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1. Introduction

The study of finding a common fixed point of a pair of commuting mappings
seems to be of vital interest in view of a historically significant and negatively
settled problem that a pair of commuting continuous self mappings on the unit
interval [0,1] need not have a common fixed point [4, 8]. Since then, there have
been several attempts to find weaker forms of commutativity that may ensure
the existence of a common fixed point for a pair of self maps on a metric
space. In this context, the notion of compatible mappings, introduced by
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Jungck [9 ] (see also Sessa [23 ]) has been of significant interest and has proven
useful for generalizing results in metric fixed point theory for single-valued and
multivalued mappings [7, 9-22,24-25]. Recall that self mappings S and T of a
metric space (X, d) are compatible if limnd(STxn, TSxn) = 0, whenever {xn}
is a sequence in X such that limn Sxn = limn Txn = z for some z ∈ X. It
is well known that two commuting mappings are compatible but the reverse
implication need not be true in general [10, Example, page 285]. Further to
this, the notion of weakly compatible mappings was recently introduced and
studied by Jungck and Rhoades [14] which has been found more general than
many of it’s counterparts, including the compatible mappings . Self mappings
S and T of a metric space (X, d) are called weakly compatible if Sx = Tx

implies that STx = TSx for all x ∈ X

Notice that two mappings may fail to be weakly compatible only if they
possess a coincidence point at which they do not commute. This means that
weak compatibility is the minimal condition for mappings to have a common
fixed point as a common fixed point is also a point of coincidence. Also, it
is interesting to note that compatible mappings are again weakly compatible
but not conversely (see [14, Example 5.1]). The same observation applies to
several other forms of compatibility, such as compatibility of type A,B or C

etc. [13, 18,19] (see for example, [7, Example 3]).

On the other hand ϕ− contractions were used earlier by Bhakta and Mitra
[3] to obtain some existence theorems for functional equations that arise in
certain type of continuous multistage decision process (related to dynamic
programming). Subsequent results in this direction appear, among others, in
[1,6,15, 17, 25].

Motivated by the above results, we prove some common fixed point theorems
for a quadruple of self mappings of a complete metric space satisfying weak
compatibility condition and a rational inequality. Subsequently, we utilize our
main theorem (Theorem 2.1) to obtain common solutions of certain functional
equations arising in dynamic programming. The results obtained here in
extend and improve some results in [1,3,6,10, 13,15,17,26] and others.
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2. Common fixed point theorems

Now onward, we denote by Φ the collection of all functions ϕ : [0,∞) →
[0,∞) which are upper semi-continuous from the right, non-decreasing and
satisfy

lim
s→t+

supϕ (s) < t, ϕ (t) < t for all t > 0

Throughout, unless stated otherwise, X will denote a metric space (X, d). The

set of natural numbers will be denoted by N.

First we have the following lemmas.

Lemma 2.1 If ϕi ∈ Φ , i ∈ I, where I is some finite indexing set, then
there exists a ϕ ∈ Φ such that max {ϕi (t) : i ∈ I} 6 ϕ (t) for all t > 0.

The proof of the above lemma can easily be constructed.

Lemma 2.2 [5, Lemma 2] Let ϕ ∈ Φ and let {τn} be a sequence of non-
negative real numbers. If τn+1 6 ϕ (τn) for n ∈ N, then the sequence {τn}
converges to 0.

Now, let A,B, S and T be self-mappings of a metric space (X, d) such that

A(X) ⊂ T (X) and B(X) ⊂ S(X), (2.1)

d(Ax,By) ≤ p max {d(Ax, Sx)d(By, Ty), d(Ax, Ty)d(By, Sx)}
1 + pd(Sx, Ty)

+

1
1 + pd(Sx, Ty)

max{ϕ1(d(Sx, Ty)), ϕ2(d(Ax, Sx)),

ϕ3(d(By, Ty)), ϕ4(
1
2
[d(Ax, Ty) + d(By, Sx)]} (2.2)

for all x, y ∈ X, ϕi ∈ Φ(i = 1, 2, 3, 4) and p > 0.

Next, we construct a sequence {xn} in X as follows. Pick xo ∈ X. By
(2.1), since A(X) ⊂ T (X) we can choose a point x1 ∈ X such that Ax0 = Tx1.

