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1. Introduction

Existence results for certain equations in a Banach algebra setting reduce to es-
tablishing fixed point theory for nonlinear operator equations of the form

x = AxBx+ Cx.

Fixed point theory in Banach algebras in a weak topology setting was discussed
in [7, 8, 9, 18, 19]. In [7, 8] the authors introduced a new class of Banach algebras
satisfying a certain sequential condition (P) (see Definition 2.6 in this paper) and
they presented some new fixed point theorems in a nonempty closed convex (not
necessarily bounded) subset of a Banach algebra satisfying condition (P).

The authors in [6] used the methods in the papers cited above and tried to extend
these results to weakly condensing operators. However there are problems in the
analysis. Theorems 3.1 and 3.2 in [6], which are the main results, are not correct.
Theorem 3.5 in this paper gives a correct version of Theorem 3.1 in [6].

• In the proof of Theorem 3.1 in [6], the operator I−C
A is not well defined. As

a result we introduce the notion of quasi-regular operators to guarantee that
the operator I−C

A is well defined.
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• In the proof of Theorem 3.1 in [6], the authors construct a set Λ which is not
necessarily bounded and they then use its measure of weak noncompactness.

To correct this we add the condition that
(
I−C
A

)−1
B(S) is bounded.

• In the proof of Theorem 3.1 in [6], to prove the weak sequential continuity

of the operator
(
I−C
A

)−1
B, the authors assume that if a sequence (xn)n

converges weakly to x and a sequence (yn)n converges weakly to y then the
sequence (xnyn)n converges weakly to xy. Unfortunately this is not correct
in a general Banach algebra.

As a consequence the result of Theorem 3.2 in [6] is not correct since it is a partic-
ular case of Theorem 3.1 (C ≡ 0). Also Theorem 3.3, Corollary 3.1 and Corollary 3.2
in [6] are not correct since they are based on the result of Theorem 3.1. In particular
we mention that a Banach algebra satisfying condition (P) is a WC-Banach algebra
but the converse is not necessarily true.

The present paper is organized as follows. After some preliminaries, in Section 3
we provide some new fixed point theorems in a nonempty closed convex subset of a
Banach algebra satisfying a sequential condition (P), for the sum and the product
of nonlinear weakly sequentially operators. The main condition in our results is
formulated in terms of axiomatic measures of weak noncompactness (see Definition
2.1). Our theorems extend some results stated in [6, 7, 8].

2. Preliminaries

Definition 2.1. Let X be a Banach space and C a lattice with a least element, which
is denoted by 0. By a measure of weak non-compactness on X, we mean a function
Φ defined on the set of all bounded subsets of X with value in C satisfying:

(1) Φ(conv(Ω)) = Φ(Ω), for all bounded subsets Ω ⊆ X, where conv denotes the
closed convex hull of Ω,

(2) for any bounded subsets Ω1, Ω2 of X we have

Ω1 ⊆ Ω2 =⇒ Φ(Ω1) ≤ Φ(Ω2),

(3) Φ(Ω ∪ {a}) = Φ(Ω) for all a ∈ E, Ω bounded set of X,

(4) Φ(Ω) = 0 if and only if Ω is weakly relatively compact in X.

The above notion is a generalization of the well known De Blasi measure of weak
noncompactness β (see [11]) defined on each bounded set Ω of X by

β(Ω) = inf{ε > 0 : there exists a weakly compact set D such that Ω ⊆ D +Bε(θ)}.
Note for all bounded subsets Ω,Ω1,Ω2 of X,

(5) β(Ω1 ∪ Ω2) = max{β(Ω1), β(Ω2)},
(6) β(λΩ) = λβ(Ω) for all λ > 0,

(7) β(Ω1 + Ω2) ≤ β(Ω1) + β(Ω2).

Note that β is the counterpart for the weak topology of the classical Hausdorff mea-
sure of noncompactness. For more examples and properties of measures of weak
noncompactness we refer the reader to [1, 4, 5, 20, 21].
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Definition 2.2. Let D be a nonempty subset of Banach space X, Φ is a MWNC on
X and F maps D into X. We say that

• F is Φ-condensing if F is bounded and Φ(F (V )) < Φ(V ) for all bounded
subsets V of D with Φ(V ) > 0,

• F is weakly compact if F (V ) is relatively weakly compact for every bounded
subset V ⊂ D.

