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Abstract. In this paper, using the technique of measure of weak noncompacteness, we prove some
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1. Introduction

Krasnosel’skii stated in [9] one of most important theorem in nonlinear analysis,
which is the following:

Theorem 1.1. Let M be a non-empty closed convex subset of a Banach space E and
S and T be two mappings from M into E such that

(1) S is compact and continuous,
(2) T is a strict contraction mapping,
(3) S(M) + T (M) ⊂M.

Then there exists an x ∈M such that Sx+ Tx = x.

It has been extensively used and has also been generalized in many directions (see
[10, 2, 17, 4] and the references therein). In [18, 3, 13, 14, 15], the authors extended
a number of existing generalizations or modifications of Krasnosel’skii fixed point
theorem for the weak topology.

In [12], Ok studied the case when the convexity of the set M is relaxed and he
proved a fixed (sometimes also called, invariant) set i.e. find a non-empty subset K
of M such that

S(K) + T (K) = K.
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In [16], Thagafi and Shahzad proved several new Krasnosel’skii type fixed set theorems
for the sum S+T, where S is a multivalued mapping and T is a single-valued mapping.
Their results provided a positive answer to the question of Ok [12] and showed that
the fixed set is compact.

In this paper, we extend, generalize and improve several fixed set results including
that given in [12] and [16] under weak topology circumstances. Applications to the
theory of self-similarity are also given.

2. Preliminaries

We present some notations and preliminary facts which we will need in what follows.
Let Y be a Hausdorff linear topological space and let M be a non empty subset of

a Banach space X.
We note 2Y , the set of all subsets of Y. The multi-valued mapping T : M → 2Y is

said to have weakly sequentially closed graph if for every sequence {xn} ⊂ M with
xn ⇀ x in M and for every sequence {yn} with yn ∈ T (xn),∀n ∈ N, yn ⇀ y in Y
implies y ∈ T (x), where ⇀ denotes weak convergence.
T is called weakly completely continuous if T has a weakly sequentially closed

graph and, if A is a bounded subset of M, then T (A) is a relatively weakly compact
subset of Y.

If T is a single valued mapping, then T is said weakly sequentially continuous
whenever for every sequence {xn} ⊂M with xn ⇀ x ∈M, we have T (xn) ⇀ T (x).

Definition 2.1. Let M be a nonempty subset of a Banach space X, and let T : M →
X. One says that T is a nonlinear contraction if there exists an upper semicontinuous
map ϕ : R+ → R+ satisfying ϕ(t) < t for every t > 0 such that d(Tx, Ty) ≤ ϕ(d(x, y))
for all x, y ∈M.

Definition 2.2. Let X a Banach space and C be a lattice with a least element, which
is denoted by 0. By a measure of weak non-compactness (MNWC) on X, we mean a
function Φ defined on the set of all bounded subsets of X with values in C satisfying:

(1) Φ(conv(Ω)) = Φ(Ω), for all bounded subsets Ω ⊆ X, where conv denotes the
closed convex hull of Ω.

(2) For any bounded subsets Ω1,Ω2 of X we have

Ω1 ⊆ Ω2 =⇒ Φ(Ω1) ≤ Φ(Ω2).

(3) Φ(Ω ∪ {a}) = Φ(Ω) for all a ∈ X,Ω bounded set of X.
(4) Φ(Ω) = 0 if and only if Ω is relatively weakly compact in X.

The MNWC Φ is said positive homogeneous provided Φ(λΩ) = λΦ(Ω) for all λ > 0
and Ω is a bounded set in X.

The above notion is a generalization of the important well known De Blasi measure
of weak non-compactness β (see [6]) defined on each bounded set Ω of X by

β(Ω) = inf{ε > 0; there exists a weakly compact set D such that Ω ⊆ D +Bε(0)}.
It is well known that β enjoys these properties for all bounded subsets Ω,Ω1,Ω2 of X

(1) β(Ω1 ∪ Ω2) = max{β(Ω1), β(Ω2)}
(2) β(λΩ) = λβ(Ω) for all λ > 0.



KRASNOSEL’SKII-TYPE FIXED-SET 29

(3) β(Ω1 + Ω2) ≤ β(Ω1) + β(Ω2).