Again, since B(X) ⊂ S(X) for x1 ∈ X, we can choose a point x2 ∈ X such
that Bx1 = Sx2. Continuing in this way, we can choose a sequence {xn} in X

such that

y2n−1 = Tx2n−1 = Ax2n−2 and y2n = Sx2n = Bx2n−1 (n ∈ N) (2.3)
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For the sake of brevity, let dn = d(yn,yn−1), n ∈ N. Then we have the
following:

Lemma 2.3. limn→∞ dn = 0.

Proof. By setting x = x2n and y = x2n−1 in (2.2) and using (2.3) along with
the brevity notation dn = d(yn,yn−1), n ∈ N and a fairly standard calculation,
we obtain

[1 + pd2n]d2n+1 ≤ p max{d2n+1d2n, d(y2n+1 ,y2n−1)d(y2n, y2n)}

+ max{ϕ1(d2n), ϕ2(d2n+1), ϕ3(d2n),

ϕ4(
1
2
[d(y2n+1, y2n−1) + d(y2n, y2n)])}.

Since d(y2n+1, y2n−1) ≤ d(y2n+1, y2n) + d(y2n, y2n−1), the above inequality
reduces to

[1 + pd2n]d2n+1 ≤

pd2n+1d2n + max{ϕ1(d2n), ϕ2(d2n+1), ϕ3(d2n), ϕ4(
1
2
[d2n+1 + d2n])}

and we obtain

d2n+1 ≤ max{ϕ1(d2n), ϕ2(d2n+1), ϕ3(d2n), ϕ4(
1
2
[d2n+1 + d2n])} (2.4)

Similarly, by setting x = x2n−2 and y = x2n−1 in (2.2) and using similar
arguments as above, we obtain

d2n ≤ max{ϕ1(d2n−1), ϕ2(d2n−1), ϕ3(d2n), ϕ4(
1
2
[d2n + d2n−1])} (2.5)

If d2n < d2n+1 for some n ∈ N, then
1
2
[d2n+1 + d2n] < d2n+1. By Lemma

2.1, there exists a ϕ ∈ Φ so that from (2.4) we have

d2n+1 ≤ max{ϕ1(d2n+1), ϕ2(d2n+1), ϕ3(d2n+1), ϕ4(d2n+1)}

≤ ϕ(d2n+1) < d2n+1,

a contradiction. Consequently, we have d2n+1 ≤ d2n for all n ∈ N. This fact

together with (2.4) and Lemma 2.1 imply that
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d2n+1 ≤ ϕ(d2n) for all n ∈ N and some ϕ ∈ Φ. (2.6)

A similar argument applied to (2.5) will result in

d2n ≤ ϕ(d2n−1) for all n ∈ N, (2.7)

where ϕ ∈ Φ is assumed to be the same as in the previous case. Therefore

dn+1 ≤ ϕ(dn) for all n ∈ N, and by Lemma 2.2 we have limn→∞ dn = 0.�

Lemma 2.4 The sequence {yn} defined in (2.3) is a Cauchy sequence in
X.

Proof. In view of Lemma 2.3, it suffices to show that a subsequence {y2n}
of {yn} is a Cauchy sequence in X. Suppose {y2n} is not Cauchy. Then there
exists an ε0 > 0 such that for each even integer 2k there exist even integers
2m(k), 2n(k) ∈ N with 2m(k) > 2n(k) ≥ 2k such that

d(y2n(k), y2m(k)) ≥ ε0 and d(y2n(k), y2m(k)−2) < ε0 (2.8)

that is, 2m(k) is the least positive even integer so that 2m(k) > 2n(k) and

d(y2n(k), y2m(k)) ≥ ε0

Hence for each even integer 2k, we have

ε0 ≤ d(y2n(k), y2m(k))

6 d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

< ε0 + d2m(k)−1 + d2m(k).

Hence by Lemma 2.3 and (2.8) it follows that

lim
k→∞

d(y2n(k), y2m(k)) = ε0 (2.9)

By making use of the triangle inequalities

d(y2n(k), y2m(k)−1) ≤ d(y2n(k), y2m(k)) + d(y2m(k), y2m(k)−1),

d(y2n(k), y2m(k)) ≤ d(y2n(k), y2m(k)−1) + d(y2m(k)−1, y2m(k))

we obtain
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∣∣d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))
∣∣ 6 d(y2m(k), y2m(k)−1) = d2m(k) (2.10)

Similarly we have∣∣d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k))
∣∣

6 d(y2m(k), y2m(k)−1) + d(y2n(k)+1, y2n(k))

