Fixed Point Theory, Volume 5, No. 2, 2004, 349-368 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.htm

SEQUENCES OF OPERATORS AND FIXED POINTS

IOAN A. RUS

Babeş-Bolyai University, Department of Applied Mathematics, str. M. Kogălniceanu 1, 400084 Cluj-Napoca E-mail: iarus@math.ubbcluj.ro

Abstract. Let X be a nonempty set and $\mathbb{M}(X)$ be the set of all selfoperators of X. Let (X, \rightarrow) and $(\mathbb{M}(X), \Rrightarrow)$ be L-spaces. In this paper we study the following problem:

Let $g, g_n \in \mathbb{M}(X), n \in \mathbb{N}$, be such that

$$g_n \Rightarrow g \text{ as } n \to \infty.$$

If x_n is a fixed point of g_n , does $(x_n)_{n \in \mathbb{N}}$ or some subsequence of $(x_n)_{n \in \mathbb{N}}$ converge to a fixed point of g?

Key Words and Phrases: Fixed point, sequences of operators, Picard operator, weakly Picard operator, data dependence, iteration methods, differential and integral equations, open problems.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Let X be a set and $\mathbb{M}(X)$ the set of all selfoperators of X. Let (X, \to) and $(\mathbb{M}(X), \Rightarrow)$ be L-spaces. The aim of this paper is to study the following problem:

Let $g, g_n \in \mathbb{M}(X)$, $n \in \mathbb{N}$, be such that $g_n \Rightarrow g$ as $n \to \infty$. If x_n is a fixed point of g_n , does $(x_n)_{n \in \mathbb{N}}$ or some subsequence $(x_{n_i})_{i \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ converge to a fixed point of g?

Diverse aspects of the above problem appear in subjects such as:

• Data dependence of fixed points (Sz. András [1], V. G. Angelov and I. A. Rus [3], V. Berinde [6], S. Czerwik [18], I. Del Prete and C. Esposito [20],

This paper was presented at International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from August 24 to August 27, 2004.

IOAN A. RUS

W. A. Kirk and B. Sims (eds.) [38], T.-C. Lim [40], S. B. Nadler [42], [43],
I. A. Rus [56]-[59], [62], I. A. Rus, A. Petruşel and G. Petruşel [66], T. Wang [74],...).

Iteration methods for operatorial equations (V. Berinde [7], A. Buică [10], T. A. Burton [11], Y.-Z. Chen [12], C. E. Chidume and H. Zegeye [13], Y.-P. Fang, J. K. Kim and N.-J. Huang [25], A. M. Harder and T. L. Hicks [31], L. S. Liu [41], R. D. Nussbaum [45], M. O. Osilike [46], B. E. Rhoades [54],...).

• Approximation scheme theory (W. V. Petryshyn [52], M. A. Krasnoselskii [39], E. De Giorgi [19],...).

• Techniques of proof in fixed point theory (M. Angrisani and M. Clavelli [4], W. G. Dotson [21], [22], R. Fiorenza [26], R. B. Fraser and S. B. Nadler [27], M. Furi and M. Martelli [28], L. Górniewicz [30], G. Isac and Sz. Nemeth [33], W. A. Kirk and B. Sims (eds.) [38], I. A. Rus [56], G. Vidossich [73],...).

• Dynamic aspects of operatorial equations (Y.-Z. Chen [12], D. Chiorean, B. Rus, I. A. Rus and D. Trif [14], J. E. Cohen [15], D. Constantinescu and M. Predoi [17], R. Kempf [36], K. Nakajo and W. Takahashi [44], R. D. Nussbaum [45], A. Petruşel [48],...).

Throughout this paper we follow the terminologies and notations in I. A. Rus [63] and A. Petruşel [50].

2. Convergences on $\mathbb{M}(X)$

Let (X, \to) be an *L*-space. On $\mathbb{M}(X)$ we consider the following convergences $(g, g_n \in \mathbb{M}(X))$:

- $g_n \xrightarrow{p} g$ as $n \to \infty$ stands for pointwise convergence;
- convergence with continuity (Angrisani-Clavelli [4]),

 $g_n \xrightarrow{c} g$ as $n \to \infty \iff (x_n \to x^* \text{ as } n \to \infty \implies g_n(x_n) \to g(x^*) \text{ as } n \to \infty);$

• (if (X, U) is an uniform space) uniform convergence,

$$g_n \xrightarrow{u} g$$
 as $n \to \infty$.

Let \Rightarrow be an *L*-convergence on $\mathbb{M}(X)$. Then we consider the following convergences:

• iterative convergence

$$g_n \xrightarrow{i} g$$
 as $n \to \infty \Leftrightarrow g_n^m \Rightarrow g^m$ as $n \to \infty, \forall m \in \mathbb{N};$

• (if g is WPO) asymptotical convergence (I. A. Rus [59])

 $g_n \xrightarrow{a} g$ as $n \to \infty \Leftrightarrow g_n^m \Rightarrow g^\infty$ as $n, m \to \infty$;

• (if g_n, g are WPOs) fixed point convergence,

$$g_n \xrightarrow{f_p} g$$
 as $n \to \infty \iff g_n^\infty \Longrightarrow g^\infty$ as $n \to \infty$,

where $g^{\infty}(x) := \lim_{n \to \infty} g^n(x)$. The following simple examples illustrate the relations between these notions.

Example 2.1. We take $X = \mathbb{R}$, d(x, y) = |x - y| and we consider on \mathbb{R} the *L*-convergence " \xrightarrow{d} ". Let $g_n(x) = 0$ for $x \in \mathbb{R}_-$, $g_n(x) = x^n$ for $x \in [0, 1]$, $g_n(x) = 1$ for $x \ge 1$ and g(x) = 0 for x < 1, g(x) = 1 for $x \ge 1$. In this case we have

a) $g_n \xrightarrow{p} g$ as $n \to \infty$; b) $q_n \stackrel{c}{\not\to} q$ as $n \to \infty$; c) $g_n \xrightarrow{u} g$ as $n \to \infty$; d) q_n and q are WPOs and $q_n \xrightarrow{f_p} q$ as $n \to \infty$, in $(\mathbb{M}(\mathbb{R}), \xrightarrow{p})$; e) $g_n \xrightarrow{i} g$ as $n \to \infty$, in $(\mathbb{M}(\mathbb{R}), \xrightarrow{p})$. **Example 2.2.** $X = \mathbb{R}, g_n(x) = 2x + \frac{1}{n!}, g(x) = 2x, x \in \mathbb{R}$. In this case: a) $g_n \xrightarrow{u} g$ as $n \to \infty$; b) q is int PO; c) $g_n \xrightarrow{i} g$ as $n \to \infty$, in $(\mathbb{M}(\mathbb{R}), \xrightarrow{u})$; d) $F_{g_n} = \left\{-\frac{1}{n!}\right\}, F_g = \{0\}.$

