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Babeş-Bolyai University, Department of Applied Mathematics,
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Abstract. Let X be a nonempty set and M(X) be the set of all selfoperators of X. Let

(X,→) and (M(X), V) be L-spaces. In this paper we study the following problem:

Let g, gn ∈ M(X), n ∈ N, be such that

gn V g as n→∞.

If xn is a fixed point of gn, does (xn)n∈N or some subsequence of (xn)n∈N converge to a

fixed point of g?
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1. Introduction

Let X be a set and M(X) the set of all selfoperators of X. Let (X,→)
and (M(X),V) be L-spaces. The aim of this paper is to study the following
problem:

Let g, gn ∈ M(X), n ∈ N, be such that gn V g as n → ∞. If xn is a fixed
point of gn, does (xn)n∈N or some subsequence (xni)i∈N of (xn)n∈N converge
to a fixed point of g?

Diverse aspects of the above problem appear in subjects such as:
• Data dependence of fixed points (Sz. András [1], V. G. Angelov and I.

A. Rus [3], V. Berinde [6], S. Czerwik [18], I. Del Prete and C. Esposito [20],

This paper was presented at International Conference on Nonlinear Operators, Differential
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W. A. Kirk and B. Sims (eds.) [38], T.-C. Lim [40], S. B. Nadler [42], [43],
I. A. Rus [56]-[59], [62], I. A. Rus, A. Petruşel and G. Petruşel [66], T. Wang
[74],...).
• Iteration methods for operatorial equations (V. Berinde [7], A. Buică [10],

T. A. Burton [11], Y.-Z. Chen [12], C. E. Chidume and H. Zegeye [13], Y.-P.
Fang, J. K. Kim and N.-J. Huang [25], A. M. Harder and T. L. Hicks [31], L.
S. Liu [41], R. D. Nussbaum [45], M. O. Osilike [46], B. E. Rhoades [54],...).
• Approximation scheme theory (W. V. Petryshyn [52], M. A. Krasnoselskii

[39], E. De Giorgi [19],...).
• Techniques of proof in fixed point theory (M. Angrisani and M. Clavelli

[4], W. G. Dotson [21], [22], R. Fiorenza [26], R. B. Fraser and S. B. Nadler
[27], M. Furi and M. Martelli [28], L. Górniewicz [30], G. Isac and Sz. Nemeth
[33], W. A. Kirk and B. Sims (eds.) [38], I. A. Rus [56], G. Vidossich [73],...).
• Dynamic aspects of operatorial equations (Y.-Z. Chen [12], D. Chiorean,

B. Rus, I. A. Rus and D. Trif [14], J. E. Cohen [15], D. Constantinescu and M.
Predoi [17], R. Kempf [36], K. Nakajo and W. Takahashi [44], R. D. Nussbaum
[45], A. Petruşel [48],...).

Throughout this paper we follow the terminologies and notations in I. A.
Rus [63] and A. Petruşel [50].

2. Convergences on M(X)

Let (X,→) be an L-space. On M(X) we consider the following convergences
(g, gn ∈ M(X)):
• gn

p→ g as n →∞ stands for pointwise convergence;
• convergence with continuity (Angrisani-Clavelli [4]),

gn
c→ g as n →∞ ⇔ (xn → x∗ as n →∞ ⇒ gn(xn) → g(x∗) as n →∞);

• (if (X, U) is an uniform space) uniform convergence,

gn
u→ g as n →∞.

Let V be an L-convergence on M(X). Then we consider the following
convergences:
• iterative convergence

gn
i→ g as n →∞ ⇔ gm

n V gm as n →∞, ∀ m ∈ N;
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• (if g is WPO) asymptotical convergence (I. A. Rus [59])

gn
a→ g as n →∞ ⇔ gm

n V g∞ as n, m →∞;

• (if gn, g are WPOs) fixed point convergence,

gn
fp→ g as n →∞ ⇔ g∞n V g∞ as n →∞,

where g∞(x) := lim
n→∞

gn(x).
The following simple examples illustrate the relations between these notions.
Example 2.1. We take X = R, d(x, y) = |x − y| and we consider on R

the L-convergence ” d→”. Let gn(x) = 0 for x ∈ R−, gn(x) = xn for x ∈ [0, 1],
gn(x) = 1 for x ≥ 1 and g(x) = 0 for x < 1, g(x) = 1 for x ≥ 1. In this case
we have

a) gn
p→ g as n →∞;

b) gn
c9 g as n →∞;

c) gn
u→ g as n →∞;

d) gn and g are WPOs and gn
fp→ g as n →∞, in (M(R),

p→);
e) gn

i→ g as n →∞, in (M(R),
p→).

