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Abstract. Let X be a nonempty set and M(X) be the set of all selfoperators of X. Let
(X,—) and (M(X),=) be L-spaces. In this paper we study the following problem:
Let g,g9n» € M(X), n € N, be such that

gn = g as n — 00.

If z, is a fixed point of gn, does (zn)nen or some subsequence of (zn)nen converge to a
fixed point of g?
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1. INTRODUCTION

Let X be a set and M(X) the set of all selfoperators of X. Let (X,—)
and (M(X),=) be L-spaces. The aim of this paper is to study the following
problem:

Let g, g, € M(X), n € N, be such that g, = g as n — oo. If x, is a fixed
point of g, does (zy)nen or some subsequence (p,)ien Of (Zn)nen converge
to a fixed point of g7

Diverse aspects of the above problem appear in subjects such as:

e Data dependence of fixed points (Sz. Andras [1], V. G. Angelov and I
A. Rus [3], V. Berinde [6], S. Czerwik [18], I. Del Prete and C. Esposito [20],
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W. A. Kirk and B. Sims (eds.) [38], T.-C. Lim [40], S. B. Nadler [42], [43],
I. A. Rus [56]-[59], [62], I. A. Rus, A. Petrugel and G. Petrusel [66], T. Wang
[74],...).

e Iteration methods for operatorial equations (V. Berinde [7], A. Buica [10],
T. A. Burton [11], Y.-Z. Chen [12], C. E. Chidume and H. Zegeye [13], Y.-P.
Fang, J. K. Kim and N.-J. Huang [25], A. M. Harder and T. L. Hicks [31], L.
S. Liu [41], R. D. Nussbaum [45], M. O. Osilike [46], B. E. Rhoades [54],...).

e Approximation scheme theory (W. V. Petryshyn [52], M. A. Krasnoselskii
[39], E. De Giorgi [19],...).

e Techniques of proof in fixed point theory (M. Angrisani and M. Clavelli
[4], W. G. Dotson [21], [22], R. Fiorenza [26], R. B. Fraser and S. B. Nadler
[27], M. Furi and M. Martelli [28], L. Gérniewicz [30], G. Isac and Sz. Nemeth
[33], W. A. Kirk and B. Sims (eds.) [38], I. A. Rus [56], G. Vidossich [73],...).

e Dynamic aspects of operatorial equations (Y.-Z. Chen [12], D. Chiorean,
B. Rus, I. A. Rus and D. Trif [14], J. E. Cohen [15], D. Constantinescu and M.
Predoi [17], R. Kempf [36], K. Nakajo and W. Takahashi [44], R. D. Nussbaum
[45], A. Petrusel [48],...).

Throughout this paper we follow the terminologies and notations in I. A.
Rus [63] and A. Petrusel [50].

2. CONVERGENCES ON M(X)

Let (X, —) be an L-space. On M(X) we consider the following convergences

(9, gn € M(X)):
e g, 5 g as n — oo stands for pointwise convergence;
e convergence with continuity (Angrisani-Clavelli [4]),

gn > gasn—00 & (z, —»2"asn —00 = gn(z,) — g(z*) as n — c0);
e (if (X,U) is an uniform space) uniform convergence,
gn — g as n — o0.

Let = be an L-convergence on M(X). Then we consider the following
convergences:

e iterative convergence

gn > gasn —o00 & gh=gTasn — oo, VmeN;
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e (if g is WPO) asymptotical convergence (I. A. Rus [59])
gn S gasn— oo & ¢g"= g™ asn,m — oo;
o (if g, g are WPOs) fixed point convergence,
gn&gasn—M)o & g0 = g% asn — o0,

where ¢*°(z) := lim ¢"(x).

The following gi?nple examples illustrate the relations between these notions.