Definition 2.3. Let Ω be a nonempty subset of Banach space X and Φ a MNWC
on X. If F maps Ω into X. We say that F is Φ−condensing if Φ(F (D)) < Φ(D) for
all bounded sets D ⊆ Ω with Φ(D) 6= 0.

3. Fixed-set results

In this section we prove, in the setting of weak topology, some new Karasnosel’skii
type theorems. Our purpose is to obtain the existence of a fixed set (instead of a fixed
point) for the sum of two operators, by removing the convexity hypothesis.

Theorem 3.1. Let M be a non-empty weakly closed subset of a Banach space E and
Φ a semiadditive MNWC on E. Assume S : M → 2E and T : M → 2E satisfying the
following conditions:

(1) S is weakly completely continuous.
(2) T is Φ-condensing and has weakly sequentially closed graph.
(3) S(M) + T (M) is a bounded set of M .

Then
i) there exists a minimal K weakly compact subset of M such that K = S(K)+T (K);
ii) there exists a maximal A ∈ 2M such that A = S(A) + T (A).

Proof. Let y ∈ S(M) + T (M) and

C = {C ⊂M, weakly closed such that y ∈ C and S(C) + T (C) ⊂ C}

By 3), C is non-empty. Let C0 =
⋂

C∈C C. It is clear that C0 ∈ C. We define

L = S(C0) + T (C0) ∪ {y}
w
.

The set L satisfies

S(L) + T (L) ⊂ S(C0) + T (C0) ⊂ L.
Then, we deduce that C0 = L = S(C0) + T (C0) ∪ {y}

w
. On the other hand L is

bounded and if Φ(L) > 0, we have

Φ(L) ≤ Φ(S(L)) + T (L)) < Φ(L).

Then L is weakly compact. Let now

F = {F ⊂M weakly compact, such that F ⊂ L and S(F ) + T (F ) ⊂ F}.

Note that F is nonempty since L ∈ F . Any chain in the posed (F ,⊇) has the finite
intersection property, so as L is weakly compact the intersection of all members of
any chain in (F ,⊇) is non-empty. Then, any chain in (F ,⊇) has a lower bound in F .
Therefore, by Zorn’s lemma (F ,⊇) has a minimal element, say K. By definition, we
have that K is weakly compact, K ⊂ L and S(K) + T (K) ⊂ K. Let

N = S(K) + T (K)
ω
.

N is also weakly compact and N ⊂ K. It follows that

S(N) + T (N) ⊂ S(K) + T (K) ⊂ S(K) + T (K)
ω
⊂ N
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and hence N ∈ F . Thus N = K = S(K) + T (K)
ω
. We prove now that S(K) + T (K)

is weakly closed. Let x ∈ S(K) + T (K)
w
, by the Eberlein-Smulian theorem (see

[7] Theorem 8.12.4 p.549), there exists a sequence {xn} ⊂ S(K) + T (K) such that
xn ⇀ x. Then, there exist a sequence {αn} ⊂ S(K) and a sequence {βn} ⊂ T (K)
such that

xn = αn + βn

with αn ∈ S(yn) and βn ∈ T (zn), for some yn, zn ∈ K. Since {yn} is bounded and
S is weakly completely continuous, by the Eberlein-Smulian theorem, there exists a
subseqence αnk

⇀ α. On the other hand, since K is weakly compact, by the Eberlein-
Smulian theorem, there exists a subsequence {ynkj

} of {ynk
} which converge weakly

to y ∈ K. Since S has weakly sequentially closed graph, we get α ∈ S(y). It is clear
that βnkj

⇀ x − α. By the Eberlein-Smulian theorem, there exists a subsequence

of {znkj
} which converge weakly to z ∈ K. Since T has weakly sequentially closed

graph, we get β ∈ T (z) and x = α+ β ∈ S(y) + T (z) ⊂ S(K) + T (K). Hence

K = S(K) + T (K)
w

= S(K) + T (K).

Which proves i). For ii), let

C = {C ⊂M ;C ⊂ S(C) + T (C)}
and A =

⋃
C∈C C. Clearly A is nonempty since K ∈ C. We have A ⊂ S(A) + T (A).

Take y ∈ S(A) + T (A). It follows that

A ∪ {y} ⊂ S(A) + T (A) ⊂ S(A ∪ {y}) + T (A ∪ {y})
and hence A ∪ {y} ∈ C and y ∈ A. Thus S(A) + T (A) = A.