Example 2.3. We consider the Banach space $X = (C[0,1], \|\cdot\|_C)$ and $B_n: C[0,1] \to C[0,1]$ are classical Bernstein operators,

$$B_n(x)(t) := \sum_{k=0}^n x\left(\frac{k}{n}\right) \binom{n}{k} t^k (1-t)^{n-k}.$$

In this case (see R. P. Kelisky and T. J. Rivlin [37], H. Gonska and I. Raşa [29], I. A. Rus [64])

- a) B_n , $n \in \mathbb{N}^*$, are WPOs;
- b) $B_n \xrightarrow{u} 1_X;$
- c) $B_n \xrightarrow{f_p} 1_X;$
- d) $B_n \xrightarrow{a} 1_X;$
- e) $B_n \xrightarrow{i} 1_X$.

Example 2.4. Let (X, \rightarrow) be an *L*-space and $g_n, g \in \mathbb{M}$. If

(i) $g_n \xrightarrow{c} g$ as $n \to \infty$,

then

(a) $g_n \xrightarrow{i} g$ as $n \to \infty$.

Proof. (i) $\Rightarrow g_n(x) \to g(x)$ as $n \to \infty$, $\forall x \in X \Rightarrow g_n(g_n(x)) \to g(g(x))$. So, $g_n^2 \xrightarrow{p} g^2$ as $n \to \infty$. By induction we have (a).

Example 2.5. Let (X, d) be a complete metric space and $g, g_n \in \mathbb{M}(X)$. We suppose that

(i) q is an α -contraction;

(ii) $g_n \xrightarrow{u} g$ as $n \to \infty$.

Then, $g_n \xrightarrow{a} g$ as $n \to \infty$, in $(\mathbb{M}(X), \xrightarrow{u})$.

Proof. From $g_n \xrightarrow{u} g$ as $n \to \infty$, we have that there exist $\eta_n > 0$, $\eta_n \to 0$ as $n \to 0$, such that

$$d(g_n(x), g(x)) \leq \eta_n, \ \forall \ x \in X \text{ and } n \in \mathbb{N}.$$

Hence we have

$$d(g_n^m(x), g^m(x)) \le \frac{\eta_n}{1-\alpha}, \ \forall \ m, n \in \mathbb{N}, \ \forall \ x \in X.$$

We begin our study with the following question:

Problem 1. Let (X, \to) and $(M(X), \Rrightarrow)$ (where $M(X) \subset \mathbb{M}(X)$) be *L*-spaces. Let $g, g_n \in M(X)$. We suppose that

(i) $g_n \Longrightarrow g$ as $n \to \infty$;

(ii)
$$x_n \in F_{g_n}$$
, $n \in \mathbb{N}$ and $F_g = \{x^*\}$.

In which conditions we have that

(iii) $x_n \to x^*$ as $n \to \infty$?

For a better understanding of Problem 1, we consider the following aspects of this problem.

Problem 1_a . In which conditions on g we have (iii)?

Problem 1_b . For which generalized contractions g, we have (iii)?

Problem 1_c . For which Picard operators g, we have (iii)?

Problem 1_d. For which $M(X) \subset \mathbb{M}(X)$ we have (iii)?

Problem 1_e. For which convergence " \Rightarrow " on M(X) we have (iii)?

The following results are partial answers to these questions:

Theorem 3.1. (Bonsall [9]). Let (X, d) be a complete metric space and $g, g_n : X \to X, n \in \mathbb{N}, \alpha$ -contractions. If $g_n \xrightarrow{p} g$ as $n \to \infty$, then we have (iii) in (X, \xrightarrow{d}) .

Theorem 3.2. (Nadler [42]). Let (X, d) be a complete metric space and $g, g_n : X \to X$. If g is a contraction and $x_n \in F_{g_n}, n \in \mathbb{N}$, then $g_n \xrightarrow{u} g$ as $n \to \infty \implies x_n \to x^*$ as $n \to \infty$.

Theorem 3.3. (Rus [59]). Let (X, d) be a metric space, $g : X \to X$ a Picard operator $(F_g = \{x^*\})$ and $g_n : X \to X$ such that $g_n \xrightarrow{a} g$ in $(\mathbb{M}(X), \xrightarrow{u})$. Then $x_n \in F_{g_n}, n \in \mathbb{N}$ imply $x_n \xrightarrow{d} x^*$ as $n \to \infty$.

Remark 3.1. From Theorem 3.3 we have Theorem 3.2.

Theorem 3.4. Let (X, d) (where $d(x, y) \in \mathbb{R}^m_+$) be a complete generalized metric space and $g, g_n : X \to X$. We suppose that:

(1) $g_n \xrightarrow{p} g as n \to \infty;$

(2) there exists a matrix $S \in M_{mm}(\mathbb{R}_+)$ such that g, g_n are S-contractions for all $n \in \mathbb{N}$.

Then, $F_g = \{x^*\}$, $F_{g_n} = \{x_n\}$ and $x_n \xrightarrow{d} x^*$ as $n \to \infty$.

Proof. From the definition of an S-contraction it follows that $S^n \to 0$ as $n \to \infty$ (see [53]). From Perov's theorem it follows that

$$F_{g_n} = \{x_n\}, \ F_g = \{x^*\}.$$

We have

$$d(x_n, x^*) = d(g_n(x_n), g(x^*))$$

$$\leq d(g_n(x_n), g_n(x^*)) + d(g_n(x^*), g(x^*))$$

$$\leq Sd(x_n, x^*) + d(g_n(x^*), g(x^*)).$$

Hence

$$d(x_n, x^*) \le (I - S)^{-1} d(g_n(x^*), g(x^*)) \to 0 \text{ as } n \to \infty$$

Theorem 3.5. Let (X, d) (where $d(x, y) \in \mathbb{R}^m_+$) be a complete generalized metric space and $g, g_n : X \to X$. We suppose that:

(1) $g_n \xrightarrow{c} g as n \to \infty;$

(2) there exist $n_0 \in \mathbb{N}^*$ and $S \in M_{mm}(\mathbb{R}_+)$ such that $g^{n_0}, g_n^{n_0}, n \in \mathbb{N}$, are S-contractions.

