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1. Introduction

The subsequent theorem seems to be the most classical result concerning stability
of the Cauchy equation

T (x+ y) = T (x) + T (y). (1.1)

Theorem 1.1. Let E1 and E2 be two normed spaces, E2 be complete, c ­ 0, s ∈
R \ {1}, and f : E1 → E2 be a mapping such that

‖f(x+ y)− f(x)− f(y)‖ ¬ c(‖x‖s + ‖y‖s), x, y ∈ E1 \ {0}. (1.2)

Then there exists a unique solution T : E1 → E2 of equation (1.1) with

‖f(x)− T (x)‖ ¬ c‖x‖s

|1− 2s−1|
, x ∈ E1 \ {0}. (1.3)

That result is due to D.H. Hyers [24] (s = 0), T. Aoki [3] (0 < s < 1; cf. [46]),
Z. Gajda [21] (s > 1) and Th.M. Rassias [47] (s < 0). For more information on
stability of functional equations we refer to [8, 26, 34, 35, 42]. Let us only mention
that the main motivation for the investigation of this issue was given by a problem
raised by S.M. Ulam in 1940 and several papers inspired by it that were published in
the next few years (see [3, 4, 5, 6, 7, 24, 25, 27, 28, 29]).

Moreover, recently, the following result (improving Theorem 1.1 for s < 0) has
been proved in [11] (see also [45]).
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Theorem 1.2. Let E1 and E2 be two normed spaces, c ­ 0, s ∈ (−∞, 0), and
f : E1 → E2 satisfy (1.2). Then f is additive, i.e., it is a solution of equation (1.1).

A result analogous to Theorem 1.1 has been obtained in [9] for the subsequent
functional equation

f(px+ (1− p)y) + f((1− p)x+ py) = f(x) + f(y), (1.4)

with a fixed p ∈ F, where F ∈ {R,C} (R and C denote the sets of real and complex
numbers, resp.), for functions f mapping a normed space over F into a normed space.
It reads as follows.

Theorem 1.3. Let E1 be a normed space over a field F ∈ {R,C}, E2 be a Banach
space, p ∈ F, A, k ∈ (0,∞), |p|k + |1− p|k < 1, g : E1 → E2, and

‖g(px+ (1− p)y) + g((1− p)x+ py)− g(x)− g(y)‖

¬ A(‖x‖k + ‖y‖k), x, y ∈ E1.

Then there exists a unique solution G : E1 → E2 of equation (1.4) such that

‖g(x)−G(x)‖ ¬ A‖x‖k

1− |p|k − |1− p|k
, x ∈ E1.

In this paper we prove a result (see Theorem 3.1) that complements Theorem 1.3
(analogously as Theorem 1.2 improves Theorem 1.1) and show that it yields a sim-
ple characterization of complex inner product spaces (see Corollary 3.1). We also
show that from Theorem 3.1 we can derive inequalities characterizing derivations, Lie
derivations and Lie homomorphisms in algebras and Lie algebras, respectively.

Let us recall (cf. [20]) that, for a fixed number p ∈ F, where F ∈ {R,C}, a function
f mapping a linear space E over F into a semigroup (S,+) is p-Wright affine if it
satisfies functional equation (1.4) (for all x, y ∈ E). This definition of p-Wright affine
functions is connected to the notions of p-Wright convexity and p-Wright concavity
(see, e.g., [20, 22, 38, 44, 49]) for S = R = F. Clearly, for p = 1/2, equation (1.4) is
just the well known Jensen’s equation

f

(
x+ y

2

)
=
f(x) + f(y)

2
.

For

p =
eiα + 1

2
(1.5)

(with α ∈ R) equation (1.4) characterizes norms in the complex inner product spaces
(see Theorem 4.1).

2. Auxiliary result

To present an auxiliary (fixed point) result we need to introduce some necessary
hypotheses (R+ stands for the set of nonnegative reals and AB denotes the family of
all functions mapping a set B 6= ∅ into a set A 6= ∅).
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(H1) X is a nonempty set, E2 is a Banach space, f1, . . . , fk : X → X and
L1, . . . , Lk : X → R+ are given, and T : E2

X → E2
X is an operator satis-

fying the inequality∥∥T ξ(x)− T µ(x)
∥∥ ¬ k∑

i=1

Li(x)
∥∥ξ(fi(x))− µ(fi(x))

∥∥,
ξ, µ ∈ E2X , x ∈ X.

