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Abstract. In the present work, we prove a fixed point theorem for nonlinear operators acting in
Hausdorff sequentially complete uniform spaces whose uniformity is generated by a saturated family

of pseudometrics. As an application we consider nonlinear abstract Volterra type integral equations

of second kind in the case when the independent variable belongs to arbitrary completely regular
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case are also proved.

Key Words and Phrases: Fixed point, Volterra type integral equations, uniform space, pseudo-
metrics, Hausdorff space.

2010 Mathematics Subject Classification: 47H10, 47J05, 54E15, 45N05, 45D99.

1. Introduction

A lot of results are obtained in the last few decades devoted to integral equations
and its applications (cf. [2], [3], [5], [12] and the references there in). Consumer of this
results are several applied fields, such as population dynamics, spread of epidemics,
automatic control theory, network theory and the dynamics of nuclear reactors. In
view of the applications it is important to study equations and inequalities in the
case when the domains of integration are not necessary Cartesian product of bounded
and closed intervals. Following this concept it is obviously that the first step is the
problem of the solvability of the integral equations ([6], [17]).

The paper is structured as follows:
In Section 2 we consider µ−equivalence of sets with respect to nonatomic σ−finite

Borel measure and prove some auxiliary assertions.
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In Section 3 we modify some results from [4] in order to apply them to integral
equations considered. We mention some basic results devoted to fixed point theory
[1], [8], [13]–[16].

Section 4 is devoted to apply the results obtained for the study of a Volterra type
integral equation (2.1) introduced below.

2. Preliminaries

Let Ω be a completely regular Hausdorff topological space, BΩ ⊂ 2Ω denotes the
σ-algebra of the Borel subsets of Ω and let µ : BΩ → [0,∞) be a nontrivial, nonatomic
σ-finite Borel measure. Let B be a real Banach space with norm ||.||B .

Definition 2.1. [10] The sets G,H ∈ BΩ will be called µ-equivalent G ∼µ H, if
µ(G∆H) = 0, where G∆H = (G \H) ∪ (H \G).

Definition 2.2. [10] The set G ∈ BΩ is called µ-dense (in BΩ), if ∀x ∈ G and for
every open neighborhood O(x) of x, µ(O(x)) > 0, the inequality µ(G∩O(x)) > 0 holds.

Following [7] we define the map M : Ω → 2Ω, which assigns to every point x ∈ Ω
a closed subset M(x) = Mx ⊂ Ω.

We say that the conditions (A) hold if for the map M : Ω→ 2Ω the following
conditions are fulfilled:
A1. For every point x ∈ Ω the set Mx is compact.
A2. For each ε > 0 and every x ∈ Ω, there exists an open neighborhood O(x, ε) of x,
such that for each y ∈ O(x, ε) we have that µ(Mx∆My) < ε.
A3. For every x ∈ Ω the inclusion My ⊂Mx holds for each y ∈Mx.
A4. There exists x0 ∈ Ω such that µ(Mx0) = 0.

For every map M : Ω → 2Ω for which the conditions (A) hold, we will denote by
M = {Mx : x ∈ Ω} and KerM = {x ∈ Ω : µ(Mx) = 0}.
Remark 2.3. In general, the conditions (A) can be fulfilled for the map M : Ω→2Ω,
but x /∈Mx. A simple example when this is true is Ω = [0,∞) and Mx = [0, x2 ].

Definition 2.4. We say that the set G ⊂ Ω is M -star if for every x ∈ G the inclusion
Mx ⊆ G holds.

Remark 2.5. It is easy to see that condition A3 implies that for each x ∈ Ω the set
Mx is M -star set. Moreover, the union and the intersection of an arbitrary family
of M -star sets are M -star set. The sets KerM and MΩ =

⋃
x∈Ω

Mx are M -star sets

ones.

Let Ω∗ ⊆ Ω be an arbitrary compact M -star set and denote by C(Ω∗, B) the
Banach space of all continuous maps ϕ : Ω∗ → B. Introduce the linear spaces

CM (Ω) = {ϕ : Ω→ B : ϕ ∈ C(Ms, B),∀s ∈ Ω}
CM = {f : MΩ → B : f = ϕ|MΩ

, ϕ ∈ CM (Ω)}
and consider the equations

f(x) = p(x) +

∫
Mx

Q(x, y, f(y))dµy (2.1)
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where the unknown function is f ∈ CM (Ω), with known functions p ∈ CM (Ω) and
the operator Q : Ω× Ω×B → B.