Remark 3.2. By using the techniques of measures of weak compactness, we estab-
lish in Theorem 3.1 a weak topology version of Theorem 3.1 in [16] for the case of
multivalued functions.

Corollary 3.3. Let M be a non-empty weakly closed subset of a Banach space E and
Φ a semiadditive MNWC on E. Assume S : M → 2E and T : E → E satisfying the
following conditions:

(1) S is weakly completely continuous.
(2) T is a nonlinear contraction and weakly sequentially continuous.
(3) S(M) + T (M) is a bounded set of M .

Then,
i) there exists a minimal K weakly compact subset of M such that K = S(K)+T (K);
ii) there exists a maximal A ∈ 2M such that A = S(A) + T (A).

Proof. T is a nonlinear contraction, then it is β−condensing (see [1]). We apply now
Theorem 3.1 and we use the fact that every weakly sequentially continuous single
valued mapping has weakly sequentially closed graph.

Theorem 3.4. Let M be a non-empty weakly closed subset of a Banach space E
and Φ MNWC on E. Assume S : M → 2E and T : M → E satisfying the following
conditions:

(1) S has weakly sequentially closed graph.
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(2) T is weakly sequentially continuous.
(3) Φ(S(A) + T (A)) < Φ(A), for all bounded subset A in M with Φ(A) > 0.
(4) S(M) + T (M) is a bounded set of M .

Then,
i) there exists a minimal K weakly compact subset of M such that K = S(K)+T (K);
ii) there exists a maximal A ∈ 2M such that A = S(A) + T (A).

Proof. As in the proof of Theorem 3.1, we prove that there exists a weakly compact

K such that S(K) + T (K) ⊂ K and K = S(K) + T (K)
w

. It suffices now to show

that S(K) + T (K) is weakly closed. Let x ∈ S(K) + T (K)
w
. Since S(K) + T (K)

w

is weakly compact then by the Eberlein-Smulian theorem, there exists a sequence
{xn} ⊂ S(K) + T (K) such that xn ⇀ x. Then, there exist a sequence {αn} ⊂ S(K)
and a sequence {βn} ⊂ T (K) such that

xn = αn + βn

with αn ∈ S(yn) and βn ∈ T (zn), for some yn, zn ∈ K. Since K is weakly compact,
by the Eberlein-Smulian theorem, there exists a subseqence znk

⇀ z ∈ K. Since
T is weakly sequently continuous, then xnk

− T (znk
) ⇀ x − T (z). Similarly, by the

Eberlein-Smulian theorem, there exists a subsequence {ynkj
} of {ynk

} which converges

weakly to y ∈ K. Since S has weakly sequentially closed graph, we get x−T (z) ∈ S(y)
which implies that x ∈ S(K) + T (K). Hence

K = S(K) + T (K)
w

= S(K) + T (K).

Which proves i). Finally, ii) follows by the same proof as in Theorem 3.1.

Corollary 3.5. Let M be a non-empty weakly closed subset of a Banach space E and
Φ a measure of weak noncompactness (MNWC) on E. Assume S : M → 2E satisfying
the following conditions:

(1) S is Φ-condensing and has weakly sequentially closed graph.
(2) S(M) is a bounded set of M.

Then
i) there exists K a weakly compact subset of M such that S(K) = K;
ii) there exists a maximal A ∈ 2M such that A = S(A). Moreover A =

⋂
k≥1 S

k(M).

Proof. First, we apply Theorem 3.1 or Theorem 3.4 with T = 0. So to finish the proof,
it is sufficient to prove that A =

⋂
k≥1 S

k(M). Define

F = {F ∈M such that S(F ) = F}.

By i), it is clear that F is not empty, since K ∈ F . We put A = ∪F∈FF. We have that
A is maximal and A = S(A). On the other hand, let B =

⋂
n≥1 S

n(M). For F ∈ F ,
we have

F = S(F ) ⊂ S(M).

Then, F = S(F ) ⊂ S2(M) and by iteration, we obtain F ⊂ Sn(M), for all n ≥ 1. So

A = ∪F∈FF ⊂ Sn(M), for all n ≥ 1.
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Consequently,

A = ∪F∈FF ⊂
⋂
n≥1

Sn(M) = B.