(H2) Λ: R+X → R+X is defined by

Λδ(x) :=
k∑
i=1

Li(x)δ(fi(x)), δ ∈ R+X , x ∈ X.

Now we are in a position to present the above mentioned fixed point theorem
proved in [12, Theorem 1] (see also [13, Theorem 2] and [17]).

Theorem 2.1. Let hypotheses (H1), (H2) be valid and functions ε : X → R+ and
ϕ : X → E2 fulfil the following two conditions∥∥T ϕ(x)− ϕ(x)

∥∥ ¬ ε(x), x ∈ X,

ε∗(x) :=
∞∑
n=0

Λnε(x) <∞, x ∈ X.

Then there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ¬ ε∗(x), x ∈ X.

Moreover,
ψ(x) := lim

n→∞
T nϕ(x), x ∈ X.

From now on we assume that (W,+) is a group uniquely divisible by 2, V is a linear
space over a field F, p ∈ F \ {0, 1}, p̂ := 1 − p. So, equation (1.4) can be written in
the form

g(px+ p̂y) + g(p̂x+ py) = g(x) + g(y). (2.1)

First, we prove an auxiliary proposition which describes functions h : V → W
satisfying (1.4) for x, y ∈ V \ {0}. To this end let us recall that a function h : V →W
is quadratic provided it is a solution to the functional equation

h(x+ y) + h(x− y) = 2h(x) + 2h(y).

Proposition 2.2. If a function g : V →W satisfies

g(px+ p̂y) + g(p̂x+ py) = g(x) + g(y), x, y ∈ V \ {0}, (2.2)

then
g(x) = A(x) +B(x) + c, x ∈ V, (2.3)

with some c ∈ W , an additive A : V → W and a quadratic B : V → W fulfilling the
condition

B(x) = B((2p− 1)x), x ∈ V. (2.4)
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Conversely, if a function g : V → W has the form (2.3) with some c ∈ W , an
additive A : V →W and a quadratic B : V →W such that (2.4) holds, then it satisfies
the equation (2.1) (for all x, y ∈ V ).

Proof. Assume that g fulfils (2.2). Let ge, go : V → W denote the even and the odd
parts of g, respectively, i.e.,

ge(x) :=
g(x) + g(−x)

2
, go(x) :=

g(x)− g(−x)
2

, x ∈ V. (2.5)

Obviously, ge and go are solution of (2.2), too.
Let A := go. We show that A is additive. Take t ∈ V and write

s1 = t− t

p
.

Then ps1 + p̂t = 0, whence (2.2) yields

A(p(x+ t) + p̂(y + s1)) +A(p̂x+ py)

= A(x+ t) +A(y + s1), x, y ∈ V, x 6= −t, y 6= −s1.

Subtracting this and (2.2) gives

A(x+ t)−A(x) +A(y + s1)−A(y) (2.6)

= A(p(x+ t) + p̂(y + s1))−A(px+ p̂y),

x, y ∈ V \ {0}, x 6= −t, y 6= −s1.

Next, write s2 = pt/p̂. Then p̂s2 − pt = 0, whence (2.6) (with x replaced by x− t
and y replaced by y + s2) gives

A(x)−A(x− t) +A(y + s1 + s2)−A(y + s2)

= A(p(x+ t) + p̂(y + s1))−A(px+ p̂y),

x, y ∈ V, x 6= t, x 6= 0, y 6= −s2, y 6= −s1 − s2.

Subtracting this and (2.6) we get

A(x)−A(x− t)−A(x+ t) +A(x) (2.7)

= −A(y + s1 + s2) +A(y + s2) +A(y + s1)−A(y)

x, y ∈ V \ {0}, x /∈ {t,−t}, y /∈ {−s1,−s2,−s1 − s2}.

Replacing x by −x in (2.7) we obtain

A(−x)−A(−x− t)−A(−x+ t) +A(−x)

= −A(y + s1 + s2) +A(y + s2) +A(y + s1)−A(y),

x, y ∈ V \ {0}, x /∈ {t,−t}, y /∈ {−s1,−s2,−s1 − s2}.

Subtracting this and (2.7) we finally have

4A(x)− 2A(x− t)− 2A(x+ t) = 0, x ∈ V \ {0, t,−t}.

Thus we have proved that

2A(x) = A(x+ t) +A(x− t), x, t ∈ V, x /∈ {0, t,−t}. (2.8)
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Further, A is odd, so A(0) = 0 and

2A(0) = 0 = A(t)−A(t) = A(t) +A(−t), t ∈ V.