Example 2.1. We take X = R, d(z,y) = |z — y| and we consider on R
the L-convergence ” 4y Let gn(x) =0 for x € R_, g,(x) = 2" for x € [0, 1],
gn(x) =1for x > 1 and g(x) =0 for x < 1, g(x) = 1 for x > 1. In this case
we have

a) gn 2> g as n — o0;

b) gn + g as n — 00;

¢) gn — g as n — oo;

d) gn and g are WPOs and g, I g as n — oo, in (M(R), 2);

e) gn L gasn — oo, in (M(R), 2).

Example 2.2. X =R, g,(z) =2z + ot g(z) = 2z, x € R. In this case:

a) gn — g as n — 00;
b) g is'nt PO;
¢) gn = g as n — oo, in (M(R), =);
1
A L ]
Example 2.3. We consider the Banach space X = (CI0,1],| - |l¢) and

B, : C[0,1] — C]0, 1] are classical Bernstein operators,

Bu)() =Y (i) (Z) (1 — )k,

k=0
In this case (see R. P. Kelisky and T. J. Rivlin [37], H. Gonska and I. Rasa
[29], I. A. Rus [64])
a) By, n € N* are WPOs;
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Example 2.4. Let (X, —) be an L-space and g,,g € M. If

(i) gn = g as n — oo,
then

(a) gn—i>gasn—>oo.

Proof. (i) = gn(x) > g(x)asn — oo,V € X = gnlgn(x)) — g(g(x)).
So, g2 & ¢? as n — co. By induction we have (a).

Example 2.5. Let (X,d) be a complete metric space and g, g, € M(X).
We suppose that

(i) g is an a-contraction;

(ii) gn — g as n — oo.
Then, g, % g as n — oo, in (M(X), %).

Proof. From g, — g as n — oo, we have that there exist 1, > 0, 17, — 0

as n — 0, such that
d(gn(x),g9(x)) <np, Vo€ X and n € N.

Hence we have

d(gy!(x). 9" () < 72— Vmn €N, VreX.

3. PROBLEM 1

We begin our study with the following question:

Problem 1. Let (X,—) and (M(X),=) (where M(X) C M(X)) be L-
spaces. Let g, g, € M(X). We suppose that

(i) gn = g as n — o0;

(ii) zp, € Fy,, n € Nand Fy, = {z*}.
In which conditions we have that

(iii) @y, — 2* as n — 007

For a better understanding of Problem 1, we consider the following aspects
of this problem.

Problem 1,. In which conditions on g we have (iii)?

Problem 1;. For which generalized contractions g, we have (iii)?

Problem 1.. For which Picard operators g, we have (iii)?

Problem 1,. For which M (X) C M(X) we have (iii)?

Problem 1.. For which convergence ”=" on M (X) we have (iii)?

The following results are partial answers to these questions:
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Theorem 3.1. (Bonsall [9]). Let (X,d) be a complete metric space and
g,9n : X — X, n € N, a-contractions. If g, 2, g as n — 00, then we have
(iii) in (X,-%).

Theorem 3.2. (Nadler [42]). Let (X,d) be a complete metric space and
9,90 : X — X. If g is a contraction and x, € Fy,, n € N, then
g =g asn— oo = T, — T asn — oo.

Theorem 3.3. (Rus [59]). Let (X, d) be a metric space, g : X — X a Picard
operator (Fy = {z*}) and g, : X — X such that g, = g in (M(X),->). Then
T, € Fy,,meN implya:nix* as n — 00.

Remark 3.1. From Theorem 3.3 we have Theorem 3.2.

Theorem 3.4. Let (X,d) (where d(x,y) € RT') be a complete generalized
metric space and g, g, : X — X. We suppose that:

(1) gn 2 g as n — oo;

(2) there exists a matrix S € Mpym(Ry) such that g, g, are S-contractions
for all n € N.

Then, Fy = {z*}, Fy, = {xn} and x, L 2 asn — 0o

Proof. From the definition of an S-contraction it follows that S™ — 0 as

n — oo (see [53]). From Perov’s theorem it follows that

Fo =A{xn}, Fy={a"}.