= d2m(k) + d2n(k)+1 (2.11)

By Lemma 2.2 and inequalities (2.10) and (2.11) we obtain

lim
k→∞

d(yn(k), y2m(k)−1) = ε0 = lim
k→∞

d(y2n(k)+1, y2m(k)−1) (2.12)

Now using (2.2) with x = x2n(k) and y = x2m(k)−1 along with (2.3) and a
rearrangement we obtain

[1 + p d(y2n(k), y2m(k)−1)]d(y2n(k)+1, y2m(k))

6 p max{d(y2n(k)+1, y2n(k))d(y2m(k), y2m(k)−1),

d(y2n(k)+1, y2m(k)−1)d(y2m(k), y2n(k))}

+ max{ϕ1(d(y2n(k), y2m(k)−1)), ϕ2(d(y2n(k)+1, y2n(k))),

ϕ3(d(y2m(k), y2m(k)−1)), ϕ4(
1
2
[d(y2n(k)+1, y2m(k)−1)

+ d(y2m(k), y2n(k)])}.

Letting k → ∞ and using Lemma 2.2, (2.9) and (2.12) and the fact that
ϕi ∈ Φ(i = 1, 2, 3, 4) we have

ε0 + pε2
0 6 pε2

0 + max{ϕ1(ε0) , ϕ2 (0) , ϕ3 (0) , ϕ4 (ε0)}

6 pε2
0 + max{ϕ1(ε0), ϕ2(ε0), ϕ3(ε0), ϕ4(ε0)}.

Hence by Lemma 2.1 with ϕ ∈ Φ we have

ε0 6 max{ϕ1(ε0), ϕ2(ε0), ϕ3(ε0), ϕ4(ε0)} ≤ ϕ(ε0) < ε0,

a contradiction. Hence {y2n} is a Cauchy sequence in X. This proves that
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{yn} is Cauchy in X.�

The following result is our main theorem of this section.

Theorem 2.1. Let A,B, S and T be self mappings of a complete metric
space X satisfying (2.1) and (2.2). If the pairs {A, S} and {B, T} are weakly
compatible and that T (X) or S(X) is closed, then A,B, S and T have a
unique common fixed point in X.

Proof. Since X is complete, it follows from Lemma 2.4 that the se-
quence {yn} converges to a point z in X. Consequently, the subsequences
{Ax2n} , {Bx2n−1} , {Sx2n} and {Tx2n+1} of {yn} also converge to the same
limit z.

Now suppose that T (X) is closed. Then since {Tx2n+1} ⊂ T (X), there
exists a point u ∈ X such that z = Tu. Then by using (2.2) with x = x2n and
y = u we get

d(Ax2n, Bu)

≤ p max {d(Ax2n, Sx2n)d(Bu, Tu), d(Ax2n, Tu)d(Bu, Sx2n)}
1 + pd(Sx2n, Tu)

+

1
1 + pd(Sx2n, Tu)

(max{ϕ1(d(Sx2n, Tu)), ϕ2(d(Ax2n, Sx2n)),

ϕ3(d(Bu, Tu)), ϕ4(
1
2
[d(Ax2n, Tu) + d(Bu, Sx2n)]).

Letting n → ∞ and using the properties of the functions ϕi ∈ Φ(i =
1, 2, 3, 4) and the fact that z = Tu we get

d(z, Bu)

≤ max{ϕ1(0), ϕ2(0), ϕ3(d(Bu, Tu), ϕ4(
1
2
d(Bu, z))}

≤ max{ϕ1(d(z,Bu)), ϕ2(d(z,Bu)), ϕ3(d(Bu, z), ϕ4(
1
2
d(Bu, z))}

≤ ϕ(d(z, Bu)), .

where ϕ ∈ Φ is ensured by Lemma 2.1. This implies that z = Bu, otherwise

d(z,Bu) ≤ ϕ(d(z, Bu)) < d(z,Bu),

a contradiction. Therefore Tu = z = Bu. Hence by the weak compatibility of
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the pair {B, T} it immediately follows that BTu = TBu, that is, Bz = Tz.