Remark 2.6. If the conditions (A) hold and the operator Q is continuous for every
s ∈ Ω in the set Ms ×Ms ×B, Ms ⊂ Ω then the Bochner integral in (2.1) exists
∀x ∈Ms (see [11], Chapter 3 and [9], Chapter V).

It is well known that even for finite dimensional metric spaces Ω, two sets Mx and
My can be very close (even equal) in measure sense but very different in metric sense.
The next theorem solves this problem when the sets Mx are compact.

Let G ∈ BΩ be an arbitrary set and the (A,�) be a directed index set.

Definition 2.7. The point x ∈ Ω will be called essential for the set G, if for every
open neighborhood O(x) of x, µ(O(x)) > 0, we have µ(G ∩O(x)) > 0.

Definition 2.8. The point x ∈ Ω will be called unessential for the set G, if there
exists an open neighborhood O(x) of x, µ(O(x)) > 0, such that µ(G ∩O(x)) = 0.

For arbitrary closed subset G ⊂ Ω we denote by Gµ the set of all points x ∈ G,
which are essential for G and by Gν the set Gν = G \Gµ.

Theorem 2.9. Let G be a compact subset of Ω and µ(G) > 0.
Then the set Gµ is a nonempty compact set and the sets G and Gµ are µ-equivalent.

Proof. Suppose that Gµ = ∅. Then Gν = G and for each x ∈ Gν there exists an open
neighborhood O(x) of x, µ(O(x)) > 0, such that µ(O(x) ∩G) = 0.

Since G is a compact subset of Ω and
⋃
x∈G

O(x) is an open cover of G, then there

exist points x1, . . . , xk ∈ G, and open neighborhoods O(x1), . . . , O(xk), such that

µ(G) ≤ µ(
k⋃
i=1

(O(xi) ∩G)) = 0 which is impossible. Therefore Gµ 6= ∅.

Obviously Gµ includes all internal points of G. Let {xα}α∈A ⊂ intG be an
arbitrary Cauchy sequence. Assume that lim

α∈A
xα = y and y ∈ ∂G is unessen-

tial. Then there exists an open neighborhood O(y) of y and α0 ∈ A such that
{xα}α�α0

∩O(y) = ∅, which is impossible. Therefore the set Gµ is a closed subset of
G and we can conclude that Gµ is compact.

Since every point x ∈ Gν is unessential, there exists an open neighborhood O(x)
of x, such that µ(G ∩ O(x)) = 0 and Gν ⊂

⋃
x∈Gν

O(x). Let V1, V2, . . . , Vn are a

finite open cover of Gµ, i.e. Gµ ⊂
n⋃
i=1

Vi. Therefore G ⊂ (
n⋃
i=1

Wi) ∪ (
⋃

x∈Gν
O(x)),

where Wi = Vi \ (
⋃

x∈Gν
O(x)) are open subsets of Ω. Since G is a compact set then

there exist points x1, . . . , xk ∈ Gν and open neighborhoods O(x1), . . . , O(xk), such

that G ⊂ (
n⋃
i=1

Wi) ∪ (
k⋃
j=1

O(xj)) and therefore Gν ⊂
k⋃
j=1

O(xj).

This implies that µ(Gν) = 0 and G ∼µ Gµ. �

Remark 2.10. The statement of Theorem 2.9 is proved in [17] in the case when Ω is
arbitrary complete metric space. Since the compact sets Mx will be used as domains
of integration then without loss of generality we can assume that all Mx are µ-dense.
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Lemma 2.11. Let for the map M : Ω→ 2Ω the conditions (A) hold.
Then for every x ∈ Ω for which µ(Mx) > 0 there exists an open neighborhood O(x)

of x, such that for each s ∈ O(x) we have that Mx ∩Ms 6= ∅.