Definition 2.3. Let X be a Banach space. An operator F : X −→ X is said to
be weakly sequentially continuous on X if for every sequence (xn)n with xn ⇀ x, we
have Fxn ⇀ Fx, here ⇀ denotes weak convergence.

The following fixed point result stated in [3] is an analogue of Sadovskii’s fixed
point result [2], will be used throughout the next section.

Theorem 2.4. Let Ω be a nonempty, convex subset of a Banach space X and let Φ
be a MWNC on X. Then the following assertions hold, for every Φ-condensing and
weakly sequentially continuous map T : Ω→ Ω with bounded range:

(i) T has a weakly-approximate fixed point sequence, i.e. a sequence (xn) ⊂ Ω so
that the sequence (xn − Txn) converges weakly to θ in X.

(ii) if Ω is closed, then the set F (T ) of fixed points of T is nonempty and weakly
compact.

Definition 2.5. An algebra X is a vector space endowed with an internal composition
law noted by (.) i.e., {

(.) : X ×X −→ X
(x, y) −→ x.y

which is associative and bilinear.
A normed algebra is an algebra endowed with a norm satisfying the following property

for all x, y ∈ X; ‖x.y‖ ≤ ‖x‖‖y‖.

A complete normed algebra is called a Banach algebra.

In general, the product of two weakly sequentially continuous mappings on a Ba-
nach algebra X is not necessarily weakly sequentially continuous (the operation mul-
tiplication is not necessarily weakly sequentially continuous).

Definition 2.6. We will say that the Banach algebra X satisfies condition (P) if

(P)

{
For any sequences {xn} and {yn} in X such that xn ⇀ x and yn ⇀ y,
then xnyn ⇀ xy; here ⇀ denotes weak convergence

Note that, every finite dimensional Banach algebra satisfies condition (P). If X
satisfies condition (P) then C(K,X) is also a Banach algebra satisfying condition (P),
where K is a compact Hausdorff space. The proof is based on Dobrokov’s theorem:

Theorem 2.7. [12, Dobrakov, p. 36] Let K be a compact Hausdorff space and X be
a Banach space. Let (fn)n be a bounded sequence in C(K,X), and f ∈ C(K,X).



40 AFIF BEN AMAR AND DONAL O’REGAN

Then (fn)n is weakly convergent to f if and only if (fn(t))n is weakly convergent to
f(t) for each t ∈ K.

Definition 2.8. [22] Let X be a Banach space. An operator F : X −→ X is said
to be strongly continuous on X if for every sequence (xn)n with xn ⇀ x, we have
Fxn −→ Fx, here −→ denotes convergence in X.

Definition 2.9. Let X be a Banach space. X is said to have the Dunford-Pettis
property (for short property DP) if for each Banach space Y every weakly compact
linear operator F : X −→ Y takes weakly compact sets in X into norm compact sets
of Y .

The Dunford-Pettis property as defined above was explicitly defined by A.
Grothendieck [17] who undertook an extensive study of this and related properties
(see also [13]). It is well known that any L1 space has the property DP [14].

Proposition 2.10. Let X be a Dunford-Pettis space and T a weakly compact linear
operator on X. Then T is strongly continuous.

It was proved in [6] that any Banach algebra with the Dunford-Pettis property
satisfies condition (P).

Lemma 2.11. [8, Lemma 3.2] Let X be a Banach algebra with the condition (P).
Then for any bounded subset V of X and weakly compact subset K of X, we have

β(V.K) ≤ ‖K‖β(V ),

where ‖K‖ = sup{‖x‖, x ∈ K}.

Definition 2.12. Let X be a Banach space. A mapping G : X −→ X is called D-
Lipschitzian if there exists a continuous and nondecreasing function φG : R+ −→ R+

such that

‖Gx− Gy‖ ≤ φG(‖x− y‖).
for all x, y ∈ X, with φG(0) = 0. Sometimes we call the function φG a D-function of
G on X. If φG(r) = kr for some k > 0, then G is called a Lipschitzian function on X
with the Lipschitz constant k. Furthermore if k < 1, then G is called a contraction
on X with the contraction k.

