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1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator. The split feasibility
problem (in short, SFP) is to find a point x such that

x ∈ C and Ax ∈ Q. (1.1)

Throughout the paper, we denote by Γ the solution set of the split feasibility problem
(SFP), that is,

Γ = {x ∈ C : Ax ∈ Q} = C ∩A−1(Q).

During the last decade, the split feasibility problems (in short, SFP) are emerged
as models of several problems, namely, signal processing, phase retrievals, im-
age reconstruction, intensity-modulated radiation therapy, etc, see, for example,
[1, 3, 4, 5, 6, 10]. Several iterative methods have appeared in the literature to compute
the approximate solutions of such problems. For a comprehensive bibliography and
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survey on split feasibility problems, we refer to [3] and the references therein. Finding
the common solution of a split feasibility problem and a fixed point problem is one
of the core interests of many researchers, see, for example [3, 7, 8, 9, 11] and the ref-
erences therein. Recently, Ceng et al. [8] introduced a relaxed extragradient method
with regularization for finding a common element of the solution set of SFP and the
set Fix(T ) of the fixed points of a nonexpansive mapping T . Very recently, inspired
by the work of Ceng et al. [8] and Xu [19], Deepho and Kumam [11] introduced
and analyzed a relaxed extragradient method with regularization for finding a com-
mon element of the solution set Γ of the split feasibility problem and fixed points set
Fix(T ) of an uniformly Lipschitz continuous and asymptotically quasi-nonexpansive
mappings in the setting of real Hilbert spaces.

Definition 1.1. Let K be a nonempty closed convex subset of a real Hilbert space
H and T : K → K be a mapping whose fixed points set is denoted by Fix(T ) and
R(T ) denotes the range of T . The mapping T is said to be:

(a) asymptotically quasi-nonexpansive [16] if there exists a sequence {νn} ⊂ [0,∞)
with lim

n→∞
νn = 0 such that

‖Tnx− p‖ ≤ (1 + νn)‖x− p‖, for all x ∈ K, p ∈ Fix(T ) and n ∈ N;

(b) asymptotically k-strict pseudo-contractive mapping [13] with sequence {νn} if
there exist a constant k ∈ [0, 1) and a sequence {νn} ⊂ [0,∞) with lim

n→∞
νn =

0 such that

‖Tnx− Tny‖2 ≤ (1 + νn)‖x− y‖2 + k‖x− Tnx− (y − Tny)‖2,
for all x, y ∈ K and n ∈ N;

(c) asymptotically k-strict pseudo-contractive mapping in the intermediate sense
[18] with sequence {νn} if there exist a constant k ∈ [0, 1) and a sequence
{νn} ⊂ [0,∞) with lim

n→∞
νn = 0 such that

lim sup
n→∞

sup
x,y∈K

(
‖Tnx− Tny‖2 − (1 + νn)‖x− y‖2 − k ‖x− Tnx− (y − Tny)‖2

)
≤ 0.

(1.2)

Throughout this paper, we assume that

cn := max
{

0, sup
x,y∈K

(
‖Tnx− Tny‖2−(1+νn)‖x−y‖2−k ‖x− Tnx− (y − Tny)‖2

)}
.

(1.3)
Then, cn ≥ 0 for all n ∈ N , cn → 0 as n→∞ and inequality (1.2) becomes

‖Tnx− Tny‖2 ≤ (1 + νn)‖x− y‖2 + k‖x− Tnx− (y − Tny)‖2 + cn,

for all x, y ∈ K and n ∈ N.
When Fix(T ) 6= ∅, and νn = 0, then every asymptotically quasi-nonexpansive

mapping T is asymptotically k-strict pseudo-contractive mapping in the intermediate,
but the converse is not true. For example, let K = [0, 1] and T : K → K be a mapping
defined by

Tx =
x

2x+ 1
, for all x ∈ K.
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Then,