Proof. Suppose that the statement of the Lemma 2.11 is not true. Denote by A the
set of all open neighborhoods α = α(x) = O(x, α) of x directed by inclusions. Then
there exists a sequence {yα}α∈A ⊂ Ω such that Mx ∩ Myα = ∅ and lim

α∈A
yα = x.

Condition A2 implies that there exits α0(x) ∈ A such that for every α � α0(x) we
have that µ(Mx∆Myα) < 2−1µ(Mx). Therefore if α � α0(x), then we have that
µ(Mx) > 2µ(Mx∆Myα) = 2µ(Mx ∪Myα) ≥ 2µ(Mx) > 0 which is impossible. �

Corollary 2.12. Let the conditions of Lemma 2.11 hold and all sets Ms are µ-dense.
Then ∀x ∈ Ω there exists an open neighborhood O(x) of x, such that for each

s ∈ O(x) we have that µ(Mx ∩Ms) > 0.

Corollary 2.13. Let the conditions of Lemma 2.11 hold and all sets Mx are µ-dense
and connected.

Then if Ω is connected, the set MΩ =
⋃
x∈Ω

Mx is connected too.

Proof. Assume the contrary there exist two open sets G,H ⊂MΩ, G ∪H = MΩ and
G ∩H = ∅. Since all sets Mx are connected then the sets G∗ = {x ∈ Ω : Mx ⊂ G},
H∗ = {y ∈ Ω : My ⊂ H} are disjoint and obviously G∗ ∪H∗ = Ω. Let x ∈ G∗ be an
arbitrary point. From Corollary 2.12 it follows that there exists an open neighborhood
O(x) of x, such that for each s ∈ O(x) we have that µ(Mx ∩Ms) > 0 and therefore
Ms ⊂ G. Thus we proved that G∗ is open. Analogously we can prove that H∗ is open
too, which is impossible. �

Theorem 2.14. Let for the map M : Ω→ 2Ω the following conditions be fulfilled:
1. The conditions (A) hold.
2. Ω is a connected space and 0 < µ(Ω) ≤ ∞.
Then for every x ∈ Ω we have that µ(Mx) <∞.

Proof. Consider the set Ω1 = {x ∈ Ω : µ(Mx) <∞} and let Ω2 = Ω \ Ω1.
Condition A4 implies that Ω1 6= ∅. First we will prove that Ω1 is a closed subset

of Ω. Let y ∈ ∂Ω1 is arbitrary point. Then there exists a sequence {xα}α∈A ⊂ intΩ1

such that lim
α∈A

xα = y. Let ε > 0 is arbitrarily fixed.

From condition A2 it follows that there exists α0(ε) ∈ A such that for each α � α0

we have µ(Mxα∆My) < ε.
Let xα∗ ∈ {xα}α∈A, α∗ � α0. Since µ(Mxα∗ ) <∞ and µ(Mxα∗ ∆My) < ε, then we

have that µ(My) ≤ µ(Mxα∗ ) + µ(Mxα∗ ∆My) ≤ µ(Mxα∗ ) + ε <∞.
Therefore y ∈ Ω1 and thus we proved that Ω1 is a closed subset of Ω.
Let us assume that Ω2 6= ∅ too. It is easy to see that for each z ∈ ∂Ω2 from

condition A2 it follows that µ(Mz) = +∞. Then Ω2 is a closed set too.
Consequently we obtain Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅ for the connected space Ω,

which is impossible.
Then we can conclude that Ω2 = ∅. �
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3. Fixed point results

Let (X,A) be a sequentially complete Hausdorff uniform space with uniformity
generated by a saturated family of pseudometrics A = {dα(x, y) : α ∈ A}, where A is
an index set ([4]).

Denote by N the set of all positive integer numbers, N0 = N ∪ {0},R+ = [0,∞)
and Γ = A× N0.

Definition 3.1. [4] The family of functions Φ = {Φα : R+ → R+, α ∈ A} is said to
be Φ-contractive if satisfies the properties (Φ1):

Φ1.1. For every α ∈ A the function Φα is monotone increasing and continuous
from the right.

Φ1.2. For every α ∈ A the function Φα satisfies the inequality 0 < Φα(t) < t for
each t > 0.