This and (2.8) imply that

2A(x) = A(x+ t) +A(x− t), x, t ∈ V, x /∈ {t,−t}. (2.9)

Take z, w ∈ V \ {0} and write

x =
z + w

2
, t =

w − z
2

.

Then x 6= t and x 6= −t, whence (2.9) implies that

2A
(z + w

2

)
= A(w) +A(z).

In this way we have proved that

A
(z + w

2

)
=
A(z) +A(w)

2
, z, w ∈ V \ {0}. (2.10)

Fix z ∈ V \ {0} and write Vz := {az : a ∈ (0,∞)}. Then Vz is a convex set and
consequently there exist an additive mapping Az : Vz → W and a constant wz ∈ W
such that

A(x) = Az(x) + wz, x ∈ Vz.
Take a ∈ (0,∞). Then

Az(az) + wz = A(az) = A
(3az − az

2

)
=
A(3az)−A(az)

2

=
Az(3az)−Az(az)

2
= Az(az),

which means that wz = 0. Hence

2A
(1

2
z
)

= 2Az
(1

2
z
)

= Az(z) = A(z).

Therefore, in view of (2.10), we obtain that

A
(z + w

2

)
=
A(z) +A(w)

2
, z, w ∈ V.

This implies that A is additive.
Now we prove that the function

B(x) := ge(x)− g(0), x ∈ V

is quadratic. First we show that

B(px+ p̂y) +B(p̂x+ py) = B(x) +B(y), x, y ∈ V. (2.11)

Replacing x by (p− 1)x and y by px in (2.2) we get

g(0) + g((2p− 1)x) = g((p− 1)x) + g(px), x ∈ V. (2.12)

Next, setting y = −x in (2.2) we obtain

g((2p− 1)x) + g((1− 2p)x) = g(x) + g(−x), x ∈ V.
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Thus the even part of g satisfies

ge((2p− 1)x) = ge(x), x ∈ V.

By (2.12) it follows that

ge(0) + ge(x) = ge(p̂x) + ge(px), x ∈ V,

whence
B(px) +B(p̂x) = B(x) +B(0),

which means that (2.11) holds.
Take t1 ∈ V and write s1 = t1 − t1

p . Then ps1 + p̂t1 = 0, so (2.11) yields

B(p(x+ t1) + p̂(y + s1)) +B(p̂x+ py)

= B(x+ t1) +B(y + s1), x, y ∈ V.

Subtracting this and (2.11) gives

B(x+ t1)−B(x) +B(y + s1)−B(y) (2.13)

= B(p(x+ t1) + p̂(y + s1))−B(px+ p̂y), x, y ∈ V.

Next, take t2 ∈ V and write s2 = −t2p/p̂. Then p̂s2+ pt2 = 0, whence (2.13) (with
x replaced by x+ t2 and y replaced by y + s2) gives

B(x+ t1 + t2)−B(x+ t2) +B(y + s1 + s2)−B(y + s2)

= B(p(x+ t1) + p̂(y + s1))−B(p̂x+ py), x, y ∈ V.

Subtracting this and (2.13) we get

B(x+ t1 + t2)−B(x+ t2)−B(x+ t1) +B(x) (2.14)

= −B(y + s1 + s2) +B(y + s2) +B(y + s1)−B(y), x, y ∈ V.

Replacing x by x− t2 in (2.14) we obtain

B(x+ t1)−B(x)−B(x+ t1 − t2) +B(x− t2)
= −B(y + s1 + s2) +B(y + s2) +B(y + s1)−B(y), x, y ∈ V.

Subtracting this and (2.14), and taking x = 0 we finally have

B(t1)−B(t1 − t2) +B(−t2)−B(t1 + t2) +B(t2) +B(t1) = 0.

Thus we have proved that

B(t1 − t2) +B(t1 + t2) = 2B(t1) + 2B(t2), t1, t2 ∈ V,

which means that B is quadratic. Consequently (2.3) holds with c = g(0).
For the proof of (2.4) note that (2.11) holds, and this, with y = −x, gives

B(px− p̂x) = B(x), x ∈ V \ {0},

which actually is (2.4).
For the proof of the converse, assume that a function g : V →W has the form (2.3)

with some c ∈ W , an additive A : V → W and a quadratic B : V → W such that
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(2.4) holds. It is well known (see, e.g., [1]) that there exists a biadditive symmetric
L : V 2 →W such that B(x) = L(x, x) for x ∈ V . It is easy to check that (2.4) implies

L(px, p̂x) = 0, x ∈ V, (2.15)

whence by simple calculations we obtain

B(px+ p̂y) +B(p̂x+ py)

= L(px+ p̂y, px+ p̂y) + L(p̂x+ py, p̂x+ py)

= 2L(p(x+ y), p̂(x+ y)) + L(px, p̂x) + L(px, p̂x) + L(x, x) + L(y, y)

= B(x) +B(y), x, y ∈ V.