Example 2.2. X = R, gn(x) = 2x +
1
n!

, g(x) = 2x, x ∈ R. In this case:

a) gn
u→ g as n →∞;

b) g is’nt PO;
c) gn

i→ g as n →∞, in (M(R), u→);

d) Fgn =
{
− 1

n!

}
, Fg = {0}.

Example 2.3. We consider the Banach space X = (C[0, 1], ‖ · ‖C) and
Bn : C[0, 1] → C[0, 1] are classical Bernstein operators,

Bn(x)(t) :=
n∑

k=0

x

(
k

n

) (
n

k

)
tk(1− t)n−k.

In this case (see R. P. Kelisky and T. J. Rivlin [37], H. Gonska and I. Raşa
[29], I. A. Rus [64])

a) Bn, n ∈ N∗, are WPOs;
b) Bn

u→ 1X ;

c) Bn
fp9 1X ;

d) Bn
a9 1X ;

e) Bn
i→ 1X .
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Example 2.4. Let (X,→) be an L-space and gn, g ∈ M. If
(i) gn

c→ g as n →∞,
then

(a) gn
i→ g as n →∞.

Proof. (i) ⇒ gn(x) → g(x) as n →∞, ∀ x ∈ X ⇒ gn(gn(x)) → g(g(x)).
So, g2

n
p→ g2 as n →∞. By induction we have (a).

Example 2.5. Let (X, d) be a complete metric space and g, gn ∈ M(X).
We suppose that

(i) g is an α-contraction;
(ii) gn

u→ g as n →∞.
Then, gn

a→ g as n →∞, in (M(X), u→).
Proof. From gn

u→ g as n → ∞, we have that there exist ηn > 0, ηn → 0
as n → 0, such that

d(gn(x), g(x)) ≤ ηn, ∀ x ∈ X and n ∈ N.

Hence we have

d(gm
n (x), gm(x)) ≤ ηn

1− α
, ∀ m,n ∈ N, ∀ x ∈ X.

3. Problem 1

We begin our study with the following question:
Problem 1. Let (X,→) and (M(X),V) (where M(X) ⊂ M(X)) be L-

spaces. Let g, gn ∈ M(X). We suppose that
(i) gn V g as n →∞;
(ii) xn ∈ Fgn , n ∈ N and Fg = {x∗}.

In which conditions we have that
(iii) xn → x∗ as n →∞?
For a better understanding of Problem 1, we consider the following aspects

of this problem.
Problem 1a. In which conditions on g we have (iii)?
Problem 1b. For which generalized contractions g, we have (iii)?
Problem 1c. For which Picard operators g, we have (iii)?
Problem 1d. For which M(X) ⊂ M(X) we have (iii)?
Problem 1e. For which convergence ”V” on M(X) we have (iii)?
The following results are partial answers to these questions:
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Theorem 3.1. (Bonsall [9]). Let (X, d) be a complete metric space and
g, gn : X → X, n ∈ N, α-contractions. If gn

p→ g as n → ∞, then we have
(iii) in (X,

d→).
Theorem 3.2. (Nadler [42]). Let (X, d) be a complete metric space and

g, gn : X → X. If g is a contraction and xn ∈ Fgn, n ∈ N, then
gn

u→ g as n →∞ ⇒ xn → x∗ as n →∞.
Theorem 3.3. (Rus [59]). Let (X, d) be a metric space, g : X → X a Picard

operator (Fg = {x∗}) and gn : X → X such that gn
a→ g in (M(X), u→). Then

xn ∈ Fgn, n ∈ N imply xn
d→ x∗ as n →∞.

Remark 3.1. From Theorem 3.3 we have Theorem 3.2.
Theorem 3.4. Let (X, d) (where d(x, y) ∈ Rm

+ ) be a complete generalized
metric space and g, gn : X → X. We suppose that:

(1) gn
p→ g as n →∞;

(2) there exists a matrix S ∈ Mmm(R+) such that g, gn are S-contractions
for all n ∈ N.
Then, Fg = {x∗}, Fgn = {xn} and xn

d→ x∗ as n →∞.
Proof. From the definition of an S-contraction it follows that Sn → 0 as

n →∞ (see [53]). From Perov’s theorem it follows that

Fgn = {xn}, Fg = {x∗}.