Since S(M) ⊂ M, we have that S(B) = B. By the facts that A is maximal, B ∈ F
and A ⊂ B, it follows that A = B.

Remark 3.6. By Corollary 3.5 and using the techniques of measures of weak com-
pacteness, we establish a weak topology version of Proposition 4.2 in [11] and Lemma
2.3 in [12].

Corollary 3.7. Let M be a non-empty weakly closed subset of a Banach space E.
Assume S : M → 2M such that

(1) S(M) is bounded,
(2) S(N) is relatively weakly compact, for all bounded set N ⊂M .

Then,

i) there exists K a weakly compact subset of M such that S(K)
ω

= K.
ii) there exists a maximal A ∈ 2M such that A = S(A). Moreover A =

⋂
k≥1 S

k(M).

Proof. This is an immediate consequence of Corollary 3.5, since S is Φ−condensing
for any measure of weak noncompactness (MNWC) on E.

Theorem 3.8. Let M be a non-empty weakly closed subset of a Banach space E and
Φ a semiadditive MNWC on E. Assume S : M → 2E and T : E → 2E satisfying the
following conditions:

(1) S is weakly completely continuous.
(2) T is Φ-condensing and has weakly sequentially closed graph.
(3) S(M) ⊂ (I − T )(E) and x ∈ T (x) + S(y), y ∈M =⇒ x ∈M .
(4) (I − T )−1S(M) is bounded.

Then,
i) there exists a minimal K weakly compact subset ofM such that (I−T )(K) = S(K)
and K ⊂ S(K) + T (K)
ii) there exists a maximal A subset of M such that S(A) + T (A) = A.

Proof. First of all, we check that (I −T )−1S(M) ⊂M. Let x ∈ (I −T )−1S(M), then
there exists y ∈ M such that x ∈ (I − T )−1(S(y)). It follows that x ∈ T (x) + S(y)
and by assumption 3) we get x ∈M. Hence, (I − T )−1S(M) ⊂M. We define

N := (I − T )−1 ◦ S : M → 2M

Let x0 ∈M. Define

A = {A ⊂M weakly closed such that x0 ∈ A and N(A) ⊂ A}.

Note that A is non-empty since N(M) ∪ {x0}
ω
∈ A. Take A0 =

⋂
A∈AA. As A0 is

weakly closed, x0 ∈ A0, and N(A0) ⊂ A0, we have A0 ∈ A. Let

L = N(A0) ∪ {x0}
ω
.

So L is a weakly closed subset of A0, x0 ∈ L, and

N(L) ⊂ N(A0) ⊂ N(A0) ∪ {x0}
ω

= L.
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This shows that L ∈ A and L = A0. Notice that ((I − T )−1S(M)) ∪ {x0}
ω

is a

bounded subset of M containing L and Φ(A0) = Φ(N(A0) ∪ {x0}
ω

) = Φ(N(A0)).
But

N(A0) = (I − T )−1S(A0) ⊂ T (I − T )−1S(A0) + S(A0) ⊂ T (A0) + S(A0).

So
Φ(N(A0)) ≤ Φ(T (A0) + S(A0)) ≤ Φ(T (A0)) + Φ(S(A0))

Since S(A0)
ω

is weakly compact and T is Φ-condensing, then

Φ(N(A0)) ≤ Φ(T (A0)) < Φ(A0).

Hence, it follows that Φ(A0) = 0 and A0 is weakly compact. Therefore, N : A0 → 2A0

is weakly compact. By Corollary 3.7 there exists a minimal K weakly compact of M

such thatN(K)
ω

= K. Let x ∈ N(K)
ω
. By the Eberlein Smulian theorem, there exists

a sequence {xn} ⊂ N(K) such that xn ⇀ x. We have xn ∈ N(yn) = (I − T )−1S(yn),
for all n ≥ 1 with yn ∈ K. Then (I − T )xn ∩ S(yn) 6= ∅, for all n ≥ 1 and we have

xn ∈ Txn + αn,

where αn ∈ S(yn). Since {yn} is bounded, by assumption 1) S({yn}) is relatively
weakly compact, then, by the Eberlein Smulian theorem, there is a subsequence {αnk

}
such that αnk

⇀ α, Since S has weakly sequentially closed graph and using a subse-
quence ynkj

⇀ y ∈ K, we get α ∈ S(y). On the other hand, xnkj
−αnkj

⇀ x−α. Since

T has weakly sequentially closed graph, we get x−α ∈ T (x), then x ∈ (I−T )−1S(y).
We deduce that

K = N(K),

which gives that (I − T )(K) = S(K), and hence K ⊂ S(K) + T (K), which proves i).
For ii), the result follows by the same proof as in Theorem 3.1.