This implies that g satisfies the equation (2.1) (for all x, y ∈ V ). �

Remark 2.3. In view of Proposition 2.2, it is easily seen that g : V →W fulfils (2.2)
if and only if g satisfies the equation (2.1) (for all x, y ∈ V ).

Remark 2.4. The proof of Proposition 2.2 is very long. This raises a natural question
of a shorter proof of this proposition.

3. Approximately p-Wright affine functions

In this section we show that a fixed point approach (for some information on this
approach see [8, 14, 15, 19]) can be applied to prove a theorem on stability of the
equation of p-Wright affine functions (according to the terminology used in [39] (see
also [8, 10, 23, 37]), it can be actually called a hyperstability result). Namely, we have
the following.

Theorem 3.1. Let X be a normed space over a field F ∈ {R,C}, Y be a normed
space, p ∈ F \ {0, 1, 1/2}, c ­ 0 and k < 0. Then every function g : X → Y with

‖g(px+ p̂y) + g(p̂x+ py)− g(x)− g(y)‖ (3.1)

¬ c(‖x‖k + ‖y‖k), x, y ∈ X \ {0},
is p-Wright affine (i.e., is a solution to (1.4)).

Proof. First we notice that without loss of generality we can assume that Y is a Banach
space, because otherwise we can replace it by its completion.

Replacing x by (mp − m + 1)x and taking y = (mp + 1)x in (3.1), for m ∈
N \ {1/p̂,−1/p}, we get

‖g((mp−m+ 1)x) + g((mp+ 1)x)− g((2mp−m+ 1)x)− g(x)‖ (3.2)

¬ c(|mp−m+ 1|k + |mp+ 1|k)‖x‖k, x ∈ X \ {0}.
Write

Am := c(|mp−m+ 1|k + |mp+ 1|k), εm(x) := Am‖x‖k, x ∈ X \ {0},
and

Tmξ(x) := ξ((mp−m+ 1)x) + ξ((mp+ 1)x)− ξ((2mp−m+ 1)x)

for x ∈ X \ {0}, ξ ∈ Y X\{0}. Then (3.2) takes the form

‖Tmg(x)− g(x)‖ ¬ εm(x), x ∈ X \ {0}.
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Let
Λmη(x) := η((mp−m+ 1)x) + η((mp+ 1)x) + η((2mp−m+ 1)x)

for η ∈ R+X\{0}, x ∈ X \ {0}. Then it is easily seen that Λm has the form described
in (H2) with k = 3 and

f1(x) = (mp−m+ 1)x, f2(x) = (mp+ 1)x,

f3(x) = (2mp−m+ 1)x, L1(x) = L2(x) = L3(x) = 1

for x ∈ X \ {0}. Moreover, for every ξ, µ ∈ Y X\{0}, x ∈ X \ {0},

‖Tmξ(x)− Tmµ(x)‖
= ‖ξ((mp−m+ 1)x) + ξ((mp+ 1)x)− ξ((2mp−m+ 1)x)

− µ((mp−m+ 1)x)− µ((mp+ 1)x) + µ((2mp−m+ 1)x)‖
¬ ‖ξ((mp−m+ 1)x)− µ((mp−m+ 1)x)‖

+ ‖ξ((mp+ 1)x)− µ((mp+ 1)x)‖
+ ‖ξ((2mp−m+ 1)x)− µ((2mp−m+ 1)x)‖

=
3∑
i=1

‖ξ(fi(x))− µ(fi(x))‖,

so (H1) is valid.
Let m0 ∈ N be such that m0 > max{1/p̂,−1/p} and

|mp−m+ 1|−1 + |mp+ 1|−1 + |2mp−m+ 1|−1 < 1, m ­ m0.