We have
d(xmm*) = d(gn(xn)ug(x*))
< d(gn(@n), gn(27)) + d(gn(z"), g(z"))
< Sd(zn, ") + d(gn(z7), g(27)).
Hence

d(zn,2*) < (I — 8) td(gn(x*), g(z*)) — 0 as n — oo.

Theorem 3.5. Let (X,d) (where d(x,y) € R") be a complete generalized
metric space and g, 9, : X — X. We suppose that:

(1) gn = g asn — oo;

(2) there exist ng € N* and S € Mpym(Ry) such that g™, gn°, n € N, are
S-contractions.

Then, Fy = {z*}, Fy, = {an} and x, — 2* as n — oo.
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Proof. From Perov’s theorem we have that Fyno = {2*} and F no = {zn},
n € N. From Lemma 1.3.3 in [56] it follows that

Fg = ano = {.75*}, F, = ngo = {xn}, n € N.

From (1) we have that g 2 ¢ as n — co.

Now the proof follows from Theorem 3.4.

Theorem 3.6. (Rus [56]). Let (X,d) (where d(x,y) € R') be a complete
generalized metric space and g, g, : X — X. We suppose that:

(1) gn = g as n — oo;

(2) g is an S-contraction;

(3) xn € Fy,, n€N.
Then, x, — x* as n — o0.

Proof. We have that

d(.%n, x*) = d(gn(xn)a g(x*))
< d(gn(zn), 9(zn)) + d(g(zn), 9(z"))
< d(gn(xn), 9(zyn)) + Sd(zp, x").

Hence,
d(xp,z") < (I — S)*ld(gn(mn),g(a:n)) — 0 as n — oo.

Remark 3.2. For m = 1 Theorem 3.2 follows from Theorem 3.6.

For other results with respect to Problem 1 see L. S. Dube and S. P. Singh
[23], R. B. Fraser and S. B. Nadler [27], S. B. Nadler [42], I. A. Rus [56]-[59],
[62], W. Russell and S. P. Singh [68], S. Reich [53],...

4. PROBLEM 2

Another aspect of our question is given by

Problem 2. Let (X, —) and (M(X),=) be L-spaces. We suppose that
() gn = g as n — oo;

(ii) g, gn,n € N, are WPOs.

e In which conditions we have

Ip

(iii) gn, — g as n — 007

e In which conditions we have

g (X) 5 g=(X) as n — 00?
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Example 4.1. In the case of Example 2.3 we have (see I. A. Rus [64])

gn (2)(t) = B (z)(t) = 2(0) + (2(1) — z(0))t, B¥(2)(t) = (t).

So, B;'LO—%B‘X’ as n — 00.
Example 4.2. In the case of Theorem 3.1 we have that, ¢°°(x) = =, and
g®(z) =2 VoreX.

P .
So, g-° — g™ as n — o0, i.e.,

Ip
gn — g as 1 — 0.

We have

Theorem 4.1. Let (X,d) be a metric space and g,g, : X — X. We
suppose that:

(i) gn — g asn — 00;

(ii) g, gn,n € N, are WPOs;

(ii1) there exists ¢ > 0 such that

d(z, g™ (x)) < cd(z,g(x)) and d(x, g;°(x)) < cd(x,gn(x)), V2o e X, VneN.

Then, H(Fy,,F;) — 0 as n — oo, where H is Pompeiu-Hausdorff functional
(see L. Gérniewicz [30], A. Petrusel [50]).
Proof. Condition (i) implies that there exist 7, > 0, n € N, such that

A(g(2), ga(t)) < 7a — 0 as n — o0, ¥ 3 € X.

In the conditions (ii)+(iii), from a theorem in Rus-Muresan [65] we have
that

H(F,, Fy,) <cnn, VneN.
So, H(Fy, Fy,) — 0 as n — o0, i.e.,
H(g>™(X), 9, (X)) — 0 as n — oo.