Theorem 3.9. Let M be a non-empty weakly closed subset of a banach space E and
Φ a semiadditive MNWC on E. Assume S : M → 2E and T : M → E satisfying the
following conditions:

(1) S is weakly completely continuous.
(2) T is Φ-condensing and weakly sequentially continuous.
(3) S(M) ⊂ (I − T )(M) and (I − T )−1S(M) is bounded.
(4) (I − T )−1 is a single-valued map on S(M).

Then,
i) there exists a minimal K weakly compact subset ofM such that (I−T )(K) = S(K)
and K ⊂ S(K) + T (K)
ii) there exists a maximal A subset of M such that S(A) + T (A) = A.

Proof. Let y ∈ M. Then, by (3), there exists A ⊂ M such that Sy ⊂ (I − T )A, and,
as (I − T )−1 is a single valued map on S(M),

((I − T )−1 ◦ S)y = (I − T )−1(Sy) ⊂ A ⊂M.

So N := (I − T )−1 ◦ S : M → 2M . Let x0 ∈ M . As in the proof of Theorem 3.8,

there exists a minimal K weakly compact such that N(K)
ω

= K. Let x ∈ N(K)
ω
.

By the Eberlein Smulian theorem, there exists a sequence {xn} ⊂ N(K) such that
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xn ⇀ x. We have xn ∈ N(yn) = (I − T )−1S(yn), for all n ≥ 1 with yn ∈ K. Then
(I − T )xn ∈ S(yn), for all n ≥ 1 and we have

xn = Txn + αn,

where αn ∈ S(yn). Since {yn} ⊂ K and K is weakly compact, there is a subsequence
{ynk
} such that ynk

⇀ y ∈ K. Since now T is weakly sequentially continuous, αnk
=

xnk
− T (xnk

) converges weakly to x − T (x). Since S has weakly sequentially closed
graph, we get x−T (x) ∈ S(y) ⊂ S(K). hence x ∈ (I−T )−1S(K). Consequently,K =
N(K). Wich gives that (I − T )(K) = S(K), and hence K ⊂ S(K) + T (K). The
remained proof follows along the lines of Theorem 3.1.

Theorem 3.10. Let M be a non-empty weakly closed subset of a Banach space E.
Assume S : M → 2E and T : E → E satisfying the following conditions:

(1) S has a weakly sequentially closed graph and S(M) is relatively weakly com-
pact.

(2) T is a nonlinear contraction and weakly sequentially continuous.
(3) S(M) + T (M) ⊂M.

Then,
i) there exists a minimal K weakly compact subset ofM such that (I−T )(K) = S(K)
and K ⊂ S(K) + T (K)
ii) there exists a maximal A subset of M such that S(A) + T (A) = A.

Proof. Let z ∈ S(M)
w
. By (2) and (4) the map x 7→ z+Tx is a nonlinear contraction

from M into M. So, there exists a unique x0 ∈ M such that x0 = z + Tx0. Then
z = x0 − Tx0 ∈ (I − T )M, and so S(M) ⊂ (I − T )M. Since the map x 7→ z + Tx
has a unique fixed-point, its fixed-point set (I − T )−1z is a singleton. So (I − T )−1 :

S(M)
w
→M is a single-valued map.

In the following, we proof that (I − T )−1 is weakly sequentially continuous on

S(M)
ω

. Let zn, z ∈ S(M)
ω

, such that zn ⇀ z. Define

xn = (I − T )−1(zn) and x = (I − T )−1z.