Definition 3.2. The family of functions Φ = {Φ(α,n) : R+ → R+, (α, n) ∈ Γ} is said
to be Φ-almost contractive if satisfies the properties (Φ2):

Φ2.1. For every (α, n) ∈ Γ the function Φ(α,n) is monotone increasing and contin-
uous from the right.

Φ2.2. For every α ∈ A there exists a number n(α) ∈ N, such that for each n ≥ n(α)
the function Φ(α,n) satisfies the inequality 0 < Φ(α,n)(t) < t for every t > 0.

Remark 3.3. It is easy to see that if for every α ∈ A we have that n(α) = 0, then
the Φ-almost contractive family is Φ-contractive.

The next theorem is a slight generalization of Theorem 2.2.6 from [4]. First we
introduce the class of the (Φ)-almost contractive operators. Denote by T 0 the identity
operator.

Definition 3.4. The mapping T : X → X is said to be (Φ)-almost contractive on X
if for every fixed α ∈ A and n ∈ N0 there exists Φ(α,n)(t) ∈ Φ such that the inequality
dα(Tnx, Tny) ≤ Φ(α,n)(dj(α,n)(x, y)) holds for every x, y ∈ X, where j : Γ → A is a
mapping.

Theorem 3.5. Let the following conditions hold:
1. The operator T : X → X is (Φ)-almost contractive.
2. There exists a point x0 ∈ X such that for every α ∈ A and n ∈ N0 there exists

q = q(α) : A→ (0,∞) for which the inequality dj(α,n)(x0, Tx0) ≤ q(α) <∞ holds.

3. For every α ∈ A we have that
∞∑
n=0

Φ(α,n)(q(α)) <∞.

Then the operator T : X → X has at least one fixed point in X.

Proof. Let α ∈ A be an arbitrary fixed index. Then condition 2 implies that for
n ∈ N0 the inequalities

dα(Tn+mx0, T
nx0) ≤

m∑
i=1

dα(Tn+i−1(Tx0), Tn+i−1x0)

≤
m∑
i=1

Φ(α,n+i−1)(dj(α,n+i−1)(x0, Tx0)) ≤
m∑
i=1

Φ(α,n+i−1)(q(α))
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hold for each m ∈ N. Then the sequence {Tn(x0)}∞n=0 is a Cauchy one and conse-
quently there exists x∗: x∗ = lim

n→∞
Tn(x0) in (X,A). The limit x∗ is the required

fixed point of the operator T .
Indeed, for any fixed α ∈ A there exists n(α) ∈ N0 such that for every n ≥ n(α)

we have

dα(x∗, Tx∗) ≤ dα(x∗, xn+1) + dα(xn+1, Tx
∗)

≤ dα(x∗, xn+1) + Φ(α,1)(dj(α,1)(xn, x
∗))

where Φ(α,1) is right-continuous function and the last expression tends to 0.
The proof is complete. �

4. Applications

Let Ω∗ ⊂ Ω be an arbitrary M -star set. In our discussion below we will assume
that for the operator Q : Ω×Ω×B → B are fulfilled some of the following conditions
(where ||f ||Mx

:= max{||f(y)||B : y ∈Mx}):
S1. For every M -star set Ω∗ ⊂ Ω the operator Q is continuous in the set Ω∗ × Ω∗ ×B.
S2. For every f ∈ CM and each x ∈ Ω, there exist numbers δ(f, x) > 0 and
L(f, x, δ) > 0 such that for every function g ∈ CM for which ||f − g||Mx

< δ, the

inequality ||Q(x, y, f(y))−Q(x, y, g(y))||B ≤ L(f, x, δ)||f(y)− g(y)||B holds for ev-
ery y ∈Mx.
S3. For every x ∈ Ω and arbitrary r > 0, there exists a constant L(x, r) > 0 such
that for every two functions f1, f2 ∈ Ū(x, r) = {f ∈ CM | ||f ||Mx

≤ r} the inequality

||Q(x, y, f1(y))−Q(x, y, f2(y))||B ≤ L(x, r)||f1(y)− f2(y)||B holds for every y ∈Mx.
S4. For every x ∈ Ω there exists a constant L(x) > 0
such that for every two functions f1, f2 ∈ CM the inequality
||Q(x, y, f1(y))−Q(x, y, f2(y))||B ≤ L(x)||f1(y)− f2(y)||B holds for every y ∈Mx.