Then

ε∗m(x) :=
∞∑
n=0

Λnmεm(x)

= Am

∞∑
n=0

(
|mp−m+ 1|k + |mp+ 1|k + |2mp−m+ 1|k

)n‖x‖k
=

Am‖x‖k

1− |mp−m+ 1|k − |mp+ 1|k − |2mp−m+ 1|k

for m ­ m0 and x ∈ X \ {0}.
Thus, according to Theorem 2.1, for each m ­ m0 there exists a unique solution

Gm : X \ {0} → Y of the equation

Gm(x) = Gm((mp−m+ 1)x) +Gm((mp+ 1)x)−Gm((2mp−m+ 1)x)

such that

‖g(x)−Gm(x)‖ ¬ Am‖x‖k

1− |mp−m+ 1|k − |mp+ 1|k − |2mp−m+ 1|k

for x ∈ X \ {0}. Moreover,

Gm(x) := lim
n→∞

(T nmg)(x), x ∈ X \ {0}.
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We show that

‖T nmg(px+ p̂y) + T nmg(p̂x+ py)− T nmg(x)− T nmg(y)‖ (3.3)

¬ c(|mp−m+ 1|k + |mp+ 1|k + |2mp−m+ 1|k)n(‖x‖k + ‖y‖k)

for every x, y ∈ X \ {0}, n ∈ N0.
If n = 0, then (3.3) is simply (3.1). So, take l ∈ N0 and suppose that (3.3) holds

for n = l and x, y ∈ X \ {0}. Then∥∥T l+1m g(px+ p̂y) + T l+1m g(p̂x+ py)− T l+1m g(x)− T l+1m g(y)
∥∥

=
∥∥T lmg((mp−m+ 1)(px+ p̂y)) + T lmg((mp+ 1)(px+ p̂y))

− T lmg((2mp−m+ 1)(px+ p̂y))

+ T lmg((mp−m+ 1)(p̂x+ py)) + T lmg((mp+ 1)(p̂x+ py))

− T lmg((2mp−m+ 1)((p̂x+ py))

− T lmg((mp−m+ 1)x)− T lmg((mp+ 1)x) + T lmg((2mp−m+ 1)x)

− T lmg((mp−m+ 1)y)− T lmg((mp+ 1)y) + T lmg((2mp−m+ 1)y)
∥∥

¬
∥∥T lmg((mp−m+ 1)(px+ p̂y)) + T lmg((mp−m+ 1)(p̂x+ py))

− T lmg((mp−m+ 1)x)− T lmg((mp−m+ 1)y)
∥∥

+
∥∥T lmg((mp+ 1)(px+ p̂y)) + T lmg((mp+ 1)(p̂x+ py))

− T lmg((mp+ 1)x)− T lmg((mp+ 1)y)
∥∥

+ ‖T lmg((2mp−m+ 1)(px+ p̂y)) + T lmg((2mp−m+ 1)(p̂x+ py))

− T lmg((2mp−m+ 1)x)− T lmg((2mp−m+ 1)y)‖

and consequently∥∥T l+1m g(px+ p̂y) + T l+1m g(p̂x+ py)− T l+1m g(x)− T l+1m g(y)
∥∥

¬ c(|mp−m+ 1|k + |mp+ 1|k + |2mp−m+ 1|k)l

× (‖(mp−m+ 1)x‖k + ‖(mp−m+ 1)y‖k)

+ c(|mp−m+ 1|k + |mp+ 1|k + |2mp−m+ 1|k)l

× (‖(mp+ 1)x‖k + ‖(mp+ 1)y‖k)

+ c(|mp−m+ 1|k + |mp+ 1|k + |2mp−m+ 1|k)l

× (‖(2mp−m+ 1)x‖k + ‖(2mp−m+ 1)y‖k)

= c(|mp−m+ 1|k + |mp+ 1|k

+ |2mp−m+ 1|k)l+1(‖x‖k + ‖y‖k)

for x, y ∈ X \ {0}.
Letting n→∞ in (3.3), we obtain that

Gm(px+ p̂y) +Gm(p̂x+ py) = Gm(x) +Gm(y), x, y ∈ X \ {0};
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moreover,

‖g(x)−Gm(x)‖

¬ c(|mp−m+ 1|k + |mp+ 1|k)
1− |mp−m+ 1|k − |mp+ 1|k − |2mp−m+ 1|k

‖x‖k

for x ∈ X \ {0}. Hence, with m → ∞, we obtain that (2.2) holds. So, according to
Proposition 2.2 and Remark 2.3, g satisfies equation (2.1) (for all x, y ∈ X), which
completes the proof. �

4. Characterization of complex inner product spaces

In this part we show that Theorem 3.1 yields a characterization of complex inner
product spaces.