Then, $F_g = \{x^*\}$, $F_{g_n} = \{x_n\}$ and $x_n \to x^*$ as $n \to \infty$.

Proof. From Perov's theorem we have that $F_{g^{n_0}} = \{x^*\}$ and $F_{g_n^{n_0}} = \{x_n\}$, $n \in \mathbb{N}$. From Lemma 1.3.3 in [56] it follows that

$$F_g = F_{g^{n_0}} = \{x^*\}, \ F_{g_n} = F_{g_n^{n_0}} = \{x_n\}, \ n \in \mathbb{N}.$$

From (1) we have that $g_n^{n_0} \xrightarrow{p} g^{n_0}$ as $n \to \infty$.

Now the proof follows from Theorem 3.4.

Theorem 3.6. (Rus [56]). Let (X, d) (where $d(x, y) \in \mathbb{R}^m_+$) be a complete generalized metric space and $g, g_n : X \to X$. We suppose that:

(1)
$$g_n \xrightarrow{a} g as n \to \infty;$$

(2) g is an S-contraction;

(3) $x_n \in F_{g_n}, n \in \mathbb{N}.$

Then, $x_n \to x^*$ as $n \to \infty$.

Proof. We have that

$$d(x_n, x^*) = d(g_n(x_n), g(x^*))$$

$$\leq d(g_n(x_n), g(x_n)) + d(g(x_n), g(x^*))$$

$$\leq d(g_n(x_n), g(x_n)) + Sd(x_n, x^*).$$

Hence,

$$d(x_n, x^*) \le (I - S)^{-1} d(g_n(x_n), g(x_n)) \to 0 \text{ as } n \to \infty.$$

Remark 3.2. For m = 1 Theorem 3.2 follows from Theorem 3.6.

For other results with respect to Problem 1 see L. S. Dube and S. P. Singh [23], R. B. Fraser and S. B. Nadler [27], S. B. Nadler [42], I. A. Rus [56]-[59], [62], W. Russell and S. P. Singh [68], S. Reich [53],...

4. Problem 2

Another aspect of our question is given by

Problem 2. Let (X, \to) and $(\mathbb{M}(X), \Rrightarrow)$ be *L*-spaces. We suppose that (i) $g_n \Rrightarrow g$ as $n \to \infty$;

(ii) $g, g_n, n \in \mathbb{N}$, are WPOs.

• In which conditions we have

(iii) $g_n \xrightarrow{f_p} g$ as $n \to \infty$?

• In which conditions we have

$$g_n^{\infty}(X) \xrightarrow{?} g^{\infty}(X) \text{ as } n \to \infty?$$

Example 4.1. In the case of Example 2.3 we have (see I. A. Rus [64])

$$g_n^{\infty}(x)(t) = B_n^{\infty}(x)(t) = x(0) + (x(1) - x(0))t, \ B^{\infty}(x)(t) = x(t).$$

So, $B_n^{\infty} \xrightarrow{p} B^{\infty}$ as $n \to \infty$.

Example 4.2. In the case of Theorem 3.1 we have that, $g_n^{\infty}(x) = x_n$, and $g^{\infty}(x) = x^*, \ \forall x \in X$.

So, $g_n^{\infty} \xrightarrow{p} g^{\infty}$ as $n \to \infty$, i.e.,

$$g_n \xrightarrow{f_p} g$$
 as $n \to \infty$.

We have

Theorem 4.1. Let (X,d) be a metric space and $g,g_n : X \to X$. We suppose that:

(i) $g_n \xrightarrow{u} g$ as $n \to \infty$; (ii) $g, g_n, n \in \mathbb{N}$, are WPOs; (iii) there exists c > 0 such that

$$d(x, g^{\infty}(x)) \leq cd(x, g(x)) \text{ and } d(x, g_n^{\infty}(x)) \leq cd(x, g_n(x)), \ \forall \ x \in X, \ \forall \ n \in \mathbb{N}.$$

Then, $H(F_{g_n}, F_g) \to 0$ as $n \to \infty$, where *H* is Pompeiu-Hausdorff functional (see L. Górniewicz [30], A. Petruşel [50]).

Proof. Condition (i) implies that there exist $\eta_n > 0, n \in \mathbb{N}$, such that

$$d(g(x), g_n(t)) \le \eta_n \to 0 \text{ as } n \to \infty, \ \forall \ x \in X.$$

In the conditions (ii)+(iii), from a theorem in Rus-Mureşan [65] we have that

$$H(F_g, F_{g_n}) \le c\eta_n, \ \forall \ n \in \mathbb{N}.$$

So, $H(F_g, F_{g_n}) \to 0$ as $n \to \infty$, i.e.,

$$H(g^{\infty}(X), g_n^{\infty}(X)) \to 0 \text{ as } n \to \infty.$$

Theorem 4.2. Let (X,d) be a complete metric space and $g, g_n : X \to X$ be closed operators. We suppose that:

(i) $g_n \xrightarrow{u} g as n \to \infty$;

(ii) there exists $\alpha \in]0,1[$ such that

$$d(g^{2}(x), g(x)) \leq \alpha d(x, g(x)), \ \forall \ x \in X,$$
$$d(g^{2}_{n}(x), g_{n}(x)) \leq \alpha d(x, g_{n}(x)), \ \forall \ x \in X, \ \forall \ n \in \mathbb{N}.$$

Then, $H(F_{g_n}, F_g) \to 0$ as $n \to \infty$.

Proof. Condition (ii) implies that the operators g and g_n , $n \in \mathbb{N}$, are WPOs. From condition (ii) we also have condition (iii) in Theorem 4.1. So, Theorem 4.2 follows from Theorem 4.1.