Tnx =
x

2nx+ 1
, for all x ∈ K, n ∈ N,

Fix(T ) 6= ∅ and T is asymptotically k-strict pseudo-contractive in intermediate sense
but not asymptotically quasi-nonexpansive. The purpose of this paper is to consider
and analyze the relaxed extragradient method with regularization proposed in [11]
for finding a common element of Γ and Fix(T ), where T is an asymptotically k-
strict pseudo-contractive mapping in intermediate sense. We prove that the sequence
generated by the considered algorithm converges weakly to an element of Fix(T )∩Γ.
We provide an example to show that our result is applicable, but the result given in
[11] is not.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈., .〉
and ‖.‖, respectively. We write xn → x (respectively, xn ⇀ x) to indicate that the
sequence {xn} converges strongly (respectively, weakly) to x. Let K be a nonempty
closed convex subset of H. For every x ∈ H, there exists a unique nearest point in
K, denoted by PKx such that

‖x− PKx‖ ≤ ‖x− y‖, for all y ∈ K,
where PK is called the metric projection of H onto K. It is well known that PK is a
nonexpansive mapping from H onto K. In the following proposition, we collect some
known and useful properties of a metric projection which will be used in the sequel.

Proposition 2.1. [12] For a given x ∈ H and z ∈ K, we have

(i) z = PKx if and only if 〈x− z, y − z〉 ≥ 0, for all y ∈ K;
(ii) z = PKx if and only if ‖x− z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, for all y ∈ K;
(iii) 〈PKx− PKy, x− y〉 ≥ ‖PKx− PKy‖2, for all y ∈ H.

LetK be a nonempty closed convex subset of a real Hilbert spaceH and F : K → H
be a mapping. The variational inequality problem (VIP) is to find x ∈ K such that

〈Fx, y − x〉 ≥ 0, for all y ∈ K. (2.4)

The solution set of VIP is denoted by VI(K,F ). For further details on variational
inequalities, we refer to [2] and the references therein. It is well known that

x ∈ VI(K,F ) ⇔ x = PK(x− λFx), for all λ > 0.

A set-valued mapping T : H → 2H is called monotone if

〈x− y, f − g〉 ≥ 0, whenever f ∈ Tx, g ∈ Ty.
It is said to be maximal monotone if, in addition, the graph

G(T ) = {(x, f) ∈ H ×H : f ∈ Tx}
of T is not properly contained in the graph of any other monotone operator. It is well
known that a monotone mapping T is maximal if and only if, for (x, f) ∈ H ×H,

〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx.
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Let F : K → H be a monotone, that is, 〈Fx−Fy, x− y〉 ≥ 0, for all x, y ∈ K, and
k-Lipshitz continuous mapping. Let NKv be the normal cone to K at v ∈ K, that is,

NKv = {w ∈ H : 〈v − u,w〉 ≥ 0, for all u ∈ K}.
Define

Tv =

{
Fv +NKv, if v ∈ K,

∅, if v /∈ K.
(2.5)

Then, T is maximal monotone set-valued mapping as proved by Rockafellar [17]. It
is well-konwn that if 0 ∈ T (v), then −Fv ∈ NK(v), which is further equivalent to the
variational inequality (2.4).

Proposition 2.2. [7] Let C and Q be nonempty closed convex subsets of Hilbert
spaces H1 and H2, respectively, and A : H1 → H2 be a bounded linear operator. For
given x∗ ∈ H1, the following statement are equivalent.

(i) x∗ solves SFP;
(ii) x∗ solves fixed point equation PC(I − λA∗(I − PQ)A)x∗ = x∗;

(iii) x∗ solves variational inequality problem (VIP) of finding x∗ ∈ C such that

〈∇f(x∗), x− x∗〉 ≥ 0, for all x ∈ C,
where ∇f = A∗(I − PQ)A, and A∗ is the adjoint of A.

We now mention some known results which will be used in the sequel.

Lemma 2.1. Let H be a real Hilbert space. Then, for all x, y ∈ H, we have

(i) ‖x− y‖2 ≤ ‖x‖2 + ‖y‖2;
(ii) ‖λx+(1−λ)y‖2 = λ‖x‖2 +(1−λ)‖y‖2−λ(1−λ)‖x−y‖2, for all λ ∈ [0, 1].

Lemma 2.2. [18, Demiclosedness Principle] Let C be a nonempty closed convex subset
of a real Hilbert space H and T : C → C be a continuous asymptotically k-strict
pseudo-contractive mapping in the intermediate sense. Then, I − T is demiclosed
at zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C and

lim sup
m→∞ n→∞

‖xn − Tmxn‖ = 0, then (I − T )x = 0.