Theorem 4.1. The following three statements are valid.
(i) Let V be a normed space over F ∈ {R,C}. Then, for every p ∈ F with |2p−1| 6∈
{0, 1}, r > 0 and k ∈ (−∞, 0), we have

sup
x,y∈V \{0}

∣∣‖px+ p̂y‖r + ‖p̂x+ py‖r − ‖x‖r − ‖y‖r
∣∣

‖x‖k + ‖y‖k
=∞.

(ii) Assume that V is a complex normed space and there exist p ∈ C \ R and
k ∈ (−∞, 0) such that

sup
x,y∈V \{0}

∣∣‖px+ p̂y‖2 + ‖p̂x+ py‖2 − ‖x‖2 − ‖y‖2
∣∣

‖x‖k + ‖y‖k
<∞. (4.1)

Then V is an inner product space and |2p− 1| = 1.
(iii) Let V be an inner product space over F ∈ {R,C}. Then

‖px+ p̂y‖2 + ‖p̂x+ py‖2 = ‖x‖2 + ‖y‖2, x, y ∈ V,
for every p ∈ F with |2p− 1| = 1.

Proof. Take p ∈ F with |2p− 1| 6∈ {0, 1}, r > 0 and k ∈ (−∞, 0) and suppose that

sup
x,y∈V \{0}

∣∣‖px+ p̂y‖r + ‖p̂x+ py‖r − ‖x‖r − ‖y‖r
∣∣

‖x‖k + ‖y‖k
<∞. (4.2)

This means that the function g : V → R, g(x) = ‖x‖r, satisfies∣∣g(px+ p̂y) + g(p̂x+ py)− g(x)− g(y)
∣∣ ¬M(‖x‖k + ‖y‖k), (4.3)

x, y ∈ V \ {0},
with some M > 0. Next, it is easily seen that p 6∈ {0, 1, 1/2}. Consequently, in view
of Theorem 3.1,

‖px+ p̂y‖r + ‖p̂x+ py‖r = ‖x‖r + ‖y‖r, x, y ∈ V. (4.4)

Setting y = −x in (4.4) we get

|2p− 1|r‖x‖r = ‖x‖r, x ∈ V,
hence |2p− 1| = 1, which is a contraction.



APPROXIMATELY p-WRIGHT AFFINE FUNCTIONS 79

For the proof of (ii) observe that (4.1) is just condition (4.2) with r = 2. Hence

‖px+ p̂y‖2 + ‖p̂x+ py‖2 = ‖x‖2 + ‖y‖2, x, y ∈ V, (4.5)

and |2p − 1| = 1. According to Proposition 2.2, (2.3) holds with some c ∈ W , an
additive A : V → W , and a quadratic B : V → W . From the fact that g is even and
g(0) = 0, we obtain

g(x) = B(x), x ∈ V, (4.6)
which means that for every x, y ∈ V we have the parallelogram equality

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
Consequently V is an inner product space.

It remains to show (iii). So fix p ∈ F with |2p − 1| = 1. Note that the case F = R
is trivial, because then p = 1 or p = 0. So assume that F = C. Let 〈x, y〉 denote the
inner product of vectors x, y ∈ V . Write

b(x, y) =
〈x, y〉+ 〈y, x〉

2
, g(x) := ‖x‖2 = b(x, x), x, y ∈ V.

Then

b(x, y) =
g(x+ y)− g(x− y)

4
, x, y ∈ V,

whence (with x replaced by px and y by p̂x) we get

0 = (1− |2p− 1|2)‖x‖2 = g(x)− g((2p− 1)x)

= 4b(px, p̂x), x ∈ V.
Consequently, by simple calculations we get

g(px+ p̂y) + g(p̂x+ py)− g(x)− g(y)

= 2
(
b(px, y) + b(x, py)− 2b(px, py)

)
= 2

(
b(px, p̂y) + b(py, p̂x)

)
= 2

(
b(p(x+ y), p̂(x+ y))

)
= 0, x, y ∈ V.

�

Remark 4.2. Note that if p ∈ R, then the condition |2p−1| = 1 means that p ∈ {0, 1}.
Moreover, every p ∈ C satisfying the condition |2p− 1| = 1 is of the form (1.5) with
some α ∈ R.

5. Some final observations

We end the paper with some examples of simple applications of Theorem 3.1 in
characterizations of derivations, Lie derivations and Lie homomorphisms.