Example 4.3. Let X be a Banach space and $f, f_n \in C([a, b] \times X, X)$, $n \in \mathbb{N}$. Moreover we suppose that $f(t, \cdot), f_n(t, \cdot) : X \to X$ are L-Lipschitz, for all $t \in [a, b]$. We consider the following differential equations

 $(I) \ x' = f(t,x), \ t \in [a,b], \ x \in C^1([a,b],X),$

 $(I_n) \ x' = f_n(t, x), \ t \in [a, b], \ x \in C^1([a, b], X)$

and equivalent fixed point equations

$$(E) \ x(t) = x(a) + \int_{a}^{t} f(s, x(s)) ds, \ t \in [a, b], \ x \in C([a, b], X)$$
$$(E_{n}) \ x(t) = x(a) + \int_{a}^{t} f_{n}(s, x(s)) ds, \ t \in [a, b], \ x \in C([a, b], X).$$
Now we consider the operators

$$A, A_n : C([a, b], X) \to C([a, b], X)$$

defined by

A(x)(t) := the second part of (E) and

$$A_n(x)(t) :=$$
 the second part of (E_n) .

Let C([a, b], X) be endowed with a suitable Bielecki norm,

$$||x||_B := \sup_{t \in [a,b]} (||x(t)||e^{-\tau(t-a)}), \ \tau > 0.$$

Let $\lambda \in X$ and $X_{\lambda} := \{x \in C([a, b], X) | x(a) = \lambda\}$. Then $C([a, b], X) = \bigcup_{\lambda \in X} X_{\lambda}$ is a partition of C([a, b], X).

Moreover,

$$A(X_{\lambda}) \subset X_{\lambda}, \ A_n(X_{\lambda}) \subset X_{\lambda}, \ \lambda \in X, \ n \in \mathbb{N},$$

and

A and
$$A_n$$
 are $\frac{L}{\tau}$ – Lipschitz.

So, for $\tau > L$, $A|_{X_{\lambda}}$, $A_n|_{X_{\lambda}}$ are $\frac{L}{\tau}$ -contractions. Hence, if $f_n \xrightarrow{u} f$ we are in the conditions of the Theorem 4.2. From this theorem we have that

$$H(F_A, F_{A_n}) \to 0 \text{ as } n \to \infty.$$

If we denote by S and S_n (where $S, S_n \subset C([a, b], X)$) the solution sets of the equations $(I), (I_n)$, then in the above conditions on f, f_n ,

$$H(S, S_n) \to 0 \text{ as } n \to \infty.$$

5. Problem 3

The following problem appears in *iterative approximation of fixed points* (V. Berinde [7], [8], C. E. Chidume and H. Zegeye [13], B. E. Rhoades [54], S. P. Singh and B. Watson [69],...), *fiber WPOs* (M. W. Hirsch and C. C. Pugh [32], I. A. Rus [60], [61], Sz. András [1], C. Bacoțiu [5], M. Şerban [70], [71], G. Dezso, V.Mureşan, A. Tămăşan (see I. A. Rus, A. Petruşel and G. Petruşel [66],...) and in *dynamical systems* (D. Chiorean, B. Rus, I. A. Rus and D. Trif [14], D. Constantinescu and M. Predoi [17], R. Kempf [36], K. Nakajo and W. Takahashi [44], R. D. Nussbaum [45], A. Petruşel [48],...).

Problem 3. Let (X, \to) and $(\mathbb{M}(X), \Rrightarrow)$ be two *L*-spaces. Let $M(X) \subset \mathbb{M}(X)$ and $g, g_n \in M(X)$. We suppose that

(i) $g_n \Longrightarrow g$ as $n \to \infty$;

(ii) g is WPO;

(iii) $f, g \in M(X) \Rightarrow f \circ g \in M(X).$

In which conditions we have that

$$g_n \circ g_{n-1} \circ \cdots \circ g_0 \Longrightarrow g^{\infty} \text{ as } n \to \infty?$$

In what follow we present some partial results for this problem.

Theorem 5.1. (Y.-Z. Chen [12]). Let (X, d) be a complete metric space and $g_n : X \to X$, $n \in \mathbb{N}$, a sequence which converges pointwise to g. Suppose that for $0 < a < b < +\infty$, there exists $L(a, b) \in]0, 1[$ such that

$$d(g_n(x), g_n(y)) \le L(a, b)d(x, y)$$

for all $x, y \in X$, $a \leq d(x, y) \leq b$ and $n \in \mathbb{N}$. If for each $x \in X$, there exists $y \in X$ and R(x) > 0 such that $d((g_n \circ g_{n-1} \circ \cdots \circ g_0)(x), y) \leq R(x)$, for $n \in \mathbb{N}$, then $(g_n \circ g_{n-1} \circ \cdots \circ g_0)(x) \to g^{\infty}(x)$ as $n \to \infty$, $\forall x \in X$.

Theorem 5.2. Let (X, d) (where $d(x, y) \in \mathbb{R}^m_+$) be a generalized complete metric space and $g, g_n : X \to X$ be S-contractions. If $g_n \xrightarrow{p} g$ as $n \to \infty$, then

$$g_n \circ g_{n-1} \circ \cdots \circ g_0 \xrightarrow{p} g^{\infty}.$$

Proof. If we denote by x^* the unique fixed point of g we have that $g^{\infty}(x) = x^*$, $\forall x \in X$ and

$$\begin{aligned} d((g_n \circ \dots \circ g_0)(x), x^*) &\leq d((g_n \circ \dots \circ g_0)(x), g_n(x^*)) + d(g_n(x^*), x^*) \leq \\ &\leq Sd((g_{n-1} \circ \dots \circ g_0)(x), x^*) + d(g_n(x^*), x^*) \leq \\ &\leq S^2 d((g_{n-2} \circ \dots \circ g_0)(x), x^*) + Sd(g_{n-1}(x^*), x^*) + d(g_n(x^*), x^*) \leq \dots \leq \\ &\leq S^n d(g_0(x), x^*) + S^{n-1} d(g_1(x^*), x^*) + \dots + Sd(g_{n-1}(x^*), x^*) + d(g_n(x^*), x^*) \end{aligned}$$

Now the proof follows from the following

Lemma 5.1. (I. A. Rus [61]). Let $A_n \in M_{mm}(\mathbb{R}_+)$ and $B_n \in \mathbb{R}^m_+$, $n \in \mathbb{N}$. We suppose that

(i) $B_n \to 0 \text{ as } n \to \infty;$ (ii) $\sum_{n \in \mathbb{N}} A_n$ converges. Then

$$\sum_{n=1}^{n}$$

$$\sum_{i=0} A_{n-i}B_i \to 0 \text{ as } n \to \infty.$$

Remark 5.1. For the case of φ -contractions see M. Serban [70].