Theorem 4.2. Let (X,d) be a complete metric space and g,g, : X — X
be closed operators. We suppose that:

(i) gn — g as n — oo;

(1) there exists o €]0, 1] such that

d(g*(z),9(x)) < ad(z,g(x)), ¥ z € X,

d(g2(z), gn(x)) < ad(z,g,(2)), V2 € X, Vn €N.
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Then, H(Fg,,F;) — 0 as n — oo.

Proof. Condition (ii) implies that the operators g and g,, n € N, are
WPOs. From condition (ii) we also have condition (iii) in Theorem 4.1. So,
Theorem 4.2 follows from Theorem 4.1.

Example 4.3. Let X be a Banach space and f, f, € C([a,b] x X, X),
n € N. Moreover we suppose that f(¢,-), fn(t,) : X — X are L-Lipschitz, for
all t € [a,b]. We consider the following differential equations

(I) 2’ = f(t,7), t € [a,b], © € C*([a,b], X),

(I,) 2’ = fu(t,z), t € [a,b], z € C([a,b], X)
and equivalent fixed point equations

(E) z(t) = z(a) +/ f(s,z(s))ds, t € [a,b], z € C([a,b],X)

t
(E,) 2(t) = z(a) +/ Fuls, 2(s))ds, t € [a,b], = € C([a, B], X).

Now we consider theaoperators
A, A, C([a,b], X) — C([a,b], X)
defined by
A(z)(t) := the second part of (E) and
Ay (x)(t) := the second part of (E,,).
Let C([a,b], X) be endowed with a suitable Bielecki norm,

|zl == sup (Jz(t)]e” ™), 7> 0.
tela,b]
Let A € X and X := {x € C([a,b], X)| z(a) = A\}. Then C([a,b],X) =
U X is a partition of C([a,b], X).

reXx
Moreover,

A(X)) C Xy, Ap(X)) C Xy, Ae X, neN,
and I
A and A,, are — — Lipschitz.
T
L
So, for 7 > L, A|x,, An|x, are —-contractions. Hence, if f, 2 f we are in
the conditions of the Theorem 4.2. From this theorem we have that

H(F4,Fy,) — 0asn— oo.



SEQUENCES OF OPERATORS AND FIXED POINTS 357

If we denote by S and S,, (where S,S,, C C([a,b], X)) the solution sets of
the equations (I), (I,,), then in the above conditions on f, fy,

H(S,S,) — 0asn— oo.

5. PROBLEM 3

The following problem appears in iterative approximation of fixed points (V.
Berinde [7], [8], C. E. Chidume and H. Zegeye [13], B. E. Rhoades [54], S. P.
Singh and B. Watson [69],...), fiber WPOs (M. W. Hirsch and C. C. Pugh [32],
I. A. Rus [60], [61], Sz. Andras [1], C. Bacotiu [5], M. Serban [70], [71], G.
Dezso, V.Muresan, A. Tamagan (see I. A. Rus, A. Petrusel and G. Petrugel
[66],...) and in dynamical systems (D. Chiorean, B. Rus, I. A. Rus and D. Trif
[14], D. Constantinescu and M. Predoi [17], R. Kempf [36], K. Nakajo and W.
Takahashi [44], R. D. Nussbaum [45], A. Petrusel [48],...).

Problem 3. Let (X,—) and (M(X),=) be two L-spaces. Let M(X) C
M(X) and g, g, € M(X). We suppose that

(i) gn = g as n — o0;

(ii) g is WPO;

(iii) f,ge M(X) = foge M(X).

In which conditions we have that

gn©gn-10---0go = g asn — oo?

In what follow we present some partial results for this problem.