Next, we shall show that z is a common fixed point of B and T. By setting
x = x2n and y = z in (2.2) we have

d(Ax2n, Bz)

≤ p max {d(Ax2n, Sx2n)d(Bz, Tz), d(Ax2n, T z)d(Bz, Sx2n)}
1 + pd(Sx2n, T z)

+

1
1 + pd(Sx2n, T z)

max{ϕ1(d(Sx2n, T z)), ϕ2(d(Ax2n, Sx2n)),

ϕ3(d(Bz, Tz)), ϕ4(
1
2
[d(Ax2n, T z) + d(Bz, Sx2n)])}.

Letting n →∞ and noting that lim A
n→∞

x2n = z = lim S
n→∞

x2n and Bz = Tz,we
get

d(z,Bz) ≤ pd(z, Tz)d(z,Bz)
1 + pd(z, Tz)

+
max{ϕ1(d(z, Tz), ϕ2(0), ϕ3(0), ϕ4(1

2 [d(z, Tz) + d(Bz, z)])}
1 + pd(z, Tz)

≤ pd(z,Bz)d(z,Bz)
1 + pd(z,Bz)

+
max{ϕ1(d(z,Bz)), ϕ2(d(z, Bz)), ϕ3(d(z,Bz)), ϕ4(d(z, Bz)))}

1 + pd(z,Bz)

Since by Lemma 2.1, there exists a ϕ ∈ Φ such that

max{ϕ1(d(z, Bz)), ϕ2(d(z,Bz)), ϕ3(d(z, Tz)), ϕ4(d(z, Tz)))} ≤ ϕ(d(z,Bz)),

the above inequality reduces to

d(z,Bz) ≤ pd(z,Bz)d(z,Bz)
1 + pd(z,Bz)

+
ϕ(d(z,Bz))

1 + pd(z,Bz)

If d(z,Bz) 6= 0,then by the properties of ϕ, we have ϕ(d(z, Bz)) < d(z, Bz)
and hence from the above inequality we have

d(z,Bz) <
pd(z,Bz)d(z,Bz)

1 + pd(z, Bz)
+

d(z,Bz)
1 + pd(z, Bz)

= d(z,Bz)
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a contradiction. Therefore d(z, Bz) = 0 = d(z, Tz) ,i.e. z = Bz = Tz and
thus z is a common fixed point of B and T.

Further, z = Bz implies that z ∈ B(X) ⊂ S(X), by (2.1). Therefore there
exists a point v ∈ X such that z = Sv. We now show that Av = Sv. Indeed, by
setting x = v and y = x2n−1 in (2.2), making n →∞ and using the properties
of the functions ϕi ∈ Φ(i = 1, 2, 3, 4) and Lemma 2.1 and following similar
arguments as in the case of mappings B and T , we can find a ϕ ∈ Φ with

d(Av, z) ≤ ϕ(d(Av, z) < d(Av, z)

which by contradiction implies that Av = z. Hence Av = z = Sv. Then by
the weak compatibility of the pair {A,S} we immediately have SAv = Sz =
ASv = Az. Hence Az = Sz.

Now, by setting x = z and y = x2n−1in (2.2) and following the earlier
arguments, it can easily be verified that z is a common fixed point of A and
S as well. Hence z is a common fixed point of A,B, S and T.

The uniqueness of z as a common fixed point of A,B, S and T can easily
be verified. In fact, if w 6= z is another common fixed point of the given
mappings, then by setting x = z and y = w in (2.2) we get

d(z, w) = d(Az,Bw) ≤ p[d(z, w)]2

1 + pd(Sz, Tw)

+
max{ϕ1(d(z, w)), ϕ2(0), ϕ3(0), ϕ4(1

2 [d(z, w)) + d(w, z)])}
1 + pd(Sz, Tw)

≤ p[d(z, w)]2

1 + pd(z, w)

+
max{ϕ1(d(z, w)), ϕ2(d(z, w)), ϕ3(d(z, w)), ϕ4(d(z, w))}

1 + pd(z, w)
.

Since by Lemma 2.1, there exists a ϕ ∈ Φ such that

max{ϕ1(d(z, w)), ϕ2(d(z, w)), ϕ3(d(z, w)), ϕ4(d(z, w))}≤ ϕ(d(z, w)) < d(z, w),

the above inequality reduces to

d(z, w) <
p[d(z, w)]2

1 + pd(z, w)
+

d(z, w)
1 + pd(z, w)

=
d(z, w)[1 + pd(z, w)]

1 + pd(z, w)
= d(z, w),
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a contradiction. Therefore w = z, proving the uniqueness of z as a common
fixed point of A,B, S and T.�

Remark 2.1. The above theorem remains valid if one assumes S(X) to be
closed instead of T (X). The same thing applies if A(X) or B(X) is assumed
to be closed.