Sahu et al.[18] extended Lemma 2.2 for uniformly continuous mappings and estab-
lished the following result.

Lemma 2.3. [18, Lemma 2.7] Let C be a nonempty closed convex subset of a real
Hilbert space H and T : C → C be a uniformly continuous asymptotically k-strict
pseudo-contractive mapping in the intermediate sense with sequence {γn}. Let {xn}
be a sequence in C such that ‖xn+1 − xn‖ → 0 and ‖xn − Tnxn‖ → 0 as n → ∞.
Then, ‖xn − Txn‖ → 0 as n→∞.

Lemma 2.4. [14, Lemma 1] Let {an}∞n=1, {bn}∞n=1 and {δn}∞n=1 be the sequences of
nonnegative real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, for all n ≥ 1.

If
∑∞
n=1 δn < ∞ and

∑∞
n=1 bn < ∞, then lim

n→∞
an exists. In particular, if {an}∞n=1

has a subsequence which converges strongly to zero, then lim
n→∞

an = 0.
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3. An Algorithm and a Convergence Result

Very recently, Deepho and Kumam [11] proposed the following algorithm for finding
the common element of the solution set Γ of the split feasibility problem and set Fix(T )
of all fixed points of an asymptotically quasi-nonexpansive and Lipschitz continuous
mapping in a real Hilbert space.

Algorithm 3.1. Initialization: Take arbitrary x0 ∈ H1.
First Step: For a given current xn ∈ H1, compute

yn = PC(I − λn∇fαn)(xn),

xn+1 = (1− βn)xn + βnT
n(yn), for all n ≥ 0,

(3.6)

where ∇fαn
= ∇f +αnI = A∗(I−PQ)A+αnI, where I is an identity map and three

sequences of parameters {αn}, {λn} and {βn} satisfies the following conditions:

(i)
∑∞
n=1 αn <∞;

(ii) {λn} ⊂ [a, b] for some a, b ∈
(

0, 1
‖A‖2

)
and

∑∞
n=1 |λn+1 − λn| <∞;

(iii) {βn} ⊂ [c, d] for some c, d ∈ (0, 1).

Second Step: Update n := n+ 1.

We establish the following weak convergence result for Algorithm 3.1, where T :
C → C is an uniformly continuous and asymptotically k-strict pseudo-contractive
mapping in intermediate sense.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space
H1 and T : C → C be an uniformly continuous and asymptotically k-strict pseudo-
contractive mapping in intermediate sense with sequence {νn} such that Fix(T)∩Γ 6= ∅
and R(T ) = C. Let {xn} and {yn} be the sequences in C generated by Algorithm
3.1. Assume that the sequences of parameters {αn}, {βn}, {λn} and {νn} satisfy the
following conditions:

(i)
∑∞
n=1 αn <∞;

(ii) {λn} ⊂ [a, b] for some a, b ∈
(

0, 1
‖A‖2

)
and

∑∞
n=1 λn <∞;

(iii) {βn} ⊂ [d, e] for some d, e ∈ (0, 1), 0 < βn < 1− k < 1 and
∑∞
n=1 βncn <∞,

where cn is defined by (1.3);
(vi)

∑∞
n=1 νn <∞;

(v) {∇fαn
(xn)}∞n=1 is a bounded sequence.

Then, both the sequences {xn} and {yn} converge weakly to an element x∗ ∈ Fix(T )∩
Γ.

Proof. Let p ∈ Fix(T ) ∩ Γ be arbitrarily chosen. Then, we have T (p) = p ∈ C and
Ap ∈ Q. Therefore, PC(p) = p and PQ(Ap) = Ap. Since PC is nonexpansive, we have

‖yn − p‖2 = ‖PC(I − λn∇fαn
)(xn)− PC(p)‖2

≤ ‖(xn − p)− λn∇fαn
(xn)‖2

≤ ‖xn − p‖2 + λ2n‖∇fαn
(xn)‖2. (3.7)
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Since yn ∈ C and Tnyn ∈ C, we have