Remark 5.2. For the case m = 1 see I. A. Rus [60].

Remark 5.3. The following result is in connection with Theorem 5.2.

Lemma 5.2. Let (X,d) (where $d(x,y) \in \mathbb{R}^m_+$) be a generalized complete metric space and $g_n : X \to X$ be an S_n -contraction, $n \in \mathbb{N}$, such that, $S_n \to 0$ as $n \to \infty$ ($F_{g_n} = \{x_n^*\}$). Let $x^* \in X$. The following statements are equivalent:

(i) there exists $\widetilde{x} \in X$ such that $g_n(\widetilde{x}) \to x^*$, as $n \to \infty$.

(ii) $g_n(x) \to x^*$ as $n \to \infty$, $\forall x \in X$;

(iii) $x_n^* \to x^*$ as $n \to \infty$.

Proof. (i) \Rightarrow (ii).

$$d(g_n(x), x^*) \le d(g_n(x), g_n(\widetilde{x})) + d(g_n(\widetilde{x}), x^*) \le$$

$$\leq S_n d(x, \widetilde{x}) + d(g_n(\widetilde{x}), x^*) \to 0 \text{ as } n \to \infty.$$

(ii) \Rightarrow (iii).

$$d(x_n^*, x^*) = d(g_n(x_n^*), x^*) \le d(g_n(x_n^*), g_n(x)) + d(g_n(x), x^*) \le$$
$$\le S_n d(x_n^*, x) + d(g_n(x), x^*).$$

Hence, we have

$$d(x_n^*, x^*) \le (I - S_n)^{-1} d(g_n(x), x^*) \to 0 \text{ as } n \to \infty.$$

 ${\rm (iii)} \ \Rightarrow \ {\rm (i)}.$

We take $\widetilde{x} := x^*$.

Remark 5.4. For other results for Problem 3 see Y.-Z. Chen [12], R. Kannan and Z. Vorel [35], R. Kempf [36].

6. Problem 4

Another aspect of our basic problem is given by

Problem 4. Let (X, \to) and $(\mathbb{M}(X), \Rrightarrow)$ be two *L*-spaces. Let $g, g_n \in \mathbb{M}(X)$. We suppose that

(i) $g_n \Rightarrow g \text{ as } n \to \infty;$

(ii) $F_{g_n} \neq \emptyset, \forall n \in \mathbb{N}.$

In which conditions we have that $F_g \neq \emptyset$?

Problem 4a. Let X be a Banach space, $Y \subset X$ a compact subset of X and $g, g_n \in (\mathbb{M}(Y), \Rightarrow)$.

We suppose that

(i) $g_n \Rightarrow g$;

(ii) $F_{g_n} \neq \emptyset$;

(iii) $g \in C(Y, Y)$.

In which conditions we have that $F_q \neq \emptyset$?

Problem 4b. Let (X, d) be a complete K-metric space (see P. P. Zabrejko [75]) and $g, g_n \in (\mathbb{M}(X), \Rightarrow)$.

We suppose that

(i) $g_n \Rightarrow g \text{ as } n \to \infty$;

(ii) there exist $x_n \in X$, $n \in \mathbb{N}$, such that

$$d(g_n(x_n), x_n) \to 0 \text{ as } n \to \infty;$$

(iii) $g \in C(X, X)$.

In which conditions we have that $F_g \neq \emptyset$?

Problem 4c. Let (X, \rightarrow) , $(\mathbb{M}(X), \Rrightarrow)$ be two *L*-spaces, and $g, g_n \in \mathbb{M}(X)$. We suppose that

(i) $g_n \Rightarrow g$ as $n \to \infty$;

(ii) $x_n \in F_{g_n}, n \in \mathbb{N}$.

In which conditions we have that

$$x_n \to x^*$$
 as $n \to \infty \Rightarrow x^* \in F_q$?

In which conditions we have that

$$g(x_n) \to x^* \text{ as } n \to \infty \Rightarrow x^* \in F_q?$$

Problem 4d. Use the results of the above problems for the study of the following problem:

Let (X, τ) be a topological space, $Y \subset X$ a compact subset. In which conditions we have that

$$g \in C(Y, Y) \Rightarrow F_q \neq \emptyset$$
?

First of all, we present some simple and useful remarks:

Lemma 6.1. (G. Vidossich [73]). Let (X, U) be a uniform space, $Y \subset X$ a subset of $X, g \in C(Y, X)$ and $g_n \in \mathbb{M}(Y, X)$. We suppose that

(i) $g_n \xrightarrow{u} g as n \to \infty;$

(*ii*) $x_n \in F_{g_n}, n \in \mathbb{N}$.

Then, every cluster point of $(x_n)_{n \in \mathbb{N}}$ is a fixed point of g.

Lemma 6.2. (W. G. Dotson [21]). Let X be a Banach space, $Y \subset X$ a starshaped subset of X and $g: Y \to Y$ a nonexpansive operator. Then there exists a sequence $(g_n)_{n \in \mathbb{N}}, g_n: Y \to Y$, such that:

(i)
$$g_n \xrightarrow{a} g$$

(ii) g_n is $\left(1 - \frac{1}{n}\right)$ -contraction, $n \in \mathbb{N}$.

Lemma 6.3. Let (X, d) be a K-metric space, $Y \subset X$ a compact subset of X and $g \in C(Y, Y)$. Then the following statements are equivalent:

(i) $F_g \neq \emptyset$;

(ii) there exist $g_n \in C(Y,Y)$, $n \in \mathbb{N}$, such that $F_{g_n} \neq \emptyset$ and $g_n \xrightarrow{u} g$ as $n \to \infty$;

(iii) there exist $g_n : Y \to Y$, $n \in \mathbb{N}$ such that $F_{g_n} \neq \emptyset$ and $g_n \xrightarrow{c} g$ as $n \to \infty$;

(iv) there exist $g_n : Y \to Y$ and $x_n \in Y$ such that $g_n \xrightarrow{u} g$ as $n \to \infty$ and $d(g_n(x_n), x_n) \to 0$ as $n \to \infty$.