We have

d(xn, x∗) = d(gn(xn), g(x∗))

≤ d(gn(xn), gn(x∗)) + d(gn(x∗), g(x∗))

≤ Sd(xn, x∗) + d(gn(x∗), g(x∗)).

Hence

d(xn, x∗) ≤ (I − S)−1d(gn(x∗), g(x∗)) → 0 as n →∞.

Theorem 3.5. Let (X, d) (where d(x, y) ∈ Rm
+ ) be a complete generalized

metric space and g, gn : X → X. We suppose that:
(1) gn

c→ g as n →∞;
(2) there exist n0 ∈ N∗ and S ∈ Mmm(R+) such that gn0 , gn0

n , n ∈ N, are
S-contractions.
Then, Fg = {x∗}, Fgn = {xn} and xn → x∗ as n →∞.
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Proof. From Perov’s theorem we have that Fgn0 = {x∗} and Fg
n0
n

= {xn},
n ∈ N. From Lemma 1.3.3 in [56] it follows that

Fg = Fgn0 = {x∗}, Fgn = Fg
n0
n

= {xn}, n ∈ N.

From (1) we have that gn0
n

p→ gn0 as n →∞.
Now the proof follows from Theorem 3.4.
Theorem 3.6. (Rus [56]). Let (X, d) (where d(x, y) ∈ Rm

+ ) be a complete
generalized metric space and g, gn : X → X. We suppose that:

(1) gn
u→ g as n →∞;

(2) g is an S-contraction;
(3) xn ∈ Fgn , n ∈ N.

Then, xn → x∗ as n →∞.
Proof. We have that

d(xn, x∗) = d(gn(xn), g(x∗))

≤ d(gn(xn), g(xn)) + d(g(xn), g(x∗))

≤ d(gn(xn), g(xn)) + Sd(xn, x∗).

Hence,

d(xn, x∗) ≤ (I − S)−1d(gn(xn), g(xn)) → 0 as n →∞.

Remark 3.2. For m = 1 Theorem 3.2 follows from Theorem 3.6.
For other results with respect to Problem 1 see L. S. Dube and S. P. Singh

[23], R. B. Fraser and S. B. Nadler [27], S. B. Nadler [42], I. A. Rus [56]-[59],
[62], W. Russell and S. P. Singh [68], S. Reich [53],...

4. Problem 2

Another aspect of our question is given by
Problem 2. Let (X,→) and (M(X),V) be L-spaces. We suppose that
(i) gn V g as n →∞;
(ii) g, gn, n ∈ N, are WPOs.
• In which conditions we have
(iii) gn

fp→ g as n →∞?
• In which conditions we have

g∞n (X) ?→ g∞(X) as n →∞?
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Example 4.1. In the case of Example 2.3 we have (see I. A. Rus [64])

g∞n (x)(t) = B∞
n (x)(t) = x(0) + (x(1)− x(0))t, B∞(x)(t) = x(t).

So, B∞
n

p9 B∞ as n →∞.
Example 4.2. In the case of Theorem 3.1 we have that, g∞n (x) = xn, and

g∞(x) = x∗, ∀ x ∈ X.
So, g∞n

p→ g∞ as n →∞, i.e.,

gn
fp→ g as n →∞.

We have
Theorem 4.1. Let (X, d) be a metric space and g, gn : X → X. We

suppose that:
(i) gn

u→ g as n →∞;
(ii) g, gn, n ∈ N, are WPOs;
(iii) there exists c > 0 such that

d(x, g∞(x)) ≤ cd(x, g(x)) and d(x, g∞n (x)) ≤ cd(x, gn(x)), ∀ x ∈ X, ∀ n ∈ N.

Then, H(Fgn , Fg) → 0 as n → ∞, where H is Pompeiu-Hausdorff functional
(see L. Górniewicz [30], A. Petruşel [50]).

Proof. Condition (i) implies that there exist ηn > 0, n ∈ N, such that

d(g(x), gn(t)) ≤ ηn → 0 as n →∞, ∀ x ∈ X.

In the conditions (ii)+(iii), from a theorem in Rus-Mureşan [65] we have
that

H(Fg, Fgn) ≤ cηn, ∀ n ∈ N.