‖yn − Tnyn‖2 = ‖PC(I − λn∇fαn)(xn)− PC(Tnyn)‖2

≤ ‖(xn − Tnyn)− λn∇fαn
(xn)‖2

≤ ‖xn − Tnyn‖2 + λ2n‖∇fαn(xn)‖2. (3.8)

By asymptotically k-strict pseudo-contractiveness in intermediate sense with sequence
{νn} of T , Lemma 2.1 (ii) and inequalities (3.7) and (3.8), we have

‖xn+1 − p‖2 = ‖(1− βn)(xn − p) + βn(Tnyn − p)‖2

= (1− βn)‖xn − p‖2 + βn‖Tnyn − p‖2 − βn(1− βn)‖Tnyn − xn‖2

= (1− βn)‖xn − p‖2 + βn{(1 + νn)‖yn − p‖2 + k‖Tnyn − yn‖2 + cn}
− βn(1− βn)‖Tnyn − xn‖2

≤ (1− βn)‖xn − p‖2 + βn(1 + νn){‖xn − p‖2 + λ2n‖∇fαn(xn)‖2}
+ βnk‖xn − Tnyn‖2 + βnkλ

2
n‖∇fαn

(xn)‖2

+ βncn − βn(1− βn)‖Tnyn − xn‖2

≤ (1 + βnνn)‖xn − p‖2 + βncn − βn(1− βn − k)‖xn − Tny‖2

+ βnλ
2
n‖∇fαn(xn)‖2 + βnνnλ

2
n‖∇fαn

(xn)‖2 + kβnλ
2
n‖∇fαn

(xn)‖2

≤ (1 + βnνn)‖xn − p‖2 − βn(1− βn − k)‖xn − Tny‖2

+ βn{cn + (1 + νn)λ2n‖∇fαn
(xn)‖2 + kλ2n‖∇fαn

(xn)‖2}
≤ (1 + βnνn)‖xn − p‖2 − βn(1− βn − k)‖xn − Tny‖2 (3.9)

+ βn{cn + (1 + νn)λ2nM + kλ2nM}
≤ (1 + νn)‖xn − p‖2 + βn{cn + (1 + νn)λ2nM + kλ2nM}.

Thus, we have
‖xn+1 − p‖2 ≤ (1 + νn)‖xn − p‖2 + bn,

where bn = βn{cn + (1 + νn)λ2nM + λ2nM}. Since
∑∞
n=1 νn < ∞, 0 < βn < 1,∑∞

n=1 βncn < ∞,
∑∞
n=1 λn < ∞, 0 ≤ k < 1 and M is a constant, we conclude that∑∞

n=1 bn <∞. Therefore, by Lemma 2.4, we have

lim
n→∞

‖xn − p‖ exists.

Also, from (3.7), we have
lim
n→∞

‖yn − p‖ exists.

Thus, from (3.9), we obtain

βn(1− βn − k)‖Tnyn − xn‖2 ≤ (1 + βnνn)‖xn − p‖2 − ‖xn+1 − p‖2

+ βn{cn + (1 + νn)λ2nM + kλ2nM}.
Since T is asymptotically k-strict pseudo-contractive mapping in the intermediate
with sequence {νn}, then lim

n→∞
νn = 0, and by the conditions (ii) and (iii), we have

lim
n→∞

‖Tnyn − xn‖ = 0. (3.10)
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By using condition (ii), (3.10) and (3.8), we obtain

lim
n→∞

‖Tnyn − yn‖ = 0. (3.11)

From Algorithm 3.1 and (3.10), we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖Tnyn − xn‖ → 0. (3.12)

Since yn = PC(xn − λn∇fαn(xn)) and by Proposition 2.1 (ii), as in [11], we have

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2 + 2λnαn‖p‖‖p− xn‖
+ 2λn‖∇fαn

(xn)‖‖yn − p‖+ 2λn‖∇fαn
(xn)‖‖xn − p‖. (3.13)

Consequently, by asymptotically k-strict pseudo-contractiveness in intermediate sense
with sequence {νn} of T , utilizing Lemma 2.1 (ii) and inequality (3.13), we conclude
that