Now we have the following corollary in respect of compatible mappings of
type (P ) [16]. Recall that self mappings S and T of a metric space X are
compatible of type (P ) if

lim
n→∞

d(SSxn, TTxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = z for some

z ∈ X. A glance into [16] in conjunction with the examples in [7] will quickly
reveal that compatible mappings of type (P) are weakly compatible but not
conversely.

Corollary 2.1. Let A,B, S and T be self mappings of a complete metric
space X satisfying conditions (2.1) and (2.2). If the pairs {A,S} and {B, T}
are compatible of type (P) and that T(X) or S(X) is closed, then A,B, S and
T have a unique common fixed point in X.

Remark 2.2. The advantage of the assumption that T (X) or S(X) is
closed in Theorem 2.1 (and Corollary 2.1) is that the mappings A,B, S or
T need not be continuous. However, if we assume one of the mappings to be
continuous, then the requirement that T (X) or S(X) is closed can be dispensed
with for the above results still to hold.

Corollary 2.2 Let A and B be self-mappings of a complete metric X space
satisfying

d(Ax,By) ≤ p max{d(x,Ax)d(y, By), d(x,By)d(y, Ax)}
1 + pd(x, y)

+

1
1 + pd(x, y)

max{ϕ1(d(x, y)), ϕ2(d(x,Ax)), ϕ3(d(y, By)),

ϕ4(
1
2
[d(x,By) + d(y, Ax)])}

for all x, y ∈ X and p > 0, where ϕi ∈ Φ (i = 1, 2, 3, 4). Then A and B have
a unique common fixed point in X.
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Proof. By setting S = T = I, the identity mapping, it is not difficult to
see that the conditions of Theorem 2.1 are satisfied.�

Theorem 2.2. Let S, T and An (n ∈ N) be self-mapping of a complete
metric space X. Suppose further that for any n ∈ N, the pairs {A2n−1, S}
and {A2n, T} are weakly compatible and that

A2n−1(X) ⊂ T (X), A2n(X) ⊂ S(X)

If S(X) or T (X) is closed and that for any i ∈ N, the following condition is
satisfied for all x, y ∈ X and p > 0

d(Aix,Ai+1y)

≤ p max(d(Sx, Aix)d(Tx,Ai+1y), d(Sx, Ai+1y)d(Ty, Aix)}
1 + pd(Sx, Ty)

+

1
1 + pd(Sx, Ty)

max{ϕ1(d(Sx, Ty)), ϕ2(d(Sx, Aix)),

ϕ3(d(Ty, Ai+1y)), ϕ4(
1
2
[d(Sx, Ai+1y) + d(Ty, Aix)])}

where ϕi ∈ Φ (i = 1, 2, 3, 4), then S, T and An (n ∈ N) have a unique
common fixed point in X.

Remark 2.3. If we drop the condition that S(X) or T (X) is closed in
Theorem 2.2 and replace the weak compatibility by compatibility of type (P )
and assume one of the mappings S or T to be continuous, the theorem will still
remain valid. Under that form we get an extension of the results of Pathak
et al. [17, Theorem 3.3] and Jungck [10, Theorem 3.1] which in turn include
several known results, for example, the main results of Chang [5] and Singh
and Singh [26].

3. Applications

Throughout this section, we assume that X and Y are Banach spaces, S ⊂
X is the state space and D ⊂ Y is the decision space. Let R = (−∞, ∞) and
denote by B(S) the set of all bounded real valued functions on S.

Following Bellman and Lee [2], the basic form of the functional equation of
dynamic programming is given by

f(x) = optyH(x, y, f(T (x, y))),
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where x and y represent the state and decision vectors respectively, T repre-
sents the transformation of the process and f(x) represents the optimal return
with initial state x (where opt denotes max or min).

In this section, we study the existence and uniqueness of a common solution
of the following functional equations arising in dynamic programming.

fi(x) = sup
y∈D

Hi(x, y, fi(T (x, y))), x ∈ S, (3.1)

gi(x) = sup
y∈D

Fi(x, y, gi(T (x, y))), x ∈ S, (3.2)

where T : S ×D → S and Hi , Fi : S ×D × R → R, i = 1, 2.

Suppose the mappings Ai and Ti (i = 1, 2) are defined by
Aih(x) = sup

y∈D
Hi(x, y, h(T (x, y))), for all x ∈ S, h ∈ B(S), i = 1, 2.