So, H(Fg, Fgn) → 0 as n →∞, i.e.,

H(g∞(X), g∞n (X)) → 0 as n →∞.

Theorem 4.2. Let (X, d) be a complete metric space and g, gn : X → X

be closed operators. We suppose that:
(i) gn

u→ g as n →∞;
(ii) there exists α ∈]0, 1[ such that

d(g2(x), g(x)) ≤ αd(x, g(x)), ∀ x ∈ X,

d(g2
n(x), gn(x)) ≤ αd(x, gn(x)), ∀ x ∈ X, ∀ n ∈ N.
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Then, H(Fgn , Fg) → 0 as n →∞.
Proof. Condition (ii) implies that the operators g and gn, n ∈ N, are

WPOs. From condition (ii) we also have condition (iii) in Theorem 4.1. So,
Theorem 4.2 follows from Theorem 4.1.

Example 4.3. Let X be a Banach space and f, fn ∈ C([a, b] × X, X),
n ∈ N. Moreover we suppose that f(t, ·), fn(t, ·) : X → X are L-Lipschitz, for
all t ∈ [a, b]. We consider the following differential equations

(I) x′ = f(t, x), t ∈ [a, b], x ∈ C1([a, b], X),
(In) x′ = fn(t, x), t ∈ [a, b], x ∈ C1([a, b], X)

and equivalent fixed point equations

(E) x(t) = x(a) +
∫ t

a
f(s, x(s))ds, t ∈ [a, b], x ∈ C([a, b], X)

(En) x(t) = x(a) +
∫ t

a
fn(s, x(s))ds, t ∈ [a, b], x ∈ C([a, b], X).

Now we consider the operators

A,An : C([a, b], X) → C([a, b], X)

defined by
A(x)(t) := the second part of (E) and

An(x)(t) := the second part of (En).

Let C([a, b], X) be endowed with a suitable Bielecki norm,

‖x‖B := sup
t∈[a,b]

(‖x(t)‖e−τ(t−a)), τ > 0.

Let λ ∈ X and Xλ := {x ∈ C([a, b], X)| x(a) = λ}. Then C([a, b], X) =⋃
λ∈X

Xλ is a partition of C([a, b], X).

Moreover,

A(Xλ) ⊂ Xλ, An(Xλ) ⊂ Xλ, λ ∈ X, n ∈ N,

and
A and An are

L

τ
− Lipschitz.

So, for τ > L, A|Xλ
, An|Xλ

are
L

τ
-contractions. Hence, if fn

u→ f we are in
the conditions of the Theorem 4.2. From this theorem we have that

H(FA, FAn) → 0 as n →∞.
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If we denote by S and Sn (where S, Sn ⊂ C([a, b], X)) the solution sets of
the equations (I), (In), then in the above conditions on f, fn,

H(S, Sn) → 0 as n →∞.

5. Problem 3

The following problem appears in iterative approximation of fixed points (V.
Berinde [7], [8], C. E. Chidume and H. Zegeye [13], B. E. Rhoades [54], S. P.
Singh and B. Watson [69],...), fiber WPOs (M. W. Hirsch and C. C. Pugh [32],
I. A. Rus [60], [61], Sz. András [1], C. Bacoţiu [5], M. Şerban [70], [71], G.
Dezso, V.Mureşan, A. Tămăşan (see I. A. Rus, A. Petruşel and G. Petruşel
[66],...) and in dynamical systems (D. Chiorean, B. Rus, I. A. Rus and D. Trif
[14], D. Constantinescu and M. Predoi [17], R. Kempf [36], K. Nakajo and W.
Takahashi [44], R. D. Nussbaum [45], A. Petruşel [48],...).

Problem 3. Let (X,→) and (M(X),V) be two L-spaces. Let M(X) ⊂
M(X) and g, gn ∈ M(X). We suppose that

(i) gn V g as n →∞;
(ii) g is WPO;
(iii) f, g ∈ M(X) ⇒ f ◦ g ∈ M(X).

In which conditions we have that

gn ◦ gn−1 ◦ · · · ◦ g0 V g∞ as n →∞?