‖xn+1 − p‖2 = ‖(1− βn)(xn − p) + βn(Tnyn − p)‖2

= (1− βn)‖xn − p‖2 + βn‖Tnyn − p‖2 − βn(1− βn)‖Tnyn − xn‖2

≤ (1− βn)‖xn − p‖2 + βn{(1 + νn)‖yn − p‖2 + k‖yn − Tnyn‖+ cn}
− βn(1− βn)‖Tnyn − xn‖2.
≤ (1− βn)‖xn − p‖2 + βn(1 + νn){‖xn − p‖2 − ‖xn − yn‖2

+ 2λnαn‖p‖‖p− xn‖+ 2λn‖∇fαn(xn)‖‖yn − p‖
+ 2λn‖∇fαn

(xn)‖‖xn − p‖}+ βnk‖yn − Tnyn‖2 + βncn

− βn(1− βn)‖Tnyn − xn‖2.

Taking limits both the sides and using the conditions (i)-(iv) and equation (3.10), we
have

lim
n→∞

‖xn − yn‖ = 0. (3.14)

From Algorithm 3.1, we have

‖yn+1 − yn‖ = ‖PC(I − λn+1∇fαn+1
)(xn+1)− PC(I − λn∇fαn

)(xn)‖
≤ ‖xn+1 − xn‖+ λn+1‖∇fαn+1

(xn+1)‖2 + λn‖∇fαn
(xn)‖2.

Taking limits both the sides and using condition (ii) and (3.12), we have

lim
n→∞

‖yn+1 − yn‖ = 0. (3.15)

Since ‖yn+1 − yn‖ → 0, ‖Tnyn − yn‖ → 0 as n→∞ and T is uniformly continuous,
we obtain from Lemma 2.3 that ‖Tyn− yn‖ → 0 as n→∞. Since {xn} is a bounded
sequence, there exists a subsequence {xni

} of {xn} that converges weakly to some x∗.
In fact, xn ⇀ x∗.
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Indeed, let {xnj
} be another subsequence of {xn} such that xnj

⇀ x̄. Assume
x∗ 6= x̄. From Opial condition [15], we have

lim
n→∞

‖xn − x∗‖ = lim inf
i→∞

‖xni
− x∗‖ < lim inf

n→∞
‖xni

− x̄‖

= lim
n→∞

‖xn − x̄‖ = lim
j→∞

‖xnj − x̄‖

< lim
j→∞

‖xnj
− x∗‖ = lim

n→∞
‖xn − x∗‖.

This contradict to our assumption x∗ 6= x̄. Hence, xnj
⇀ x∗. This shows that every

subsequence of {xn} converges weakly to x∗. This implies that xn ⇀ x∗, and for all
f ∈ H, we have f(xn) → f(x∗). Next we show that yn ⇀ x∗. For all f ∈ H, we
consider

‖f(yn)− f(x∗)‖ = ‖f(yn)− f(xn) + f(xn)− f(x∗)‖
≤ ‖f(yn)− f(xn)‖+ ‖f(xn)− f(x∗)‖
≤ ‖f‖‖yn − xn‖+ ‖f(xn)− f(x∗)‖.

From (3.14), we conclude that lim
n→∞

‖f(yn) − f(x∗)‖ = 0, for all f ∈ H. Hence,

yn ⇀ x∗. Note that T is uniformly continuous and ‖Tyn − yn‖ → 0, we see that
‖yn − Tmyn‖ → 0 for all m ∈ N. Thus, by Lemma 2.2, we obtain that x∗ ∈ Fix(T ).
Now we show that x∗ ∈ Γ. Let

Sw1 =

{
λn∇fw1 +NCw1, if w1 ∈ C,

∅, if w1 /∈ C,
(3.16)

where NCw1 = {z ∈ H1 : 〈w1 − u, z〉 ≥ 0 for all u ∈ C}. To show that x∗ ∈ Γ, it is
sufficient to show that 0 ∈ Sx∗. Let (w1, z) ∈ G(S), we have z ∈ Sw1 = λn∇fw1 +
NCw1, and hence, z − λn∇fw1 ∈ NCw1. So, we have 〈w1 − u, z − λn∇fw1〉 ≥ 0 for
all u ∈ C. Since w1 ∈ C, from Algorithm 3.1, we have yn = PC(I − λn∇fαn)xn, and
then from Proposition 2.2 (i), we have

〈xn − λn∇fαnxn − yn, yn − w1〉 ≥ 0,

and

〈w1 − yn, yn − xn + λn∇fαnxn〉 ≥ 0.