Tik(x) = sup
y∈D

Fi(x, y, k(T (x, y))), for all x ∈ S, k ∈ B(S), i = 1, 2

(3.3)
Theorem 3.1 Suppose that the following conditions are satisfied:
(i) Hi and Fi are bounded for i = 1, 2

(ii) |H1(x, y, h(t))−H2(x, y, k(t))|

6 M−1(p max{|T1h(t)−A1h(t)| . |T2k(t)−A2k(t)| ,

|T1h(t)−A2k(t)| . |T2k(t)−A1h(t)|}

+max {ϕ1(|T1h(t)− T2k(t)|), ϕ2(|T1h(t)−A1h(t)|),

ϕ3(|T2k(t)−A2k(t)|), ϕ4(1
2 [| T1h(t)−A2k(t) |

+ | T2k(t)−A1h(t) |])})

for all (x, y) ∈ S ×D, h, k ∈ B(S), t ∈ S, p ≥ 0,where

M = [1 + psup
t∈S

|T1h(t)− T2k(t)|],

and ϕi ∈ Φ(i = 1, 2, 3, 4) and the mappings Ai and Ti (i = 1, 2) are as defined

in (3.3).

(iii) For any sequence {kn} ⊂ B(S) and k ∈ B(S) with
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lim
n→∞

sup
x∈S

|kn(x)− k(x)| = 0,

there exist hi ∈ B(S) such that k = Tihi for i = 1 or i = 2.

(iv) For any h ∈ B(S), there exist k1, k2 ∈ B(S) such that

A1h(x) = T2k1(x), A2h(x) = T1k2(x), x ∈ S.

(v) For any h ∈ B(S) with Aih = Tih (i = 1, 2) we have TiAih = AiTih.

Then the system of functional equations (3.1) and (3.2) have a unique com-
mon solution in B(S).

Proof. It is well known that B(S) endowed with the metric

d(h, k) = sup
x∈S

|h(x)− k(x)| for any h, k ∈ B(S)

is a complete metric space. Moreover, by condition (i), Ai and Ti are self

mappings of B(S) and by condition (iv) it is clear that

A1(B(S)) ⊂ T2(B(S)) and A2(B(S)) ⊂ T1(B(S)).

Also, by condition (v), the pairs {Ai, Ti} are weakly compatible for i = 1, 2.

Moreover, by (3.3) and (i) we have that for any η > 0 there exist y1, y2 ∈ D

such that

Aihi(x) < Hi(xi, yi, hi(x)) + η, (3.4)

where xi = T (x, yi), i = 1, 2 Also,

A1h1(x) > H1(x, y2, h1(x2)), (3.5)

A2h2(x) > H2(x, y1, h2(x1)). (3.6)

Then from (3.4), (3.5), (3.6) and (ii), we have

A1h1(x)−A2h2(x)

6 H1(x, y1, h1(x1))−H2(x, y1, h2(x1)) + η

6 |H1(x, y1, h1(x1))−H2(x, y1h2(x1))|+ η

6 M−1(p max{|T1h1(x1)−A1h1(x1)| . |T2h2(x1)−A2h2(x1)| ,
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|T1h1(x1)−A2h2(x1)| . |T2h2(x1)−A1h1(x1)|}+

max{ϕ1(|T1h1(x1)− T2h2(x1)|), ϕ2(|T1h1(x1)−A1h1(x1)|),

ϕ3(|T2h2(x1)−A2h2(x1)|), ϕ4(
1
2
[|T1h1(x1)−A2h2(x1)|

+ |T2h2(x1)−A1h1(x1)|])}) + η

6 M−1(p max{d(T1h1, A1h1)d(T2h2, A2h2), d(T1h1, A2h2)d(T2h2, A1h1)}

+max{ϕ1 (d (T1h1, T2h2)) , ϕ2(d(T1h1, A1h1)), ϕ3(d(T2h2, A2h2)),

ϕ4(
1
2
[d(T1h1,A2h2) + ϕ(T2h2, A1h1)]}) + η. (3.7)

From (3.4), (3.5) and (ii), we have

A1h1(x)−A2h2(x)