In what follow we present some partial results for this problem.
Theorem 5.1. (Y.-Z. Chen [12]). Let (X, d) be a complete metric space

and gn : X → X, n ∈ N, a sequence which converges pointwise to g. Suppose
that for 0 < a < b < +∞, there exists L(a, b) ∈]0, 1[ such that

d(gn(x), gn(y)) ≤ L(a, b)d(x, y)

for all x, y ∈ X, a ≤ d(x, y) ≤ b and n ∈ N. If for each x ∈ X, there exists
y ∈ X and R(x) > 0 such that d((gn ◦ gn−1 ◦ · · · ◦ g0)(x), y) ≤ R(x), for n ∈ N,
then (gn ◦ gn−1 ◦ · · · ◦ g0)(x) → g∞(x) as n →∞, ∀ x ∈ X.

Theorem 5.2. Let (X, d) (where d(x, y) ∈ Rm
+ ) be a generalized complete

metric space and g, gn : X → X be S-contractions. If gn
p→ g as n →∞, then

gn ◦ gn−1 ◦ · · · ◦ g0
p→ g∞.
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Proof. If we denote by x∗ the unique fixed point of g we have that g∞(x) =
x∗, ∀ x ∈ X and

d((gn ◦ · · · ◦ g0)(x), x∗) ≤ d((gn ◦ · · · ◦ g0)(x), gn(x∗)) + d(gn(x∗), x∗) ≤

≤ Sd((gn−1 ◦ · · · ◦ g0)(x), x∗) + d(gn(x∗), x∗) ≤

≤ S2d((gn−2 ◦ · · · ◦ g0)(x), x∗) + Sd(gn−1(x∗), x∗) + d(gn(x∗), x∗) ≤ · · · ≤

≤ Snd(g0(x), x∗) + Sn−1d(g1(x∗), x∗) + · · ·+ Sd(gn−1(x∗), x∗) + d(gn(x∗), x∗).

Now the proof follows from the following
Lemma 5.1. (I. A. Rus [61]). Let An ∈ Mmm(R+) and Bn ∈ Rm

+ , n ∈ N.
We suppose that

(i) Bn → 0 as n →∞;
(ii)

∑
n∈N

An converges.

Then
n∑

i=0

An−iBi → 0 as n →∞.

Remark 5.1. For the case of ϕ-contractions see M. Şerban [70].
Remark 5.2. For the case m = 1 see I. A. Rus [60].
Remark 5.3. The following result is in connection with Theorem 5.2.
Lemma 5.2. Let (X, d) (where d(x, y) ∈ Rm

+ ) be a generalized complete
metric space and gn : X → X be an Sn-contraction, n ∈ N, such that, Sn → 0
as n →∞ (Fgn = {x∗n}). Let x∗ ∈ X. The following statements are equivalent:

(i) there exists x̃ ∈ X such that gn(x̃) → x∗, as n →∞.
(ii) gn(x) → x∗ as n →∞, ∀ x ∈ X;
(iii) x∗n → x∗ as n →∞.
Proof. (i) ⇒ (ii).

d(gn(x), x∗) ≤ d(gn(x), gn(x̃)) + d(gn(x̃), x∗) ≤

≤ Snd(x, x̃) + d(gn(x̃), x∗) → 0 as n →∞.

(ii) ⇒ (iii).

d(x∗n, x∗) = d(gn(x∗n), x∗) ≤ d(gn(x∗n), gn(x)) + d(gn(x), x∗) ≤

≤ Snd(x∗n, x) + d(gn(x), x∗).
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Hence, we have

d(x∗n, x∗) ≤ (I − Sn)−1d(gn(x), x∗) → 0 as n →∞.

(iii) ⇒ (i).
We take x̃ := x∗.
Remark 5.4. For other results for Problem 3 see Y.-Z. Chen [12], R.

Kannan and Z. Vorel [35], R. Kempf [36].

6. Problem 4

Another aspect of our basic problem is given by
Problem 4. Let (X,→) and (M(X),V) be two L-spaces. Let g, gn ∈

M(X). We suppose that
(i) gn V g as n →∞;
(ii) Fgn 6= ∅, ∀ n ∈ N.

In which conditions we have that Fg 6= ∅?
Problem 4a. Let X be a Banach space, Y ⊂ X a compact subset of X

and g, gn ∈ (M(Y ),V).
We suppose that
(i) gn V g;
(ii) Fgn 6= ∅;
(iii) g ∈ C(Y, Y ).