Consider the operator K defined by

Kf(x) =

∫
Mx

Q(x, y, f(y))dµy (4.1)

where f ∈ CM (Ω), x ∈ Ω. If for the operator Q the condition S1 holds, then the
integral in (4.1) does exist (see Remark 2.6).

Lemma 4.1. Let the conditions (A), S1 and S2 hold.
Then the operator K defined by (4.1) maps CM (Ω) into itself.

Proof. Let x ∈ Ω be an arbitrary fixed point, x0 ∈Mx and let {xα}α∈A ⊂Mx be an
arbitrary generalized sequence such that lim

α∈A
xα = x0. If f ∈ CM (Ω) is an arbitrary

fixed element then

||Kf(xα)−Kf(x0)||B ≤
∫
Mxα∩Mx0

||Q(xα, y, f(y))−Q(x0, y, f(y))||Bdµy

+

∫
Mxα\Mx0

||Q(xα, y, f(y))||Bdµy +

∫
Mx0

\Mxα

||Q(x0, y, f(y))||Bdµy

(4.2)
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Let ε > 0 be an arbitrary number. Since the set B(f) = Mx ×Mx × f(Mx) is com-
pact then there exists a constant Q0(x, f) > 0, Q0(x, f) = sup

(s,y,v)∈B(f)

||Q(s, y, v))||B .

Conditions A1 and S1 imply that there exists α0 = α0(ε) ∈ A, such that for each
α �α0 the inequalities

sup
α�α0,y∈Mx0

||Q(xα, y, f(y))−Q(x0, y, f(y))||B <
ε

2µ(Mx0
)

and

µ(Mxα∆Mx0
) ≤ ε

2Q0(x, f)

hold. Therefore from (4.2) it follows, that for each α � α0 we have

||(Kf)(xα)−Q(Kf)(x0)||B < ε. �

Corollary 4.2. Let the conditions (A), S1 and S2 hold.
Then the operator K defined by (4.1) maps CM into itself.

Definition 4.3. We say that the equation (2.1) has a local solution in some M -star
set Ω∗ ⊂ Ω for some p ∈ C(Ω∗, B) if there exists a point xp ∈ Ω∗ and a function
f ∈ C(Mxp , B) for which µ(Mxp) > 0 and f satisfies the equation (2.1) for each
x ∈ Mxp . If for every x ∈ Ω∗: p, f ∈ C(Mx, B) and f satisfies the equation (2.1)
then we say that f is a solution of (2.1) in Ω∗ ⊂ Ω.

For each p ∈ CM (Ω) define the operator T : Tf(x) = p(x) +Kf(x),
Tn+1 = T (Tn), n ∈ N and with T 0 we denote the identity operator. From Lemma 4.1
it follows that T maps CM (Ω) into CM (Ω) and therefore T : CM → CM .

Theorem 4.4. Let the following conditions be fulfilled:
1. The space Ω is connected.
2. The conditions (A), S1 and S3 hold.
3. For each x ∈ Ω the set Mx is connected.

Then ∀p ∈ C(MΩ, B) the equation (2.1) has at most one solution f ∈ C(MΩ, B).

Proof. Suppose f1, f2 ∈ C(MΩ, B) are two solutions of the equation (2.1). Let
x0 ∈MΩ be an arbitrary point such that f1(x0) 6= f2(x0). Then there exists a point
s ∈ Ω such that x0 ∈Ms and Mx0

⊂Ms (from A3).
Let r > sup

s∈Ms

||f1(x)||B + sup
s∈Ms

||f2(x)||B > 0 and denote by L(s, r) > 0 the con-

stant existing according to condition S3. From equation (2.1) and condition S3 it
follows that for each x ∈Ms the inequality

||f1(x)− f2(x)||B ≤ L(s, r)

∫
Mx

||f1(y)− f2(y)||Bdµy

holds. Using Theorem 2 and Theorem 3 from [7] we obtain ||f1(x)− f2(x)||B = 0 for
each x ∈Ms, which contradicts our supposition. �

Let A = Ω be the index set and introduce in the linear space CM uniform topology
generated by the following saturated family of pseudometrics

GM = {dx(f1, f2) = ||f1 − f2||Mx
: f1, f2 ∈ CM , x ∈ Ω}.
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It is easy to see that the family of pseudometrics is separated, i.e. if for some f1, f2 ∈
CM we have that dx(f1, f2) = 0 holds for every x ∈ Ω, then by necessary f1(s) = f2(s)
for s ∈ MΩ. Thus CM is Hausdorff (T2-separated) uniform space and obviously CM
is sequentially complete space.