> −M−1(p max{d(T1h1, A1h1)d(T2h2, A2h2), d(T1h1, A2h2)d(T2h2, A1h1)}

+max{ϕ1d(T1h1, T2h2)), ϕ2(d(T1h1, A1h1)), ϕ3(d(T2h2, A2h2)),

ϕ4(
1
2
[d(T1h1, A2h2) + d(T2h2, A1h1)])})− η. (3.8)

Using (3.7) and (3.8), we obtain

|A1h1(x)−A2h2(x)|

6 M−1(p max{d(T1h1, A1h1)d(T2h2, A2h2), d(T1h1, A2h2)d(T2h2, A1h1)}

+max{ϕ1(d(T1h1, T2h2))ϕ2(d(T1h1, A1h1)), ϕ3(d(T2h2, A2h2)),

ϕ4(
1
2
[d(T1h1, A2h2) + d(T2h2, A1h1)])}) + η. (3.9)

Since (3.9) is true for any x ∈ S and η > 0 is arbitrary, by taking supremum
over all x ∈ S we have,

d(A1h1, A2h2)

6
p

1 + pd(T1h1, T2h2)
max{d(T1h1, A1h1)d(T2h2, A2h2),

d(T1h1, A2h2)d(T2h2, A1h1)}

+
1

1 + pd(T1h1, T2h2)
max{ϕ1(d(T1h1, T2h2)),ϕ2(d(T1h1, A1h1),

ϕ3(d(T2h2, A2h2)), ϕ4(1
2 [d(T1h1, A2h2) + d(T2h2, A1h1)])}.
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Therefore condition (2.2) is satisfied by mappings A1, A2, T1 and T2 and
hence by Theorem 2.1, they have a unique common fixed point h∗ ∈ B(S),
i.e., h∗(x) is a unique common solution of the functional equations (3.1) and
(3.2).�

As an immediate consequence of Theorem 3.1 and Corollary 2.2 we have
the following.

Theorem 3.2 Suppose that the following conditions are satisfied.
(i) Hi is bounded for i = 1, 2,

(ii) |H1(x, y, h(t)) −H2(x, y, k(t))|

6 L−1(p max{|h(t)−A1h(t)| |k(t)−A2k(t)| , |h(t)−A2k(t)| |k(t)−A1h(t)|}

+max{ϕ1(| h(t)− k(t) |), ϕ2(| h(t)−A1h(t) |, ϕ3(|k(t)−A2k(t)|),

ϕ4(
1
2
[|h(t)−A2k(t)|+ |k(t)−A1h(t)|])}),

for all (x, y) ∈ S ×D, h, k ∈ B(S), t ∈ S, p > 0,where

L = {1 + psup
t∈S

|h(t)− k(t)|}

and ϕi ∈ Φ (i = 1, 2, 3, 4) and Ai (i = 1, 2) are is defined in (3.3)

Then the functional equations (3.1) and (3.2) have a unique common solu-
tion in B(S).

Remark.3.1 In view of Remark 2.3, we may drop condition (v) of weak
compatibility and replace it by the compatibility of type (P ) under the fol-
lowing form

(v)∗ For any sequence {kn} ⊂ B(S), if there exists an h ∈ B(S) such that

lim
n→∞

sup
x∈S

|Aikn(x)− h(x)| = lim
n→∞

sup
x∈S

|Tikn(x)− h(x)| = 0 for i = 1, 2,

then

lim
n→∞

sup
x∈S

|TiTikn(x)−AiAi(x)| = 0 for i = 1, 2.

Moreover, if we dispense with condition (iii) in Theorem 3.1 which requires
that T1(B(S)) or T2(B(S)) is closed, then we will have to impose a continuity
condition on the mappings Ti (i = 1, 2) that may be stated as follows:
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(iii)∗ For any sequence {kn} ⊂ B(S) and any k ∈ B(S),

lim
n→∞

sup
x∈S

|kn(x)− k(x)| = 0 =⇒ lim
n→∞

sup
x∈S

|Tikn(x)− Tik(x)| = 0

for i = 1 or i = 2.
Under this form Theorem 3.1 still remains valid and extends the results

of Pathak and Fisher [15, Theorem 3] and Pathak et al. [17, Theorem 5.1].
Moreover, Theorem 3.2 extends the results of Baskaran and Subrahmanyam
[1, Theorem 2.1], Bhakta and Mitra [3, Theorem 2.1], Pathak and Fisher [15,
Theorem 4] and Pathak et al. [17, Theorem 5.2].

Acknowledgement. The authors are thankful to the referee for his valu-
able comments.
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