In which conditions we have that Fg 6= ∅?
Problem 4b. Let (X, d) be a complete K-metric space (see P. P. Zabrejko

[75]) and g, gn ∈ (M(X),V).
We suppose that
(i) gn V g as n →∞;
(ii) there exist xn ∈ X, n ∈ N, such that

d(gn(xn), xn) → 0 as n →∞;

(iii) g ∈ C(X, X).
In which conditions we have that Fg 6= ∅?

Problem 4c. Let (X,→), (M(X),V) be two L-spaces, and g, gn ∈ M(X).
We suppose that

(i) gn V g as n →∞;
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(ii) xn ∈ Fgn , n ∈ N.
In which conditions we have that

xn → x∗ as n →∞ ⇒ x∗ ∈ Fg?

In which conditions we have that

g(xn) → x∗ as n →∞ ⇒ x∗ ∈ Fg?

Problem 4d. Use the results of the above problems for the study of the
following problem:

Let (X, τ) be a topological space, Y ⊂ X a compact subset. In which
conditions we have that

g ∈ C(Y, Y ) ⇒ Fg 6= ∅?

First of all, we present some simple and useful remarks:
Lemma 6.1. (G. Vidossich [73]). Let (X, U) be a uniform space, Y ⊂ X a

subset of X, g ∈ C(Y, X) and gn ∈ M(Y, X). We suppose that
(i) gn

u→ g as n →∞;
(ii) xn ∈ Fgn , n ∈ N.

Then, every cluster point of (xn)n∈N is a fixed point of g.
Lemma 6.2. (W. G. Dotson [21]). Let X be a Banach space, Y ⊂ X a

starshaped subset of X and g : Y → Y a nonexpansive operator. Then there
exists a sequence (gn)n∈N, gn : Y → Y , such that:

(i) gn
u→ g

(ii) gn is
(

1− 1
n

)
-contraction, n ∈ N.

Lemma 6.3. Let (X, d) be a K-metric space, Y ⊂ X a compact subset of
X and g ∈ C(Y, Y ). Then the following statements are equivalent:

(i) Fg 6= ∅;
(ii) there exist gn ∈ C(Y, Y ), n ∈ N, such that Fgn 6= ∅ and gn

u→ g as
n →∞;

(iii) there exist gn : Y → Y , n ∈ N such that Fgn 6= ∅ and gn
c→ g as

n →∞;
(iv) there exist gn : Y → Y and xn ∈ Y such that gn

u→ g as n → ∞ and
d(gn(xn), xn) → 0 as n →∞.

Proof. (i) ⇒ (ii). We take gn := g.
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(ii) ⇒ (i). Let xn ∈ Fgn . Then there exist a convergent subsequence of
(xn)n∈N,

xni → x∗ as n →∞.

We have

d(x∗, g(x∗)) ≤ d(x∗, xni) + d(gni(xni), g(x∗)) → 0 as i →∞.

So, x∗ ∈ Fg.
(i) ⇒ (iii) and (i) ⇒ (iv). We take gn := g.
(iii) ⇒ (i). Follows from the notion of convergence with continuity.
(iv) ⇒ (i). Y being a compact subset of X it implies that there exists

xni → x∗ as n →∞.
We have

d(x∗, g(x∗)) ≤ d(x∗, xni) + d(xni , gni(xni))+

+d(gni(xni), g(xni)) + d(g(xni), g(x∗)) → 0 as i →∞.

Remark 6.1. In the case K = R+, (iv) ⇒ (i) is Lemma 1 in M. Furi and
M. Martelli [28].

Remark 6.2. From Lemma 6.2 we have
Theorem 6.1. (W. G. Dotson [21]). Let X be a Banach space and Y ⊂ X

a compact starshaped subset of X. Then any nonexpansive operator g : Y → Y

has a fixed point.
Remark 6.2. For some generalization of the above theorem see W. G.

Dotson [22], A. Petruşel (1987), A. Ganguly and H. K. Jadnov (1991), L. F.
Guseman and B. C. Peters (1975) (see I. A. Rus, A. Petruşel and G. Petruşel
[66]).

7. Sequences of operators and common fixed points

Problem 5. Let (X,→), (M(X),V) be two L-spaces and f, g, fn, gn : X →
X, n ∈ N, be such that

(i) fn V f, gn V g as n →∞;
(ii) Ff = Fg = {x∗};
(iii) xn ∈ Ffn , yn ∈ Fgn , n ∈ N.