Theorem 5.1. (Y.-Z. Chen [12]). Let (X,d) be a complete metric space
and g, : X — X, n € N, a sequence which converges pointwise to g. Suppose
that for 0 < a < b < 400, there exists L(a,b) €]0, 1] such that

d(gn(x), gn(y)) < L(a, b)d(z,y)

forall z,y € X, a < d(x,y) < b and n € N. If for each x € X, there exists
y € X and R(x) > 0 such that d((gnogn—10---0g0)(x),y) < R(z), forn € N,
then (gn o gn—10---0go)(x) — g™(x) asn — oo, Vx € X.

Theorem 5.2. Let (X,d) (where d(x,y) € R") be a generalized complete

metric space and g, g, : X — X be S-contractions. If g, TN g asn — oo, then

gnogn_lo---ogoggoo.
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Proof. If we denote by z* the unique fixed point of g we have that ¢*°(z) =
¥, Ve X and

d((gn o -0 g0)(x),x%) < d((gn o0 go)(@), gn(z")) + d(gn(2"), 27) <
< Sd((gn-10---0g0)(x),27) + d(gn(z"),2") <
< 8%d((gn-20 -0 go)(x),2") + Sd(gn-1(z"), 2*) + d(gn(z"),2*) < -+~

< Snd(go(x)’ .I*) + Sn_ld(gl (x*)7 x*) + Sd(gnfl(x*)a li*) + d(gn(l‘*), 'T*>

Now the proof follows from the following
Lemma 5.1. (I. A. Rus [61]). Let A, € Mpm(Ry) and B, € R, n € N.
We suppose that

IA

(i) Bp, — 0 as n — oo;

(1) ZA” converges.
neN
Then

n
ZAn,ZBZ- — 0 asn — oo.
i=0

Remark 5.1. For the case of ¢-contractions see M. Serban [70].

Remark 5.2. For the case m =1 see I. A. Rus [60].

Remark 5.3. The following result is in connection with Theorem 5.2.

Lemma 5.2. Let (X,d) (where d(z,y) € R') be a generalized complete
metric space and g, : X — X be an Sy-contraction, n € N, such that, S,, — 0
asn — oo (Fy, ={z}}). Letx* € X. The following statements are equivalent:

(i) there exists T € X such that g,(T) — x*, as n — 0.

(ii) gn(z) — x* asn — oo, Ve X;

(iii) x}, — =* as n — oo.

Proof. (i) = (ii).
d(gn(z),2") < d(gn(z), gn(T)) + d(gn(2),2") <
< Spd(2,7) + d(gn(F),2") — 0 as n — .
(il) = (iii).
d(zy, ") = d(gn(27),27) < d(gn(27,), gn(2)) + d(gn(z),27) <

< Spd(y, ) + d(gn(2), 27).
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Hence, we have
d(zf,2*) < (I — Sp) td(gn(x),2*) — 0 as n — oc.

(i) = (i).

We take z := z*.

Remark 5.4. For other results for Problem 3 see Y.-Z. Chen [12], R.
Kannan and Z. Vorel [35], R. Kempf [36].

6. PROBLEM 4

Another aspect of our basic problem is given by

Problem 4. Let (X,—) and (M(X),=) be two L-spaces. Let g,g, €
M(X'). We suppose that

(i) gn = g as n — oc;

(i) Fy, #0, VneN.
In which conditions we have that F, # (07

Problem 4a. Let X be a Banach space, Y C X a compact subset of X
and g, gn € (M(Y),=).

We suppose that

1) gn = g;

(i) Fy, # 0

(iii) g € C(Y,Y).
In which conditions we have that F # (7

Problem 4b. Let (X,d) be a complete K-metric space (see P. P. Zabrejko
[75]) and g, gn € (M(X),=).

