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Abstract. One studies the existence of positive continuous solutions of Fredholm integral

equation

y(t) = h(t) +

Z T

0

k(t, s)f(y(s)) ds, t ∈ [0, T ], T > 0 fixed,

using limit type conditions for f in 0 and +∞. The results obtained are applied to the

study of the bilocal problem (
−y′′ = f(y) on [0, 1]

y(0) = α, y(1) = β
.
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1. Introduction

The purpose of this note is to find nice conditions which ensure the existence
of continuous positive solutions to the Fredholm nonlinear integral equation:

y(t) = h(t) +
∫ T

0
k(t, s)f(y(s)) ds, t ∈ [0, T ], T > 0 fixed. (1)

A very common approach is to make use of some fixed point principle, such
as Schauder’s fixed point theorem or Krasnoselskii’s compression-expansion
fixed point theorem in cones.
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Theorem 1 (Schauder, [11]). Let X be a Banach space and C ⊂ X a non-
empty, closed, bounded, convex set. If K : C → C is a completely continuous
operator, then K has a fixed point in C.

Theorem 2 (Krasnoselskii, [5]). Let (X, |·|) be a Banach space and C ⊂ X a
cone. Consider Ω1, Ω2 open sets in X such that 0 ∈ Ω1 ⊂ Ω2, and

K : C ∩
(
Ω2 \ Ω1

)
→ C

a completely continuous operator such that either

(i) |Ky| ≤ |y|, ∀ y ∈ C ∩ ∂Ω1 and |Ky| ≥ |y|, ∀ y ∈ C ∩ ∂Ω2

or

(ii) |Ky| ≥ |y|, ∀ y ∈ C ∩ ∂Ω1 and |Ky| ≤ |y|, ∀ y ∈ C ∩ ∂Ω2

takes place. Then K has a fixed point in C ∩
(
Ω2 \ Ω1

)
.

Define X = C[0, T ] endowed with the sup-norm |·|∞ and C0 the positive
cone in X, i.e. C0 = {y ∈ X : y ≥ 0 on [0, T ]}. Also take

Ky(t) = h(t) +
∫ T

0
k(t, s)f(y(s)) ds, t ∈ [0, T ].

First of all, it is needed that K : C0 → C0, y → Ky is well defined
and completely continuous (the first step in applying any of the fixed point
theorems previously stated).

This takes place if the following conditions are satisfied:

(f1): f : [0,+∞) → [0,+∞) is continuous
(h1): h : [0, T ] → [0,+∞) is continuous
(k1): k ∈ C

(
[0, T ];L1[0, T ]

)
if considered as t

k→ k(t) = k(t, ·), and k(t)
is positive a.e. on [0, T ].

Instead of (k1) a less general condition can be considered:

(k1’): k : [0, T ]× [0, T ] → [0,+∞) is continuous.

Notation 3. For a function f : D ⊂ R → R we will denote sup f(E) :=
sup
t∈A

f(t) and inf f(E) := inf
t∈E

f(t), for any E ⊂ D. When E is a compact

interval [a, b], we will write sup f [a, b] instead of sup f([a, b]) and inf f [a, b]
instead of inf f([a, b]).
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To apply Schauder’s theorem, one only needs a closed ball (therefore a
radius u) such that the intersection with the cone C0 is invariant through K.
Taking a radius u > 0, then for every y ∈ C0, |y|∞ ≤ u, we obtain that

Ky(t) = h(t) +
∫ T

0
k(t, s)f(y(s)) ds ≤ |h|∞ +

(∫ T

0
k(t, s) ds

)
· sup f [0, u]

for every t ∈ [0, T ], hence

|Ky|∞ ≤ |h|∞ + K1 · sup f [0, u] (2)

where K1 = sup
t∈[0,T ]

∫ T
0 k(t, s) ds.

Therefore, the invariance in Schauder’s theorem is achieved if we ask that:

(u): ∃u > 0 : |h|∞ + K1 · sup f [0, u] ≤ u

The result obtained is the following existence theorem:

Theorem 4. If (f1), (h1), (k1), (u) are satisfied, then the problem (1) has
at least one solution y in C0.

