theorem 3.9 from [2].

Theorem 3.2. Let (X, ‖ · ‖) be a Banach lattice. Assume that there exist a norm
‖ · ‖1 on X and a constant d > 0 such that

‖x‖1 ≤ ‖x‖ ≤ d‖x‖1
for every x ∈ X and Y = (X, ‖ · ‖1) is weakly orthogonal r − N − OUNC Banach
lattice satisfying dr < 1. Then X has the weak fixed point property for continuous
mappings satisfying condition (Cλ) for some λ ∈ (0, 1). In the case λ = 1

2 continuity
assumption can be dropped.

Proof. Assume that the conclusion of the theorem is false. Then there exist a
nonempty weakly compact convex subset K of X and a mapping T : K → K satis-
fying condition (C) or continuous mapping satisfying (Cλ) for some λ ∈ (0, 1) which
has no fixed point. We can assume that K is minimal T -invariant. By Lemma
2.3 there exists an approximate fixed point sequence (xn) for T in K such that
r = limn→∞ ‖xn − x‖ = inf{r(K, (yn)) : (yn) is an afps in K} for every x ∈ K.
There is no loss of generality in assuming that r = 1 and (xn) converges weakly to 0.
In particular 0 ∈ K.
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Let Y = (X, ‖ · ‖1) be a weakly orthogonal r − N − OUNC Banach lattice such
that ‖x‖1 ≤ ‖x‖ ≤ d‖x‖1 for every x ∈ X and let dr < 1. Choose ε > 0 such that
dr < 1−ε

1+ε . Similarly as in [2] we find subsequences (x1n), . . . , (xNn ) of (xn) satisfying

lim
n→∞

‖xin − xjn‖ = 1 and lim
n→∞

‖|xin| ∧ |xjn|‖1 = 0

for i, j = 1, . . . , N, i 6= j. From Lemma 2.5 there exist subsequences of (x1n), . . . , (xNn ),
denoted again (x1n), . . . , (xNn ), and a sequence (zn) such that for i = 1, . . . , N and
every n ∈ N

‖zn − xin‖ ≤
N − 1

N
(1 + ε) and ‖zn‖ > 1− ε/2.

There exists n0 ∈ N such that for every n ≥ n0 and i, j = 1, . . . , N, i 6= j

‖xin‖ > 1− ε/2 and ‖|xin| ∧ |xjn|‖1 <
ε

2N(N − 1)d
<

ε

2d
.

Fix n ≥ n0 and put uin = (zn − xin)/(1 + ε) and yijn = (|xin| − |xin| ∧ |xjn|)/(1 + ε) for
i, j = 1, . . . , N, i < j. Then for all i, j = 1, . . . , N, i < j we have

‖uin‖1 = ‖zn − xin‖1/(1 + ε) ≤ ‖zn − xin‖/(1 + ε) ≤ N − 1

N

and

‖yijn ‖1 = ‖|xin| − |xin| ∧ |xjn|‖1/(1 + ε) ≥ (‖xin‖1 − ‖|xin| ∧ |xjn|‖1)/(1 + ε)

>

(
1

d
‖xin‖ −

ε

2d

)
/(1 + ε) > (1− ε)/(d(1 + ε)) > r.

By Lemma 1.1 |yijn | ≤ |uin − ujn| for i, j = 1, . . . , N, i < j. Moreover,

‖|uin − ujn| − |yijn |‖1 =‖|xin − xjn| − |xin|+ |xin| ∧ |xjn|‖1/(1 + ε)

≥‖||xin| − |xjn|| − |xin|+ |xin| ∧ |xjn|‖1/(1 + ε)

=‖|xjn| − |xin| ∧ |xjn|‖1/(1 + ε)

≥(‖xjn‖1 − ‖|xin| ∧ |xjn|‖1)/(1 + ε)

≥(
1

d
‖xin‖ −

ε

2d
)/(1 + ε)

≥(1− ε)/(d(1 + ε)) > r

and

(1− ε/2)/(1 + ε) < ‖zn‖/(1 + ε) ≤ d‖zn‖1/(1 + ε)

≤d


∥∥∥∥∥∥∥
∧

i,j=1,...
i6=j

(|zn − xin| ∨ |zn − xjn|)

∥∥∥∥∥∥∥
1

+

N∑
i,j=1
i6=j

‖|xin| ∧ |xjn|‖1

 /(1 + ε)

≤d

∥∥∥∥∥∥∥
∧

i,j=1,...,N

i6=j

(|uin| ∨ |ujn|)

∥∥∥∥∥∥∥
1

+ ε/(2(1 + ε)).
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Thus ∥∥∥∥∥∥∥
∧

i,j=1,...,N

i6=j

(|uin| ∨ |ujn|)

∥∥∥∥∥∥∥
1

>
1

d
· 1− ε

1 + ε
> r.

Hence Y = (X, ‖ · ‖1) is not r −N −OUNC. �

Corollary 3.3. Every weakly orthogonal N -OUNC Banach lattice has the weak fixed
point property for continuous mappings satisfying condition (Cλ) for some λ ∈ (0, 1).
In the case λ = 1

2 continuity assumption can be dropped.
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