Since z − λn∇fw1 ∈ NCw1 and yni
∈ C, it follows that

〈w1 − yni
, z〉 ≥ 〈w1 − yni

, λni
∇fw1〉

≥ 〈w1 − yni , λni∇fw1〉 − 〈w1 − yni , yni − xni + λni∇fαnixni〉
≥ 〈w1 − yni

, λni
∇fw1〉 − 〈w1 − yni

, yni
− xni

+ λni
∇fxni

〉
− λni

αni
〈w1 − yni

, xni
〉

= 〈w1 − yni
, λni
∇fw1 − λni

∇fyni
〉

+ 〈w1 − yni , λni∇fyni − λni∇fxni〉
− 〈w1 − yni , yni − xni〉 − λniαni〈w1 − yni , xni〉
≥ 〈w1 − yni

, λni
∇fyni

− λni
∇fxni

〉 − 〈w1 − yni
, yni

− xni
〉

− λni
αni
〈w1 − yni

, xni
〉.
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Taking limit as i→∞, we obtain

〈w1 − x∗, z〉 ≥ 0, asi→∞.

Since 〈w1 − x∗, z − 0〉 ≥ 0 for every (w1, z) ∈ G(S), therefore the maximality of S
implies that 0 ∈ Sx∗. Thus, we have x∗ ∈ VI(C,∇f). Finally, Proposition 2.2 implies
that x∗ ∈ Γ.

4. A Numerical Example

To illustrate Algorithm 3.1 and Theorem 3.1, we present the following example.

Example 4.1. Let C = Q = [0, 1] be a closed convex subset of R and T : C → C be
defined by

Tx =
x

2x+ 1
, for all x ∈ C.

Then, T is asymptotically k-strict pseudo-contractive mapping in intermediate sense,
and

Tnx =
x

2xn+ 1
, for all n ∈ N.

Let A(x) = 2x, for all x ∈ C, be a bounded linear operator. Let αn = 1
n2 , βn = 1

9n

and λn = 1
9n2 be the sequences of parameters. Now, we show that T is asymptotically

k-strict pseudo-contractive mapping in intermediate sense with sequence {νn}.
By the definition of asymptotically k-strict pseudo-contractive mapping in inter-

mediate sense with sequence {νn}, we have

|Tnx− Tny|2 ≤ (1 + νn)|x− y|2 + k|(x− Tnx)− (y − Tny)|2 + cn, (4.17)

where {νn} ⊆ [0,∞) with lim
n→∞

νn = 0, k ∈ [0, 1). If we take 1 + νn = kn, then kn ≥ 1

and lim
n→∞

kn = 1, and thus (4.17) becomes

|Tnx− Tny|2 ≤ kn|x− y|2 + k|(x− Tnx)− (y − Tny)|2 + cn, (4.18)

where

cn = max

{
0, sup
x,y∈[0,1]

{
|Tnx− Tny|2 − kn|x− y|2 − k|(x− Tnx)− (y − Tny)|2

}}
.

Indeed

|Tnx− Tny|2 =

∣∣∣∣ x

2nx+ 1
− y

2ny + 1

∣∣∣∣2
=
|2nxy + x− 2nxy − y|2

(2nx+ 1)2(2ny + 1)2

=
|x− y|2

(2nx+ 1)2(2ny + 1)2
.

(4.19)
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and

k|(x− Tnx)− (y − Tny)|2 = k

∣∣∣∣(x− x

2nx+ 1
)− (y − y

2ny + 1
)

∣∣∣∣2
= k

|2nx2 − 2ny2|2

(2nx+ 1)2(2ny + 1)2

=
k4n2|x− y|2|x+ y|2

(2nx+ 1)2(2ny + 1)2

≤ 16n2k|x− y|2

(2nx+ 1)2(2ny + 1)2
.

Thus, we have

kn|x− y|2 + k|(x− Tnx)− (y − Tny)|2 + cn

= kn|x− y|2 +
16n2k|x− y|2

(2nx+ 1)2(2ny + 1)2

=

{
kn +

16n2k

(2nx+ 1)2(2ny + 1)2

}
|x− y|2

=
{

(2nx+ 1)2(2ny + 1)2kn + 16n2k
} |x− y|2

(2nx+ 1)2(2ny + 1)2
.