Let us start with some auxiliary results. The first one concerns the linearity of
additive mappings.

Lemma 5.1. Let F ∈ {R,C}, A be a linear space over F, Y be a normed space and
g : A → Y be additive. Assume that the following hypothesis holds.

(H1) for each x ∈ A there is a set Dx ⊂ F such that int (Dx − Dx) 6= ∅ and g is
bounded on the set Dxx := {ax : a ∈ Dx}.
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Then g is F-homogenous (i.e., g(αx) = αg(x) for α ∈ F, x ∈ A).

Proof. For the proof (which actually is a routine by now) it is enough to note that, for
each x ∈ A, the function gx : F → Y such that gx(a) = ax is additive and bounded
on the set Dx, which means that it is continuous and consequently linear (see, e.g.,
[36]). �

It is well known that int (D − D) 6= ∅ if a set D ⊂ F (with F ∈ {R,C}) has
a positive inner Lebesgue measure or contains a subset of the second category and
with the Baire property (see, e.g., [36]). For some information on related results see
[30, 31, 36].

The subsequent lemma follows at once from [18, Theorem 1].

Lemma 5.2. Let F ∈ {R,C}, A and Y be normed spaces over F, g : A → Y , g(0) = 0
and the following hypothesis be fulfilled.

(H2) There exists (u, v) ∈ R2 \
(
[1,∞)× [0,∞)

)
such that

sup
x∈A\{0}, α∈F\{0}

‖g(αx)− αg(x)‖
|α|u + ‖x‖v

<∞.

Then g is F-homogenous.

The next lemma can be derived from [32, 48].

Lemma 5.3. Let F ∈ {R,C}, A and Y be normed spaces over F, g : A → Y , g(0) = 0
and the following hypothesis be fulfilled.

(H3) There exists (u, v) ∈ R2 \ {(1, 1)} such that

sup
x∈A\{0}, α∈F\{0}

‖g(αx)− αg(x)‖
|α|u‖x‖v

<∞.

Then g is F-homogenous.

Proof. If u 6= v, then the statement follows from [48, Corollary 3] (attention: the
assumption p 6= p2 in [48, Corollary 2] should be p1 6= p2). The case u = v 6= 1 can
be deduced from [32, Theorem 1] (with K(x) ≡ ‖x‖u, δ(α) ≡ |α|v, ψ(α) ≡ |α|v and
all ideals being trivial, i.e., equal to {∅}). �

Let us yet remind that an additive function h, mapping an algebra A into an
A-bimodule M, is a derivation provided that

h(xy) = xh(y) + yh(x), x, y ∈ A.

Now we are in a position to present the subsequent corollary, which corresponds
to some recent results in, e.g., [33, 40, 41, 43].

Corollary 5.4. Let F ∈ {R,C}, A be a normed algebra over F, M be a normed
A-bimodule, A has an element e that is not a zero divisor, and g : A →M. Assume
that there exist p ∈ F \ {0, 1, 1/2} and k, l ∈ (−∞, 0) such that

sup
x,y∈A\{0}

‖g(px+ p̂y) + g(p̂x+ py)− g(x)− g(y)‖
‖x‖k + ‖y‖k

<∞, (5.1)
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sup
x,y∈A\{0}

‖g(xy)− g(x)y − xg(y)‖
‖x‖l‖y‖l

<∞. (5.2)

Then g is a derivation. Moreover, if one of hypotheses (H1)-(H3) is valid, then g is
linear.

Proof. Clearly (5.1) and (5.2) mean that

‖g(px+ p̂y)+ g(p̂x+ py)− g(x)− g(y)‖

¬M(‖x‖k + ‖y‖k), x, y ∈ A \ {0},

‖g(xy)− g(x)y − xg(y)‖ ¬M‖x‖l‖y‖l, x, y ∈ A \ {0}, (5.3)

with some M > 0. Hence, according to Theorem 3.1, g is p-Wright affine and con-
sequently, by Proposition 2.2, there exist c ∈ M, an additive A : A → M and an
quadratic B : A →M such that

g(z) = B(z) +A(z) + c, z ∈ A. (5.4)

Next, (5.3) with x replaced by sx and y replaced by ty (s, t ∈ Q \ {0}) and (5.4)
give ∥∥stB(xy) +A(xy)− sB(x)y −A(x)y − t xB(y)− xA(y)− s−1t−1c