Remark 5. If y is a solution of (1) in C0, then

y(t)= Ky(t) = h(t)+
∫ T

0
k(t, s)f(y(s)) d s ≥ h(t)+

(∫ T

0
k(t, s) d s

)
·inf f [0, u],

therefore
|h|∞ + K1 · inf f [0, u] ≤ |y|∞ .

Hence
|h|∞ + K1 · inf f [0, u] ≤ |y|∞ ≤ |h|∞ + K1 · sup f [0, u] . (3)

Remark 6. If

{
h = 0 on [0, T ]

f(0) = 0
, then 0 is a solution for (1) in C0. In this

situation, there is no use in applying Schauder’s theorem.

For the existence of non-trivial solutions, Krasnoselskii’s theorem is a useful
tool, because the fixed point can not be 0 in this case.

Unfortunately, in the extreme situation as above, the cone C0 is too “large”
to achieve the expansion condition. Simply, there exists no radius v > 0 such
that |Ky|∞ ≥ |y|∞, ∀ y ∈ C0, |y|∞ = v. Therefore, the cone has to be made
“small” enough. In [4] and [9], two examples of such “small” cones can be
seen, together with existence results regarding our problem. In this paper, we
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will use the results from [4] since here the cone is more general than the one in
[9]. We will also use the methods from [9] in order to obtain limit type results
for the problem (1).

In [4], the chosen cone is C := {y ∈ C0 : min y[a, b] ≥ M |y|∞}, where

(M): 0 < M < 1 and 0 ≤ a < b ≤ T

are ‘a priori’ chosen. The invariance condition of the cone C through K leads
to the following conditions:

(h2): h(t) ≥ M |h|∞, ∀ t ∈ [a, b];
(k2): κ(s) := sup

t∈[0,T ]
k(t, s) < +∞, for a.e. s ∈ [0, T ] and κ ∈ L1[0, T ].

(k3): k(t, s) ≥ Mκ(s), ∀ t ∈ [a, b], a.e. s ∈ [0, T ].

Notice that (k2), like (k1), is implied by (k1’).
The compression condition in Krasnoselskii’s theorem, written for our prob-

lem, is the same with the invariance condition in Schauder’s theorem, i.e. the
condition (u).

The expansion condition is satisfied by

(v): ∃ t∗ ∈ [0, T ], ∃ v > 0 : v ≤ h(t∗) +
(∫ b

a
k(t∗, s) ds

)
· inf f [Mv, v]

or by a simpler one:

(v’): ∃ v > 0 : v ≤ K2 · inf f [Mv, v], where K2 = sup
t∈[0,T ]

∫ b

a
k(t, s) ds.

The following theorem is a slight extension of the Theorem 2.1 from [9]:

Theorem 7. If (f1-2), (h1-2), (k1-3), (M), (u) ,(v) take place and u and
v found are distinct, then the problem has at least one solution y such that
either

(A) 0 < u < |y|∞ < v and y(t) ≥ Mu, ∀t ∈ [a, b] (if u < v)

or

(B) 0 < v < |y|∞ < u and y(t) ≥ Mv, ∀t ∈ [a, b] (if v < u).

The aim of this note is to give sufficient conditions to ensure (u) and (v).
Our results complement those from [1] and [9].

2. Limit type existence results

We will begin with a very simple lemma.
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Lemma 8. If f satisfies (f1) and is not bounded, then there exists u > 0 as
large as needed such that sup f [0, u] = f(u).

Proof. Assume that there exists u0 > 0 such that

sup f [0, u] > f(u), ∀u ≥ u0.

Fix u ≥ u0. Using the continuity of f , we can find u ∈ [u0, u] such that
f (u) = sup f [u0, u]. Moreover,

sup f [0, u] ≥ sup f [0, u] > f(u) = sup f [u0, u] .

Hence,
∀u ≥ u0 : sup f [0, u] > sup f [u0, u] . (4)

But sup f [0, u] = max {sup f [u0, u] , sup f [0, u0]} and using (4), we obtain
that

∀u ≥ u0 : sup f [0, u0] > sup f [u0, u] ≥ f (u) .

Concluding,

f (u) < M := sup f [0, u0] < +∞, ∀u ≥ u0

f (u) ≤ M := sup f [0, u0] < +∞, ∀u ≤ u0

which represents a contradiction with the unboundedness of f .
Therefore,

∀u0 > 0,∃u ≥ u0 : sup f [0, u] = f(u).