(4.20)

For all x ∈ [0, 1] and all n ∈ N, we have

(2nx+ 1)2(2ny + 1)2 ≥ 1⇔ (2nx+ 1)2(2ny + 1)2kn ≥ 1

⇔ (2nx+ 1)2(2ny + 1)2kn + 16n2k ≥ 1.

Thus we have,

(2nx+ 1)2(2ny + 1)2kn + 16n2k ≥ 1. (4.21)

By combining (4.19) and (4.19), and using (4.21), we have,

|Tnx− Tny|2 − kn|x− y|2 − k|(x− Tnx)− (y − Tny)|2

=
|x− y|2

(2nx+ 1)2(2ny + 1)2
−
{

(2nx+ 1)2(2ny + 1)2kn + 16n2k
} |x− y|2

(2nx+ 1)2(2ny + 1)2

=
(
1− {(2nx+ 1)2(2ny + 1)2kn + 16n2k}

) |x− y|2

(2nx+ 1)2(2ny + 1)2
≤ 0.

This implies that

sup
x∈[0,1]

{|Tnx− Tny|2 − kn|x− y|2 − k|(x− Tnx)− (y − Tny)|2} = 0.

So from the definition of cn, we have cn = 0. Also from (4.21), we have,

|x− y|2

(2nx+ 1)2(2ny + 1)2
≤ {(2nx+ 1)2(2ny + 1)2kn + 16n2k} |x− y|2

(2nx+ 1)2(2ny + 1)2
.

Thus,

|Tnx− Tny|2 ≤ kn|x− y|2 + k|(x− Tnx)− (y − Tny)|2 + cn.
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This implies that T is asymptotically k-strict pseudo-contractive mapping in interme-
diate sense with sequence {kn}. The sequences {xn} and {yn} generated by Algorithm
3.1 starting with x1 = 1 converges to 0 ∈ Fix(T ) ∩ Γ.

Next, we show that T is not asymptotically quasi-nonexpansive. By the definition
of asymptotically quasi-nonexpansive, we have

|Tnx− p| ≤ kn|x− p|, for all x ∈ [0, 1] and all p ∈ Fix(T ), (4.22)

where kn ≥ 1 and lim
n→∞

kn = 1. For all x ∈ [0, 1] and all n ∈ N, we have

x < 2nx+ 1⇒ x

2nx+ 1
< 1

⇒
∣∣∣∣ x

2nx+ 1

∣∣∣∣ < 1, for all x ∈ [0, 1]

⇒ |Tnx| < 1

⇒ |Tnx| ≮ kn|x|.

Since 0 ∈ Fix(T ), we have |Tnx− 0| ≮ kn|x− 0|, that is, (4.22) does not hold. Hence,
T is not asymptotically quasi-nonexpansive.

Remark 4.1. Since T is not asymptotically quasi-nonexpansive, [11, Theorem 3.1]
is not applicable in this case.

Now we show the convergence of the Algorithm 3.1 with the help of Matlab Pro-
gramming.

We did the computation in Matlab R2010 and got the solution 0.

Convergence Table
No. of Iterations (n) yn xn No. of Iterations (n) yn xn

1 .8889 1.0000 18 .0083 .0093
2 .8217 .9244 19 .0062 .0070
3 .7005 .7881 20 .0046 .0052
4 .5535 .6226 21 .0034 .0038
5 .4113 .4627 22 .0025 .0028
6 .2942 .3310 23 .0018 .0020
7 .2078 .2338 24 .0013 .0014
8 .1477 .1661 25 .0009 .0010
9 .1065 .1198 26 .0006 .0007
10 .0780 .0878 27 .0004 .0005
11 .0580 .0652 28 .0003 .0003
12 .0436 .0490 29 .0002 .0002
13 .0330 .0371 30 .0001 .0001
14 .0251 .0282 31 .0001 .0001
15 .0191 .0215 32 .0000 .0000
16 .0145 .0163 33 .0000 .0000
17 .0110 .0124 34 .0000 .0000
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