We show that xn ⇀ x. If we suppose that {xn} is not weakly convergent to x, then
there exists a neighborhood V of x and a subsequence {xnj

} such that for all j ≥ 1,
xnj

/∈ V . On the other hand znj
= (I − T )(xnj

) ⇀ z. Since T is β−condensing (see
[1]), we have as explained in [5], that if β({xn}) > 0, then

β({xn}) ≤ β({(I − T )(xn)}) + β({Txn}) ≤ β({Txn}) ≤ β({xn}).
So β({xn}) = 0. By the Eberlein Smulian theorem, there exists a subsequence {xnjk

}
which converges weakly to x0 ∈M . Then

(I − T )(xnjk
) ⇀ z

and, so, T (xnjk
) ⇀ x0 − z. Consequently x0 − z = T (x0) and x0 = (I − T )−1z = x.

This contradict the choice of V , hence xn = (I − T )−1(zn) ⇀ x = (I − T )−1z, which

means that (I − T )−1 is weakly sequentially continuous on S(M)
ω

. On the other

hand S(M)
ω

is weakly compact, then the multimap

(I − T )−1 ◦ S : M −→ 2M
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is weakly compact. By Corollary 3.3, there exists a weakly compact set K ⊂M such
that

(I − T )−1S(K)
w

= K.

It suffices now to show that (I−T )−1S(K) is weakly closed. Let z ∈ (I − T )−1S(K)
w

,
there exists a sequence zn ∈ (I−T )−1S(K) such that zn ⇀ z and a sequence xn ∈ K
such that zn ∈ (I − T )−1S(xn) and then

zn − T (zn) ∈ S(xn).

Since K is weakly compact, we assume that xn ⇀ x ∈ K. Since T is weakly
sequentially continuous, zn − T (zn) ⇀ z − T (z). We use the fact that S has
a weakly sequentially closed graph, we get z − T (z) ∈ S(x) which implies that
z ∈ (I − T )−1S(x) ⊂ (I − T )−1S(K). Which proves i). For ii) the result follows
as in Theorem 3.1.

4. An application: the existence of self-similar sets

Let M be a non-empty weakly closed subset of a Banach space E and F be a
family of self-maps of M . For any x ∈M and S ⊂M , we let

F(x) = {f(x), f ∈ F}, F(S) =
⊔
{f(S), f ∈ F}.

A non-empty set S is said to be self similar if F(S) = S. If F = {F1, ..., Fn} is
a finitely family of self-maps, then (M, {F1, ..., Fn}) is called an iterated function
system (IFS). We say that an (IFS) is continuous (resp. contraction, Φ-condensing,
etc.) if each Fi is so. A well-known theorem of fractal geometry says that there exists
a unique compact self-similar with respect to any contraction (IFS) (see [8]). In
[11], OK has extend this result to a continuous and Φ- condensing (IFS). For a Φ-
condensing (IFS) in weak topology circumstances we show the following results.

Theorem 4.1. Let M be a non-empty weakly closed subset of a Banach space E and
Φ a measure of weak non compactness on E. Let (M, {F1, ..., Fn}) be a Φ−condensing
(IFS) such that

(1) F1 ∪ · · · ∪ Fn has weakly sequentially closed graph,
(2) F1(M) ∪ ... ∪ Fn(M) is bounded.

Then there exists a weakly compact self-similar set with respect to (M, {F1, ..., Fn}).

Proof. According to Corollary 3.5, it suffices to show that

F : M −→ 2M , x 7−→ F1(x) ∪ ... ∪ Fn(x)

is Φ−condensing. In fact, for all bounded set A ⊂M , we have

Φ(F (A)) = Φ(F1(A) ∪ ... ∪ Fn(A)) = max(Φ(F1(A)), ...,Φ(Fn(A))) < Φ(A).

The following result is an immediate consequence of Theorem 3.10.

Theorem 4.2. Let M be a non empty closed subset of a Banach space E and Φ a
semi-additive measure of weak non compactness on E. Let (M, {F1, ..., Fn, Fn+1}) be
a (IFS) such that
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(1) F1 ∪ · · · ∪Fn has weakly sequentially closed graph and F1(M)∪ ...∪Fn(M) is
relatively weakly compact,

(2) Fn+1 is a nonlinear contraction and weakly sequentially continuous,
(3) Fi(M) + Fn+1(M) ⊂M, ∀i = 1, · · · , n.

Then there exists a weakly compact set K of M such that

(I − Fn+1)(K) = F1(K) ∪ ... ∪ Fn(K).

Remark 4.3. This Theorem provides information about the stability of self-similar
sets with respect to some perturbations.
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