∥∥
¬M |s|l−1|t|l−1‖x‖l‖y‖l, s, t ∈ Q \ {0}, x, y ∈ A \ {0},

whence

A(xy) = A(x)y + xA(y), B(x)y = 0, x, y ∈ A. (5.5)

The second equality in (5.5), with y = e, means that B(x) = 0 for x ∈ A. Using
this and (5.3)-(5.5) we have ‖c‖ ¬ M‖x‖l‖y‖l for x, y ∈ A \ {0}, whence c = 0, and
consequently g = A. �

In the rest of this paper A is a real or complex Lie algebra and M is an A-
bimodule. For all x ∈ A and u ∈ M, the symbols [x, u] and [u, x] denote in M the
commutators xu − ux and ux − xu, respectively. Moreover, we say that an additive
mapping d : A →M is a Lie derivation provided

d([x, y]) = [d(x), y] + [x, d(y)], x, y ∈ A.

Corollary 5.5. Let A be a normed Lie algebra over F, M be a normed A-bimodule,
and g : A → M. Assume that there exist p ∈ Q \ {0, 1, 1/2}, k ∈ (−∞, 0), and
l ∈ R \ {1} such that (5.1) holds and

sup
x,y∈A\{0}

‖g([x, y])− [g(x), y]− [x, g(y)]‖
‖x‖l‖y‖l

<∞. (5.6)

Then g is a Lie derivation. Moreover, if one of hypotheses (H1)-(H3) is valid, then g
is linear.

Proof. Clearly (5.6) means that

‖g([x, y])− [g(x), y]− [x, g(y)]‖ ¬M‖x‖l‖y‖l, x, y ∈ A \ {0}, (5.7)
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with some M > 0. Next, as in the proof of Corollary 5.4, we obtain that there exist
c ∈M, an additive A : A →M and a quadratic B : A →M such that (5.4) holds.

Note that condition (5.7) with y = x yields ‖c‖ ¬M‖x‖2l for x ∈ A \ {0}, whence
c = 0. Hence

B(px+ p̂y) +B(p̂x+ py)

= g(px+ p̂y) + g(p̂x+ py)−A(px+ p̂y)−A(p̂x+ py)

= g(x) + g(y)−A(x)−A(y) = B(x) +B(y), x, y ∈ A.

This, with y = 0, implies that

p2B(x) + p̂ 2B(x) = B(x), x ∈ A,

because p is a rational number. Hence B(x) = 0 for each x ∈ X, which means that
g = A. Consequently, by (5.7) with x replaced by tx (t ∈ Q \ {0}),

‖g([x, y])− [g(x), y]− [x, g(y)]‖ ¬M |t|l−1‖x‖l‖y‖l,
x, y ∈ A \ {0}, t ∈ Q \ {0},

whence g is a Lie derivation. �
Let B be a Lie algebra. In what follows we say that an additive mapping h : A → B

is a Lie homomorphism if

h([x, y]) = [h(x), h(y)], x, y ∈ A.

We end this paper with a corollary corresponding to the results in [16].

Corollary 5.6. Let A be a normed Lie algebra over F, B be a normed Lie algebra, and
g : A → B. Assume that there exist p ∈ Q \ {0, 1, 1/2}, k ∈ (−∞, 0), and l ∈ R \ {1}
such that (5.1) holds and

sup
x,y∈A\{0}

‖g([x, y])− [g(x), g(y)]‖
‖x‖l‖y‖l

<∞. (5.8)

Then g is a Lie homomorphism. Moreover, if one of hypotheses (H1)-(H3) is valid
and B is a complex linear space over F (i.e., B is a complex linear space when F = C),
then g is linear.

Proof. Condition (5.8) implies that

‖g([x, y])− [g(x), g(y)]‖ ¬M‖x‖l‖y‖l, x, y ∈ A \ {0}, (5.9)

with some M > 0. Analogously as in the proof of Corollary 5.4, we obtain that
there exist c ∈ B, an additive A : A → B and a quadratic B : A → B such that
g(z) = B(z) + A(z) + c for z ∈ A. Next, as in the proof of Corollary 5.5, we show
that c = 0 and B(x) = 0 for x ∈ A, which means that g is additive. Consequently, by
(5.9) with x replaced by tx (t ∈ Q \ {0}),

‖g([x, y])− [g(x), g(y)]‖ ¬M |t|l−1‖x‖l‖y‖l, x, y ∈ A \ {0}, t ∈ Q \ {0},

whence g is a Lie homomorphism. �
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