We suppose that

(i) gn = g as n — o0;

(ii) there exist x, € X, n € N, such that

d(gn(zn),xn) — 0 as n — oc;

(iii) g € C(X, X).
In which conditions we have that Fy # (7

Problem 4c. Let (X, —), (M(X),=) be two L-spaces, and g, g, € M(X).
We suppose that

(i) gn = g as n — oo;
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(ii) zp, € F,,, n€N.
In which conditions we have that

Tp — " asn — oo = x* € Fy?
In which conditions we have that
g(xn) 2" asn — o0 = " € Fy?

Problem 4d. Use the results of the above problems for the study of the
following problem:
Let (X,7) be a topological space, ¥ C X a compact subset. In which

conditions we have that
geCY)Y) = F,# 0?

First of all, we present some simple and useful remarks:

Lemma 6.1. (G. Vidossich [73]). Let (X,U) be a uniform space, ¥ C X a
subset of X, g € C(Y,X) and g, € M(Y, X). We suppose that

(i) gn — g as n — oo;

(it) xn € Fg,, n € N.

Then, every cluster point of (xn)nen 1S a fized point of g.

Lemma 6.2. (W. G. Dotson [21]). Let X be a Banach space, Y C X a
starshaped subset of X and g : Y — Y a nonexpansive operator. Then there
exists a sequence (gn)nen, gn : Y — Y, such that:

(i) gn = g

(ii) gn is (1 - ;) -contraction, n € N.

Lemma 6.3. Let (X,d) be a K-metric space, Y C X a compact subset of
X and g € C(Y,Y). Then the following statements are equivalent:

(i) Fy #0;

(ii) there exist g, € C(Y,Y), n € N, such that Fy, # 0 and g, — g as
n — 0o;

(iii) there exist g, : Y — Y, n € N such that F,, # 0 and g, = g as
n — 0o;

(iv) there exist g, : Y — Y and x, € Y such that g, — g as n — oo and
d(gn(xn),zn) — 0 as n — oo.

Proof. (i) = (ii). We take g, := g.
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(i) = (i). Let x,, € F,,. Then there exist a convergent subsequence of

(Zn)nen,
Tp, — & as n — oo.
We have
d(z*, g(x")) < d(z*, zp,) + d(gn,; (zn,), 9(z")) — 0 as i — oco.
So, x* € Iy,

(i) = (iii) and (i) = (iv). We take g, :=g.

(iii) = (i). Follows from the notion of convergence with continuity.

(iv) = (i). Y being a compact subset of X it implies that there exists
Tp, — ¥ as n — oo.

We have
d(z*, g(x")) < d(x*’xni) + d(xni’gni (xnz))"i‘

+d(gn, (Tn,), 9(Tn,)) + d(g(xn,),g(z*)) — 0 as i — oo.

Remark 6.1. In the case K = Ry, (iv) = (i) is Lemma 1 in M. Furi and
M. Martelli [28].

Remark 6.2. From Lemma 6.2 we have

Theorem 6.1. (W. G. Dotson [21]). Let X be a Banach space and Y C X
a compact starshaped subset of X. Then any nonexpansive operator g : Y — 'Y
has a fixed point.

Remark 6.2. For some generalization of the above theorem see W. G.
Dotson [22], A. Petrusel (1987), A. Ganguly and H. K. Jadnov (1991), L. F.
Guseman and B. C. Peters (1975) (see I. A. Rus, A. Petrugel and G. Petrusel
[66]).

7. SEQUENCES OF OPERATORS AND COMMON FIXED POINTS

Problem 5. Let (X, —), (M(X),=) be two L-spaces and f, g, fn,gn : X —
X, n €N, be such that

(i) fn = f.9n = g as n — o0;

(i) Fy = Fy = {z"};

(iii) xn € Fy,, yn € Fy,, n € N.
In which conditions we have that

Tp — 2%, Yy — 2% as n — oco?
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Let (X,d) (where d(x,y) € R7') be a complete generalized metric space.
We take on X, —:=2% and on M(X), =:=%. In this case we have

Theorem 7.1. (I. A. Rus [56]). Let f, g, fn,gn : X — X be as in Problem
5. If there exists S € Mym(Ry) such that

(1) [(I —S)7LS]" — 0 as n — oo,
and

(2) d(f(z),9(y)) < Sld(z, f(z)) +d(y,9(y))], V z,y € X
then

Tp — 5, Yp — x5 as n — oo.