Remark 2.13. Every Lipschitzian mapping is D-Lipschitzian, but the converse may
not be true. For example [6], take G(x) =

√
| x |, x ∈ R and consider φG(r) =

√
r,

r ≥ 0. Then G is D-Lipschitzian with D-function φG , but G is not Lipschitzian.

Remark 2.14. If φG is not necessarily nondecreasing and satisfies φG(r) < r, for
r > 0, the mapping G is called a nonlinear contraction with contraction function φG .

3. Fixed point theory

Definition 3.1. An element x of a Banach algebra X is said to be quasi-regular if
for any y ∈ X we have xy = 0X imply y = 0X

Definition 3.2. Let X be a Banach algebra and A,C : X −→ X two operators such
that A is quasi-regular on X, i.e., A maps X into the set of all quasi-regular elements
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of X. We say that the operator I−C
A is defined on x ∈ X and we write I−C

A x = y ∈ X
if x = (Ax)y + Cx.

Remark 3.3. If A maps X into the set of all invertible elements of X, then A is
quasi-regular.

Proposition 3.4. Let X be a Banach algebra and S be a nonempty subset of X. Let
A,C : X −→ X and B : S −→ X be three operators such that

(i) A and C are D-Lipschitzians with the D-functions φA and φC respectively,
(ii) A is quasi-regular,

(iii) B is a bounded function with bound M .

Then
(
I−C
A

)−1
exists on B(S) if MφA(r) + φC(r) < r, for all r > 0.

Proof. Let y be fixed in S and define the mapping{
ϕy : X −→ X

x −→ ϕy(x) = AxBy + Cx.

Let x1, x2 ∈ X, and from (i) we have

‖ϕy(x1)− ϕy(x2)‖ ≤ ‖Ax1By −Ax2By‖+ ‖Cx1 − Cx2‖
≤ ‖Ax1 −Ax2‖‖By‖+ ‖Cx1 − Cx2‖
≤ MφA(‖x1 − x2‖) + φC(‖x1 − x2‖).

Now, an application of a fixed point theorem of Boyd and Wong [10] yields that there
is a unique element xy ∈ X such that

ϕy(xy) = xy = AxyBy + Cxy

Hence, xy verifies the equation (I − C)xy = AxyBy and so I−C
A xy = By. Therefore,

the mapping
(
I−C
A

)−1
is well defined on B(S) and

(
I−C
A

)−1
By = xy and the desired

result is deduced.

Theorem 3.5. Let X be a Banach algebra satisfying condition (P) and Φ is a MWNC
on X. Let S be a nonempty closed convex subset of X and let A,C : X −→ X and
B : S −→ X be three operators such that

(i) A and C are D-Lipschitzians with the D-functions φA and φC respectively,
(ii) A is quasi-regular on X,

(iii) A,B and C are weakly sequentially continuous on S,
(iv) B(S) is bounded with bound M ,

(v)
(
I−C
A

)−1
B is Φ-condensing on S with

(
I−C
A

)−1
B(S) is bounded,

(vi) x = AxBy + Cx⇒ x ∈ S, for all y ∈ S.

Then the equation x = AxBx+Cx has at least one solution in S if MφA(r)+φC(r) <
r, for all r > 0.

Proof. From Proposition 3.4, it follows that
(
I−C
A

)−1
exists on B(S). From assump-

tion (vi), we obtain (
I − C
A

)−1
B(S) ⊂ S.
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From Theorem 2.4, it suffices to prove that the operator
(
I−C
A

)−1
B is weakly se-

quentially continuous. To see this, let (un) be a weakly convergent sequence of S
(converging to a point u of S). Now define the sequence (vn) of the subset S by

vn =

(
I − C
A

)−1
Bun.

We prove that the set D = {vn} is relatively weakly compact. It is easily seen that

D ⊂ C(D) +A(D){Bun} ⊂ C(D) +A(D){Bun}w.