Proof. (i) \Rightarrow (ii). We take $g_n := g$.

(ii) \Rightarrow (i). Let $x_n \in F_{g_n}$. Then there exist a convergent subsequence of $(x_n)_{n \in \mathbb{N}}$,

$$x_{n_i} \to x^* \text{ as } n \to \infty.$$

We have

$$d(x^*,g(x^*)) \leq d(x^*,x_{n_i}) + d(g_{n_i}(x_{n_i}),g(x^*)) \rightarrow 0$$
 as $i \rightarrow \infty$

So, $x^* \in F_g$.

(i) \Rightarrow (iii) and (i) \Rightarrow (iv). We take $g_n := g$.

(iii) \Rightarrow (i). Follows from the notion of convergence with continuity.

(iv) \Rightarrow (i). Y being a compact subset of X it implies that there exists $x_{n_i} \to x^*$ as $n \to \infty$.

We have

$$d(x^*, g(x^*)) \le d(x^*, x_{n_i}) + d(x_{n_i}, g_{n_i}(x_{n_i})) + d(g_{n_i}(x_{n_i}), g(x_{n_i})) + d(g(x_{n_i}), g(x^*)) \to 0 \text{ as } i \to \infty$$

Remark 6.1. In the case $K = \mathbb{R}_+$, (iv) \Rightarrow (i) is Lemma 1 in M. Furi and M. Martelli [28].

Remark 6.2. From Lemma 6.2 we have

Theorem 6.1. (W. G. Dotson [21]). Let X be a Banach space and $Y \subset X$ a compact starshaped subset of X. Then any nonexpansive operator $g: Y \to Y$ has a fixed point.

Remark 6.2. For some generalization of the above theorem see W. G. Dotson [22], A. Petruşel (1987), A. Ganguly and H. K. Jadnov (1991), L. F. Guseman and B. C. Peters (1975) (see I. A. Rus, A. Petruşel and G. Petruşel [66]).

7. Sequences of operators and common fixed points

Problem 5. Let (X, \rightarrow) , $(\mathbb{M}(X), \Rrightarrow)$ be two *L*-spaces and $f, g, f_n, g_n : X \rightarrow X, n \in \mathbb{N}$, be such that

(i) $f_n \Rightarrow f, g_n \Rightarrow g$ as $n \to \infty$; (ii) $F_f = F_g = \{x^*\}$; (iii) $x_n \in F_{f_n}, y_n \in F_{g_n}, n \in \mathbb{N}$. In which conditions we have that

 $x_n \to x^*, \ y_n \to x^* \text{ as } n \to \infty?$

Let (X, d) (where $d(x, y) \in \mathbb{R}^m_+$) be a complete generalized metric space. We take on $X, \to := \stackrel{d}{\to}$ and on $\mathbb{M}(X), \Rightarrow := \stackrel{u}{\to}$. In this case we have

Theorem 7.1. (I. A. Rus [56]). Let $f, g, f_n, g_n : X \to X$ be as in Problem 5. If there exists $S \in M_{mm}(\mathbb{R}_+)$ such that

(1) $[(I-S)^{-1}S]^n \to 0 \text{ as } n \to \infty,$ and

(2) $d(f(x),g(y)) \leq S[d(x,f(x)) + d(y,g(y))], \, \forall \; x,y \in X$ then

$$x_n \to x^*, \ y_n \to x^* \ as \ n \to \infty$$

Proof. From (1)+(2) we have that $F_f = F_g = \{x^*\}$. On the other hand,

$$d(x_n, x^*) = d(f_n(x_n), g(x^*)) \le$$

$$\le d(f_n(x_n), f(x_n)) + d(f(x_n), g(x^*)) \le$$

$$\le d(f_n(x_n), f(x_n)) + S[d(x_n, f(x_n)) + d(x^*, g(x^*))] \le$$

$$\le (I+S)d(f_n(x_n), f(x_n)).$$

Hence

 $x_n \to x^*$ as $n \to \infty$.

In a similar way we prove that

$$y_n \to x^* \text{ as } n \to \infty.$$

Remark 7.1. For other properties of the pair (f, g) which satisfies (1)+(2) see I. A. Rus [56], [58].

8. Multivalued operators

Let X be a set. We denote by $\mathbb{M}^0(X)$ the set of all multivalued mappings $T: X \multimap X$.

Problem 6. Let (X, \to) and $(M^0(X), \Rrightarrow)$ (where $M^0(X) \subset \mathbb{M}^0(X)$) be *L*-spaces. Let $T, T_n \in M(X)$. We suppose that

(i) $T_n \Longrightarrow T$ as $n \to \infty$;

(ii) $x_n \in F_{T_n}, n \in \mathbb{N}$.

In which conditions we have that $(x_n)_{n \in \mathbb{N}}$ converges and the limit $x^* \in F_T$? As a partial result for Problem 6 we present the following:

Theorem 8.1. (S. B. Nadler [43]) Let (X, d) be a complete metric space and $T, T_n : X \to P_{cp}(X)$. We suppose that

(i) $T, T_n, n \in \mathbb{N}$ are α -contractions;

(*ii*) $T_n \xrightarrow{p} T$ as $n \to \infty$.

Then, if $x_n \in F_{T_n}$, $n \in \mathbb{N}$, there is a subsequence $(x_{n_i})_{i \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ such that $(x_{n_i})_{i \in \mathbb{N}}$ converges to a fixed point of T.

Theorem 8.2. (T.-C. Lim [40]) Let (X, d) be a complete metric space and $T, T_n : X \to P_{b,cl}(X), n \in \mathbb{N}$ be α -contractions. If

$$H(T(x), T_n(x)) \to 0 \text{ as } n \to \infty, \text{ uniformly for all } x \in X,$$

then

$$H(F_T, F_{T_n}) \to 0 \text{ as } n \to \infty.$$

In what follow we need the following notions.

Let (X, \to) be an *L*-space and $T : X \to P(X)$ be a multivalued operator. By definition, *T* is a multivalued Picard (briefly MWP) operator iff for each $x \in X$ and each $y \in T(x)$, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_0 = x$, $x_1 = y, x_{n+1} \in T(x_n)$ for all $n \in \mathbb{N}$, and $(x_n)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of *T*.

