ADDENDUM TO THE PAPER "AN ITERATIVE METHOD FOR A FUNCTIONAL-DIFFERENTIAL EQUATION OF SECOND ORDER WITH MIXED TYPE ARGUMENT", FIXED POINT THEORY, 14(2013), NO. 2, 427-434

DIANA OTROCOL*, VERONICA ILEA** AND CORNELIA REVNIC***
* Tiberiu Popoviciu Institute of Numerical Analysis of Romanian Academy, Cluj-Napoca, Romania
E-mail: dotrocol@ictp.acad.ro
**Department of Applied Mathematics, Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail: vdarzu@math.ubbcluj.ro
***Department of Mathematics and Computer Science University of Medicine and Pharmacy "Iuliu Haţieganu"
Cluj-Napoca, Romania
E-mail: cornelia.revnic@umfcluj.ro

In the paper "An iterative method for a functional-differential equation of second order with mixed type argument", Fixed Point Theory, 14(2013), No. 2, 427-434, we study the problem

$$
\begin{gather*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t), x(t-h), x(t+h)\right), t \in[-h, T], \tag{1}\\
x(t)=\varphi(t), t \in[-h, h] \tag{2}
\end{gather*}
$$

in the following conditions
$\left(\mathrm{C}_{1}\right) f \in C^{k}\left([-T, T] \times \mathbb{R}^{4}, \mathbb{R}\right), \varphi \in C^{k}([-h, h], \mathbb{R}), k=\left[\frac{T}{h}\right]+1 ;$
$\left(\mathrm{C}_{2}\right) \frac{\partial f(t, u, v, w, z)}{\partial z} \in \mathbb{R}^{*}, \forall t \in[-T, T], \forall u, v, w, z \in \mathbb{R} ;$
$\left(\mathrm{C}_{3}\right)\left|\frac{\partial f(t, u, v, w, z)}{\partial z}\right| \leq M_{1}, \forall t \in[-T, T], \forall u, v, w, z \in \mathbb{R} ;$
$\left(\mathrm{C}_{4}\right) \forall t \in[-T, T], u, v, w, z, \eta \in \mathbb{R}$, the equation $f(t, u, v, w, z)-\eta=0$ has a unique solution.
In this addendum we add the condition
$\left.\left(C_{5}\right) \frac{d^{k}}{d t^{k}} \varphi^{\prime \prime}(t)\right|_{t=0}=\left.\frac{d^{k}}{d t^{k}} f\left(t, \varphi(t), \varphi^{\prime}(t), \varphi(t-h), \varphi(t+h)\right)\right|_{t=0}$.
So the final form of Theorem 2.1 should be:

Theorem 2.1. In the conditions $\left(C_{1}\right)-\left(C_{3}\right)$ we have
a) The problem (1.1)-(1.2) has in $C^{2}[-T, T]$ (which is in fact in $C^{k}[-T, T]$) a unique solution

$$
x^{*}(t)= \begin{cases}\varphi(t), & t \in[-h, h] \\ x_{1}^{*}(t), & t \in[h, 2 h] \\ \vdots & \\ x_{n}^{*}(t), & t \in[n h, T]\end{cases}
$$

b) We suppose that the conditions $\left(C_{1}\right)-\left(C_{5}\right)$ are satisfied. Then the sequence defined by

$$
\begin{aligned}
& \left(p_{0}\right) x(t)=\varphi(t)=\left\{\begin{array}{l}
x_{-1}(t), t \in[-h, 0], \\
x_{0}(t), t \in[0, h] ;
\end{array}\right. \\
& \left(p_{1}\right) x_{1 m}(t)=x_{1, m-1}(t)-G\left(t, x_{1}^{*}(t)\right) F\left(t, x_{1, m-1}(t)\right), t \in[h, 2 h] ; \\
& \left(p_{2}\right) x_{2 m}(t)=x_{2, m-1}(t)-G\left(t, x_{2}^{*}(t)\right) F\left(t, x_{2, m-1}(t)\right), t \in[2 h, 3 h] ; \\
& \left(p_{3}\right) x_{3 m}(t)=x_{3, m-1}(t)-G\left(t, x_{3}^{*}(t)\right) F\left(t, x_{3, m-1}(t)\right), t \in[3 h, 4 h] ;
\end{aligned}
$$

$\left(p_{n}\right) x_{n m}(t)=x_{n, m-1}(t)-G\left(t, x_{n}^{*}(t)\right) F\left(t, x_{n, m-1}(t)\right), t \in[n h, T]$. is convergent and $\lim _{m \rightarrow \infty} x_{i m}=x_{i}^{*}, i=\overline{1, n}$;

Proof. For the initial proof we add the following: on each interval of the form: $[k h,(k+$ 1) $h] \cup[(k+1) h, T], k \in \mathbb{Z}$, from condition (C5) we have $x_{k}(k h)=x_{k-1}(k h), x_{k}^{\prime}(k h)=$ $x_{k-1}^{\prime}(k h)$ and $x_{k}^{\prime \prime}(k h)=x_{k-1}^{\prime \prime}(k h)$. We choose a start function $x_{k, 0}(t)$ such that $x_{k, 0}(k h)=x_{k-1,0}(k h)$. So we obtain $x_{k, m}(k h)=x_{k-1, m}(k h)$.
Acknowledgement. The authors would like to express their gratitude to Prof. Dirk-André Deckert for careful reading of the manuscript and insightful comments.

Received: October 2, 2014; Accepted: October 13, 2014.