Theorem 4.5. Let the following conditions be fulfilled:
1. The space Ω is connected.
2. The conditions (A), S1 and S4 hold.
3. For each x ∈ Ω the set Mx is connected.
4. For each n ∈ N and ∀x = x0 ∈ Ω the following inequality∫

Mx

(

∫
Mx1

(. . . (

∫
Mxn−1

µ(Mxn)dµxn) . . . )dµx2
)dµx1

≤ Cxµ
n+1(Mx)

(n+ 1)!

holds.
Then for each p ∈ CM (Ω) the equation (2.1) has in MΩ at least one solution

f ∈ CM .

Proof. Let x ∈ Ω be an arbitrary fixed element. For arbitrary f1, f2 ∈ CM and n ∈ N
from S4 and condition 4 we have

sup
y∈Mx

||Tn(f1)(y)− Tn(f2)(y)||B

= sup
y∈Mx

||K(Tn−1(f1))(y)−K(Tn−1(f2))(y)||B

≤ sup
y∈Mx

∫
My

‖Q(y, x1, T
n−1(f1)(x1))−Q(y, x1, T

n−1(f2)(x1))‖Bdµx1

≤ sup
y∈Mx

L(y)

∫
My

||Tn−1(f1)(x1)− Tn−1(f2)(x1)||Bdµx1

≤ L(x)

∫
Mx

||Tn−1(f1)(x1)− Tn−1(f2)(x1)||Bdµx1 ≤ . . .

≤ Ln(x)

∫
Mx

(

∫
Mx1

(. . . (

∫
Mxn−1

||f1 − f2||Mx
dµxn) . . . )dµx2

)dµx1

≤ Cxµ
n(Mx)Ln(x)

n!
||f1 − f2||Mx

= cxn||f1 − f2||Mx
.

(4.3)

Let n(x) ∈ N be the first number for which we have

cxn(x) =
Cxµ

n(x)(Mx)Ln(x)(x)

n(x)!
< 1 and Cxµ(Mx)L(x) < n(x).

Define the mapping j : Ω× N0 → Ω as follows: j(x, n) = x for n ∈ N0 and x ∈ Ω.
Define the family Φ = {Φ(x,n)(t) = cxnt : t ∈ R+, n ∈ N0, x ∈ Ω}. Obviously the

family Φ is Φ-almost contractive.
Assume that the function f0(x) ≡ 0 for each x ∈MΩ.



A FIXED POINT THEOREM AND APPLICATION 55

Since P (x) = sup
s∈Mx

||p(s)||B < ∞ and Q0(x) = sup
(s,y)∈Mx×Mx

||Q(s, y, 0)||B < ∞,

then for n ∈ N0 we have

dj(x,n)(f0, Tf0) = dx(f0, T f0)

= ||Tf0||Mx

< P (x) + µ(Mx)Q0(x) + 1

= q(x) <∞

(4.4)

From (4.4) it follows that the condition 2 of Theorem 3.5 holds too. For each n ≥ n(x)
from (4.3) it follows that the following estimation

Φ(x,n+1)(q(x))

Φ(x,n)(q(x))
=
cxn+1q(x)

cxnq(x)
≤ µ(Mx)L(x)

n

holds and therefore the condition 3 of Theorem 3.5 also is fulfilled. Thus for each
p ∈ CM the equation f = Tf has at least one fixed point f ∈ CM .

From Theorem 4.4 it follows that the fixed point f is unique and it is a continuous
function in MΩ, f ∈ C(MΩ, B). �

Remark 4.6. Obviously if Ω is a finite dimensional space then the condition 4 of
Theorem 4.5 is implicitly fulfilled.
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