For a MWP operator T we define the operator $T^{\infty}: G(T) \to P(F_T)$, by

 $T^{\infty}(x,y) := \{z \in F_T | \text{ there exists a sequence of successive approximations of } T \text{ starting from } (x,y) \text{ that converges to } z\}.$

Let (X, d) be a metric space and $T : X \to P(X)$ an MWP operator. By definition T is a *c*-multivalued weakly Picard operator (c > 0) iff there exists a selection t^{∞} of T^{∞} such that

$$d(x, t^{\infty}(x, y)) \le cd(x, y), \ \forall \ (x, y) \in G(T).$$

We have

Theorem 8.3. Let (X,d) be a metric space and $T,T_n : X \to P_{cl}(X)$, $n \in \mathbb{N}$. We suppose that

(i) there exists $\eta_n > 0$, $\eta_n \to 0$ as $n \to \infty$ such that

$$H(T(x), T_n(x)) \le \eta_n, \ \forall \ n \in \mathbb{N}, \ \forall \ x \in X;$$

(ii) $T, T_n, n \in \mathbb{N}$ are c-MWP operators. Then

$$H(F_T, F_{T_n}) \to 0 \text{ as } n \to \infty.$$

Proof. From Theorem 2.1 in [67] we have that

j

$$H(F_T, F_{T_n}) \leq c\eta_n, \ n \in \mathbb{N}.$$

So,

$$H(F_T, F_{T_n}) \to 0 \text{ as } n \to \infty.$$

Remark 8.1. For the Problem 6 in uniform spaces see V. G. Angelov and I. A. Rus [3].

Remark 8.2. For other results see R. Espinola and A. Petruşel [24], T.-C. Lim [40], S. B. Nadler [42], [43], I. A. Rus, A. Petruşel and A. Sîntămărian [67], T. Wang [74].

References

- Sz. András, *Picard operators and convex contractions*, Fixed Point Theory, 4(2003), No. 2, 121-129.
- J. Andres and L. Górniewicz, On the Banach contraction principle for multivalued mappings, Approximation, optimization and mathematical economics (Point-à-Pitre 1999), 1-23, Physica, Heidelberg, 2001.
- [3] V. G. Angelov and I. A. Rus, Data dependence of the fixed point set of multivalued weakly Picard operators in uniform spaces, Studia Univ. Babeş-Bolyai Math., 45(2000), 3-10.
- [4] M. Angrisani and M. Clavelli, Synthetic approaches to problems of fixed points in metric space, Ann. Mat. Pura ed Appl., 170(1996), 1-12.
- [5] C. Bacoţiu, Data dependence of the fixed points set of weakly Picard operators in generalized metric spaces, Studia Univ. Babeş-Bolyai Math., 49(2004), Nr. 1, 15-17.
- [6] V. Berinde, Contracții generalizate și aplicații, Cub Press, Baia Mare, 1997.
- [7] V. Berinde, Iterative approximations of fixed points, Efemeride, Baia Mare, 2002.
- [8] V. Berinde, On the convergence of the Ishikawa iteration, Acta Math. Univ. Comenianae, 73(2004), Nr. 1, 119-126.
- [9] F. F. Bonsal, Lectures on some fixed point theorems of functional analysis, Tata Inst. Fund. Res., Bombay, 1962.
- [10] A. Buică, Principii de coincidență și aplicații, Presa Univ. Clujeană, Cluj-Napoca, 2001.
- [11] T. A. Burton, Integral equation, implicit functions and fixed points, Proc. Amer. Math. Soc., 124(1996), 2383-2390.

- [12] Y.-Z. Chen, Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorems, Nonlinear Analysis, 39(2000), 1-10.
- [13] C. E. Chidume and H. Zegeye, Approximate fixed sequences and convergence theorems for asymptotically pseudocontractive mappings, J. Math. Anal. Appl., 278(2003), 354-366.
- [14] D. Chiorean, B. Rus, I. A. Rus and D. Trif, Rezultate şi probleme în dinamica unui operator, Univ. Babeş-Bolyai, Cluj-Napoca, 1997.
- [15] J. E. Cohen, Ergodic theorems in demography, Bull. Amer. Math. Soc., 1(1979), 275-295.
- [16] P. L. Combettes and H. Puh, Iterations of parallel convex projections in Hilbert spaces, Num. Funct. Anal. and Optimiz., 15(1994), 225-243.
- [17] D. Constantinescu and M. Predoi, An extension of the Banach fixed point theorem and some applications in the theory of dynamical systems, Studia Univ. Babeş-Bolyai, 44(1999), Nr. 4, 11-22.
- [18] S. Czerwik, Fixed point theorems and special solutions of functional equations, Sc. Publ. of Univ. of Silezia, Nr. 428, Katowice, 1980.
- [19] E. De Giorgi, Γ-convergenza e G-convergenza, Boll. U.M.I., 14A(1977), 213-220.
- [20] I. Del Prete and C. Esposito, Elementi uniti di transformazioni e teoremi di dipendenza continua, Rend. Circ. Matemat. di Palermo, 23(1974), 187-207.
- [21] W. G. Dotson, Fixed point theorems for nonexpansive mappings on starshaped subsets of Banach spaces, J. London Math. Soc., 4(1972), part 3, 408-410.
- [22] W. G. Dotson, On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc., 38(1973), Nr. 1, 155-156.
- [23] L. S. Dube and S. P. Singh, On sequence of mappings and fixed points, Nanta Math., 5(1972), 84-89.
- [24] R. Espinola, A. Petruşel, Existence and data dependence of fixed points for multivalued operators in gauge spaces, J. Math. Anal. Appl., 2005 (to appear).
- [25] Y.-P. Fang, J. K. Kim and N.-J. Huang, Stable iterative procedures with errors for strong pseudocontractions and nonlinear equations of accretive operators without Lipschitz assumption, Nonlinear Funct. Anal. Appl., 7(2002), No. 4, 497-507.
- [26] R. Fiorenza, Sull' esistenza di elementi uniti per una classe di transformazioni funzionali, Ric. di Mat., 15(1966), 127-153.
- [27] R. B. Fraser and S. B. Nadler, Sequences of contractive maps and fixed points, Pacific J. Math., 31(1969), No. 3, 659-667.
- [28] M. Furi and M. Martelli, Successioni di transformazioni in uno spazio metrico e punti fissi, Rend. Cl. Sc. Acad. Naz. Lincei, 47(1969), 27-31.
- [29] H. Gonska and I. Raşa, The limiting semigroup of the Bernstein iterates, Univ. Duisburg, Essen, 2004.
- [30] L. Górniewicz, Topological fixed point theory of multivalued mappings, Kluwer, London, 1999.
- [31] A. M. Harder and T. L. Hicks, Stability results for fixed point procedures, Math. Japan. 33(1988), 693-706.