Proof. From (1)+(2) we have that Fy = F;, = {2*}. On the other hand,
d(xn,2") = d(fn(zn), g(z")) <
< d(fn(zn), f(2n)) +d(f(2n), g(27)) <
< d(fn(zn), f(2n)) + S[d(zn, f(2n)) +d(2”, g(2"))] <
< I+ S8)d(fn(zn), f(2n)).
Hence

In a similar way we prove that
Yn — x° as n — oo.

Remark 7.1. For other properties of the pair (f, g) which satisfies (1)+(2)
see I. A. Rus [56], [58].

8. MULTIVALUED OPERATORS

Let X be a set. We denote by M°(X) the set of all multivalued mappings
T:X —oX.

Problem 6. Let (X,—) and (M°(X),=) (where M°(X) c M%(X)) be
L-spaces. Let T,T,, € M(X). We suppose that

(i) T, = T as n — oc;

(ii) Ty € Fr,, n €N.
In which conditions we have that (z,),en converges and the limit z* € Fp?

As a partial result for Problem 6 we present the following:
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Theorem 8.1. (S. B. Nadler [43]) Let (X,d) be a complete metric space
and T, T, : X — Py,(X). We suppose that

(i) T,T,,n € N are a-contractions;

(ii) Tp 5 T as n — .
Then, if x, € Fr,, n € N, there is a subsequence (xp,)ien 0f (Tn)nen such
that (xn,)ien converges to a fized point of T'.

Theorem 8.2. (T.-C. Lim [40]) Let (X, d) be a complete metric space and
T,T,: X — Pya(X), n €N be a-contractions. If

H(T(x),T,(z)) — 0 as n — oo, uniformly for all x € X,

then

H(Fr,Fr,) — 0 as n — 0.

In what follow we need the following notions.

Let (X,—) be an L-space and T': X — P(X) be a multivalued operator.
By definition, T" is a multivalued Picard (briefly MWP) operator iff for each
x € X and each y € T'(x), there exists a sequence (x,)nen such that xg = x,
1 =Y, Tpy1 € T(xy,) for all n € N, and (x,)nen is convergent and its limit is
a fixed point of T

For a MWP operator T' we define the operator T°° : G(T) — P(Fr), by

T>°(z,y) := {z € Fr| there exists a sequence of successive approximations
of T starting from (z,y) that converges to z}.

Let (X,d) be a metric space and 7' : X — P(X) an MWP operator. By
definition T is a c-multivalued weakly Picard operator (¢ > 0) iff there exists
a selection ¢*° of T"°° such that

d(z, t>*(x,y)) < cd(z,y), V (x,y) € G(T).

We have

Theorem 8.3. Let (X,d) be a metric space and T,T, : X — Py(X),
n € N. We suppose that

(1) there exists n, >0, n, — 0 as n — oo such that

H(T(x),Tp(x)) <nn, YR eN, Ve X;
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(i) T,T,,n € N are c-MWP operators.
Then

H(Fr,Fr,) — 0 as n — oo.

Proof. From Theorem 2.1 in [67] we have that
H(FTaFTn) < cnp, n €N.

So,
H(Fr,Fr,) — 0asn— oo.

Remark 8.1. For the Problem 6 in uniform spaces see V. G. Angelov and
I. A. Rus [3].

Remark 8.2. For other results see R. Espinola and A. Petrusel [24], T.-C.
Lim [40], S. B. Nadler [42], [43], I. A. Rus, A. Petrusel and A. Sintamarian
[67], T. Wang [74].
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