Using Lemma 2.11 and Lemma 2.1 in [6] with the weak compactness of {Bun}w, we
infer that

β(D) ≤ β(C(D) + β(A(D){Bun}w) ≤ φC(Φ(D)) +MφA(β(D)).

This shows that β(D) = 0. Thus D is relatively weakly compact. Therefore, there is
a renamed subsequence such that

vn =

(
I − C
A

)−1
Bun ⇀ v.

However the subsequence {vn} satisfies

vn − Cvn = AvnBun.

Therefore, from assumption (iii) and in view of condition (P), we deduce that v
satisfies

v − Cv = AvBu,

or, equivalently

v =

(
I − C
A

)−1
Bu.

Next we claim that the whole sequence {un} satisfies(
I − C
A

)−1
Bun = vn ⇀ v.

Indeed, suppose that this is not the case. There is a V w, a weakly neighborhood of
v, with for all n ∈ N, there exists an N ≥ n such that vN /∈ V w. Hence, there is a
renamed subsequence {vn} satisfying the property

for all n ∈ N, vn /∈ V w. (1)

However

for all n ∈ N, vn ∈
(
I − C
A

)−1
B(S).

Again, there is a renamed subsequence such that

vn ⇀ v′.

Thus we have

v′ =

(
I − C
A

)−1
Bu,



FIXED POINT THEORY IN BANACH ALGEBRA 43

and, consequently

v = v′,

which is a contradiction with property (1). This yields that
(
I−C
A

)−1
B is weakly

sequentially continuous.

Corollary 3.6. Let X be a Banach algebra satisfying condition (P) and S be a
nonempty closed convex subset of X and let A,C : X −→ X and B : S −→ X be
three operators such that

(i) A and C are D-Lipschitzians with the D-functions φA and φC respectively,
(ii) A is quasi-regular on X,

(iii) A,B and C are weakly sequentially continuous on S,
(iv) B(S) is bounded with bound M ,

(v)
(
I−C
A

)−1
B(S) is relatively weakly compact,

(vi) x = AxBy + Cx⇒ x ∈ S, for all y ∈ S.

Then the equation x = AxBx+Cx has at least one solution in S if MφA(r)+φC(r) <
r, for all r > 0.

Proof. This is an immediate consequence of Theorem 3.5 since
(
I−C
A

)−1
B is Φ-

condensing on S, where Φ is an arbitrary MWNC on X.

Remark 3.7. Corollary 3.6 improves Theorem 3.5 in [8].

Corollary 3.8. Let X be a Banach algebra satisfying condition (P) and Φ is a
MWNC on X. Let S be a nonempty closed convex subset of X and let A,C : X −→ X
and B : S −→ X be three operators such that

(i) C is D-Lipschitzians with the D-functions φC ,
(ii) A is nonexpansive and quasi-regular on X,

(iii) A,B and C are weakly sequentially continuous on S,
(iv) B(S) is bounded with bound M ,

(v)
(
I−C
A

)−1
B is Φ-condensing on S with

(
I−C
A

)−1
B(S) is bounded,

(vi) x = AxBy + Cx⇒ x ∈ S, for all y ∈ S.

Then the equation x = AxBx+Cx has at least one solution in S if Mr+ φC(r) < r,
for all r > 0.

Taking C ≡ x0 ∈ X in Theorem 3.5, we obtain this following result.

Theorem 3.9. Let X be a Banach algebra satisfying condition (P), x0 ∈ X and Φ is
a MWNC on X. Let S be a nonempty closed convex subset of X and let A : X −→ X
and B : S −→ X be two operators such that

(i) A is D-Lipschitzian with the D-functions φA,
(ii) A is quasi-regular on X,

(iii) A and B are weakly sequentially continuous on S,
(iv) B(S) is bounded with bound M ,

(v)
(
I−x0

A

)−1
B is Φ-condensing on S with

(
I−x0

A

)−1
B(S) is bounded,

(vi) x = AxBy + x0 ⇒ x ∈ S, for all y ∈ S.
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Then the equation x = AxBx+ x0 has at least one solution in S if MφA(r) < r, for
all r > 0.