IOAN A. RUS

- [32] M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., AMS (1970), 133-143.
- [33] G. Isac and S. Z. Nemeth, *Fixed points and positive eigenvalues for nonlinear operators*, Proc. Amer. Math. Soc. (to appear).
- [34] J. E. Joseph and M. R. Kwack, Fixed point sets of normal maps, Scientaiae Math. Japonicae, 57(2003), 271-277.
- [35] R. Kannan and Z. Vorel, Continuous dependence of approximate solutions of operator equations, J. Integral Eq., 9(1985), No. 2, 153-159.
- [36] R. Kempf, On Ω-limit sets of discrete time dynamical systems, J. Difference Eq. Appl., 8(2002), 1121-1131.
- [37] R. P. Kelisky and T. J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
- [38] W. A. Kirk and B. Sims (eds.), Handbook of metric fixed point theory, Kluwer, 2001.
- [39] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ja. B. Rutickii and V. Ja. Stecenko, *Approximate solution of operator equations*, Nauka, Moscow, 1969.
- [40] T.-C. Lim, On fixed point stability for set valued contactive mappings with applications to generalized differential equations, J. Math. Appl., 110(1985), 436-441.
- [41] L. S. Liu, Ishikawa and Mann iterative processes with error for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194(1995), 114-125.
- [42] S. B. Nadler, Sequences of contractions and fixed points, Pacific J. Math., 27(1968), No. 3, 579-585.
- [43] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), No. 2, 475-488.
- [44] K. Nakajo and W. Takahashi, A nonlinear strong ergodic theorem for asymptotically nonexpansive mappings with compact domains, Dynamics of Continuous, Discrete and Impulsive Systems, Serie A, 9(2002), 257-270.
- [45] R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Memoirs of AMS, No. 391, 1988.
- [46] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for φ-strong pseudocontractions and nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl., 227(1998), 319-334.
- [47] A. Petruşel, Generalized multivalued contractions, Nonlinear Analysis, 47(2001), 649-659.
- [48] A. Petruşel, Dynamic systems, fixed points and fractals, Pure Math. Appl., 13(2002), 275-281.
- [49] A. Petruşel, Multifunctions and applications, Cluj University Press, 2002.
- [50] A. Petruşel, Multivalued weakly Picard operators and applications, Scientiae Math. Japonicae, 59(2004), No. 1, 169-202.
- [51] A. Petruşel and I. A. Rus, *Multivalued Picard and weakly Picard operators*, Proc. Int. Conf. Fixed Point Theory and Applications, 207-226, Yokohama Publishers, 2004.

- [52] W. V. Petryshyn, On the approximation-solvability of equations involving A-proper and pseudo-A-proper mappings, Bull. Amer. Math. Soc., 81(1975), 223-311.
- [53] S. Reich, Kannan's fixed point theorem, Boll. U.M.I., 4(1971), 1-11.
- [54] B. E. Rhoades, Fixed point iteration methods for certain nonlinear mappings, J. Math. Anal. Appl., 183(1994), 118-120.
- [55] I. A. Rus, Approximation of fixed points of generalized contractions mappings, in Topics in Numerical Analysis, Acad. Press, Dublin, 1975, 157-161.
- [56] I. A. Rus, Metrical fixed point theorems, Univ. of Cluj-Napoca, 1979.
- [57] I. A. Rus, Principii și aplicații ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
- [58] I. A. Rus, Results and problems in the metrical common fixed point theory, Mathematica, 21(1979), 189-194.
- [59] I. A. Rus, Basic problems of the metric fixed point theory revisited, I, Studia Univ. Babeş-Bolyai, 34(1989), 61-69, II, 36(1991), 81-89.
- [60] I. A. Rus, Fiber Picard operators theorem and applications, Studia Univ. Babeş-Bolyai, 44(1999), 89-97.
- [61] I. A. Rus, A fiber generalized contraction theorem and applications, Mathematica, 41(1999), Nr. 1, 85-90.
- [62] I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, Cluj-Napoca, 2001.
- [63] I. A. Rus, Picard operators and applications, Scientiae Math. Japonicae, 58(2003), 191-219.
- [64] I. A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.
- [65] I. A. Rus and S. Mureşan, Data dependence of the fixed point set of some weakly Picard operators, Itinerant Seminar, Cluj-Napoca, 2000, 201-208.
- [66] I. A. Rus, A. Petruşel and G. Petruşel, Fixed point theory 1950-2000: Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [67] I. A. Rus, A. Petruşel and A. Sîntămărian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis, 52(2003), 1947-1959.
- [68] W. Russell and S. P. Singh, A note on a sequence of contraction mapping, Bull. Canad. Math., 12(1969), 513-516.
- [69] S. P. Singh and B. Watson, On convergence results in fixed point theory, Rend. Sem. Mat. Univ. Politec. Torino, 51(1993), 73-91.
- [70] M.-A. Şerban, Fiber φ -contractions, Studia Univ. Babeş-Bolyai, 44(1999), No. 3, 99-108.
- [71] M.-A. Şerban, Teoria punctului fix pentru operatori definiți pe produs cartezian, Presa Univ. Clujeană, Cluj-Napoca, 2002.
- [72] J. Stepräns, S. Watson and W. Just, A topological Banach fixed point theorem for compact Hausdorff spaces, Canad. Math. Bull.
- [73] G. Vidossich, Approximation of fixed points of compact mappings, J. Math. Anal. Appl., 33(1971), 111-115.

IOAN A. RUS

- [74] W. Wang, Fixed point theorems and fixed point stability for multivalued mappings on metric spaces, J. Nanjing Univ. Math. Biq., 6(1989), 16-23.
- [75] P. P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math., 48(1997), 825-859.