In which conditions we have that

xn → x∗, yn → x∗ as n →∞?
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Let (X, d) (where d(x, y) ∈ Rm
+ ) be a complete generalized metric space.

We take on X, →:= d→ and on M(X), V:= u→. In this case we have
Theorem 7.1. (I. A. Rus [56]). Let f, g, fn, gn : X → X be as in Problem

5. If there exists S ∈ Mmm(R+) such that
(1) [(I − S)−1S]n → 0 as n →∞,

and
(2) d(f(x), g(y)) ≤ S[d(x, f(x)) + d(y, g(y))], ∀ x, y ∈ X

then

xn → x∗, yn → x∗ as n →∞.

Proof. From (1)+(2) we have that Ff = Fg = {x∗}. On the other hand,

d(xn, x∗) = d(fn(xn), g(x∗)) ≤

≤ d(fn(xn), f(xn)) + d(f(xn), g(x∗)) ≤

≤ d(fn(xn), f(xn)) + S[d(xn, f(xn)) + d(x∗, g(x∗))] ≤

≤ (I + S)d(fn(xn), f(xn)).

Hence

xn → x∗ as n →∞.

In a similar way we prove that

yn → x∗ as n →∞.

Remark 7.1. For other properties of the pair (f, g) which satisfies (1)+(2)
see I. A. Rus [56], [58].

8. Multivalued operators

Let X be a set. We denote by M0(X) the set of all multivalued mappings
T : X ( X.

Problem 6. Let (X,→) and (M0(X),V) (where M0(X) ⊂ M0(X)) be
L-spaces. Let T, Tn ∈ M(X). We suppose that

(i) Tn V T as n →∞;
(ii) xn ∈ FTn , n ∈ N.

In which conditions we have that (xn)n∈N converges and the limit x∗ ∈ FT ?
As a partial result for Problem 6 we present the following:
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Theorem 8.1. (S. B. Nadler [43]) Let (X, d) be a complete metric space
and T, Tn : X → Pcp(X). We suppose that

(i) T, Tn, n ∈ N are α-contractions;
(ii) Tn

p→ T as n →∞.
Then, if xn ∈ FTn, n ∈ N, there is a subsequence (xni)i∈N of (xn)n∈N such
that (xni)i∈N converges to a fixed point of T .

Theorem 8.2. (T.-C. Lim [40]) Let (X, d) be a complete metric space and
T, Tn : X → Pb,cl(X), n ∈ N be α-contractions. If

H(T (x), Tn(x)) → 0 as n →∞, uniformly for all x ∈ X,

then

H(FT , FTn) → 0 as n →∞.

In what follow we need the following notions.
Let (X,→) be an L-space and T : X → P (X) be a multivalued operator.

By definition, T is a multivalued Picard (briefly MWP) operator iff for each
x ∈ X and each y ∈ T (x), there exists a sequence (xn)n∈N such that x0 = x,
x1 = y, xn+1 ∈ T (xn) for all n ∈ N, and (xn)n∈N is convergent and its limit is
a fixed point of T .

For a MWP operator T we define the operator T∞ : G(T ) → P (FT ), by
T∞(x, y) := {z ∈ FT | there exists a sequence of successive approximations

of T starting from (x, y) that converges to z}.
Let (X, d) be a metric space and T : X → P (X) an MWP operator. By

definition T is a c-multivalued weakly Picard operator (c > 0) iff there exists
a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ cd(x, y), ∀ (x, y) ∈ G(T ).

We have
Theorem 8.3. Let (X, d) be a metric space and T, Tn : X → Pcl(X),

n ∈ N. We suppose that
(i) there exists ηn > 0, ηn → 0 as n →∞ such that

H(T (x), Tn(x)) ≤ ηn, ∀ n ∈ N, ∀ x ∈ X;
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(ii) T, Tn, n ∈ N are c-MWP operators.
Then

H(FT , FTn) → 0 as n →∞.

Proof. From Theorem 2.1 in [67] we have that

H(FT , FTn) ≤ cηn, n ∈ N.

So,

H(FT , FTn) → 0 as n →∞.

Remark 8.1. For the Problem 6 in uniform spaces see V. G. Angelov and
I. A. Rus [3].

Remark 8.2. For other results see R. Espinola and A. Petruşel [24], T.-C.
Lim [40], S. B. Nadler [42], [43], I. A. Rus, A. Petruşel and A. Ŝıntămărian
[67], T. Wang [74].
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