Remark 3.10. Theorem 3.9 improves the conditions in Theorem 3.2 in [6] (and note
the result of Theorem 3.2 in [6] is not correct).

Taking A ≡ x0 a quasi-regular element of X in Theorem 3.5, we obtain this fol-
lowing result.

Theorem 3.11. Let X be a Banach algebra satisfying condition (P), x0 ∈ X a
quasi-regular element and Φ is a MWNC on X. Let S be a nonempty closed convex
subset of X and let C : X −→ X and B : S −→ X be two operators such that

(i) C is D-Lipschitzian with the D-functions φC ,
(ii) C and B are weakly sequentially continuous on S,

(iii) B(S) is bounded with bound M ,

(iv)
(

I−C
x0

)−1
B is Φ-condensing on S with

(
I−C
x0

)−1
B(S) is bounded.

(vi) x = x0By + Cx⇒ x ∈ S, for all y ∈ S.

Then the equation x = x0Bx+Cx has at least one solution in S if φC(r) < r, for all
r > 0.

In particular if we take x0 = 1X , where 1X is the unit element of the Banach
algebra X, we obtain a Krasnoselskii type fixed point theorem.

Corollary 3.12. Let X be a Banach algebra and Φ is a MWNC on X. Let S be a
nonempty closed convex subset of X and let C : X −→ X and B : S −→ X be two
operators such that

(i) C is D-Lipschitzian with the D-functions φC ,
(ii) C and B are weakly sequentially continuous on S,

(iii) B(S) is bounded with bound M ,

(iv) (I − C)
−1
B is Φ-condensing on S with (I − C)

−1
B(S) is bounded,

(vi) x = By + Cx⇒ x ∈ S, for all y ∈ S.

Then the equation x = Bx + Cx has at least one solution in S if φC(r) < r, for all
r > 0.

Remark 3.13. It turns out that Corollary 3.12 remains valid in any Banach space.
As a result we do not require the sequential condition (P).

Finally we prove the following useful result.

Theorem 3.14. Let S be a nonempty closed of a Banach algebra X satisfying con-
dition (P) and let A,C : X −→ X and B : S −→ X be three operators such that

(i) A and C are D-Lipschitzians with the D-functions φA and φC respectively,
(ii) A is quasi-regular on X,

(iii) A,B and C are weakly sequentially continuous on S,
(iv) B(S) is bounded with bound M ,

(v) B is weakly compact on S and
(
I−C
A

)−1
B(S) is bounded,

(vi) x = AxBy + Cx⇒ x ∈ S, for all y ∈ S.
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Then the equation x = AxBx+Cx has at least one solution in S if MφA(r)+φC(r) <
r, for all r > 0.

Proof. According to Theorem 3.5, it suffices to prove that the operator
(
I−C
A

)−1
B is

Φ-condensing where Φ is an arbitrary MWNC on X. To see this, let D be a bounded

subset of S and H =
(
I−C
A

)−1
B(D). It is easily seen that

H ⊂ C(H) +A(H)B(D) ⊂ C(H) +A(H)B(D)w.

We claim that ‖B(D)w‖ ≤ M . Indeed, let x ∈ B(D)w. By the Eberlein-Smulian
theorem, there exists a sequence (xn) ⊂ B(D) such that xn ⇀ x. Since ‖x‖ ≤
lim inf ‖xn‖ and for all n, ‖xn‖ ≤ M , we obtain that ‖x‖ ≤ M. Using Lemma 2.11

and Lemma 2.1 in [6] with the weak compactness of B(D)w, we infer that

β(H) ≤ β(C(H) + β(A(H)B(D)w) ≤ φC(β(H)) +MφA(β(H)).

This shows that β(H) = 0. Thus H is relatively weakly compact, and
(
I−C
A

)−1
B is

Φ-condensing where Φ is an arbitrary MWNC on X. The result follows from Theorem
3.5.

Remark 3.15. Theorem 3.14 improves Corollary 3.1 in [7].

Remark 3.16. Theorem 3.3 in [6] is not correct and Theorem 3.14 gives a correct
version of this theorem.
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