The lemma is proved. �

Assuming their existence, we make the following notations:

Notation 9. L∞ = lim
u→∞

f(u)
u , L0 = lim

v↓0
f(v)

v .

The following partial results take place:

Proposition 10. If L∞ < 1
K1

and (f1) is satisfied, then there exists u > 0
as large as needed such that (u) is satisfied.

Proof. If f is bounded by some constant M > 0 (which means that L∞ = 0),
then (u) is satisfied for every u > |h|∞ + K1M .

If f is unbounded, then lim
u→∞

f(u)
u < 1

K1
implies that lim

u→∞
|h|∞+K1f(u)

u < 1,

which means that there exists some u0 > 0 for which |h|∞+K1f(u)
u ≤ 1, ∀u ≥ u0.
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Using the above lemma, there exists u large enough (i.e. u ≥ u0) such
that f(u) = sup f [0, u]. Therefore, there exists u > 0 large enough such that
|h|∞+K1 sup f [0,u]

u ≤ 1, which concludes our proof. �

Proposition 11. If L0 > 1
MK2

, (f1) and (M) take place, then there exists
v0 > 0 such that (v’) is satisfied for every v ∈ (0, v0].

Proof. lim
v→0
v>0

f(v)
v > 1

MK2
implies the existence of some v0 > 0 such that f(v) ≥

v
MK2

for every v ∈ (0, v0].
Fix v ∈ (0, v0] and take any v′ ∈ [Mv, v]. We will have that Mv ≤ v′ ≤

v ≤ v0, which implies v
K2

= Mv
MK2

≤ v′

MK2
; since v′

MK2
≤ f(v′), we obtain that

v ≤ K2f(v′). Since v′ is arbitrary chosen in [Mv, v], we can conclude that
v ≤ K2 · inf f [Mv, v]. �

Using the same arguments as in the proofs of Propositions 10 and 11, we
can easily prove also the following two results.

Proposition 12. If L0 < 1
K1

, h = 0 on [0, T ] and (f1) is satisfied, then there
exists u0 > 0 such that (u) is satisfied for every u ∈ (0, u0].

Proposition 13. If L∞ > 1
MK2

, (f1) and (M) take place, then there exists
v0 > 0 such that (v’) is satisfied for every v ∈ [v0,+∞)

Using the results form Propositions 10 and 11, we can choose u > v such
that the conditions (u) and (v’) are satisfied. Also, using the results form
Propositions 12 and 13, we can choose u < v such that the conditions (u)
and (v’) are satisfied. Applying Theorem 7, we obtain the following existence
results for our problem.

Theorem 14. If

{
L∞ < 1

K1
, L0 > 1

MK2

(f1), (h1-2), (k1-3), (M)
take place, then there exists

a non-trivial solution y such that 0 < v < |y|∞ < u and y(t) ≥ Mv, ∀ t ∈ [a, b],
where u comes from the condition (u) large enough and v comes from (v’)

small enough.

Theorem 15. If

{
L0 < 1

K1
, L∞ > 1

MK2

(f1), (k1-3), (M), h ≡ 0
take place, then there exists a

non-trivial solution y such that 0 < u < |y|∞ < v and y(t) ≥ Mu, ∀ t ∈ [a, b],
where u comes from the condition (u) small enough and v comes from (v’)

large enough.
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3. Applications

We study the existence of positive non-trivial solutions for the two point
boundary value problem{

−y′′ = f(y) on [0, 1]
y(0) = α, y(1) = β

, y ∈ C2[0, 1]. (5)

using the two final results from the previous section.
This problem can be written as a Fredholm integral equation:

y(t) = h(t) +
∫ 1

0
G(t, s)f(y(s)) ds, y ∈ C[0, 1] (6)

where

h(t) = (1− t)α + tβ

and

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1
t(1− s), 0 ≤ t ≤ s ≤ 1

is the Green function associated to this problem.
We proceed by checking the conditions of Theorem 14 and Theorem 15.
Since G : [0, 1]× [0, 1] −→ [0,+∞) is continuous, conditions (f1), (h1) and

(h1) hold if: {
f : [0,+∞) −→ [0,+∞) is continuous
α ≥ 0, β ≥ 0

(7)

Moreover, |h|∞ = max {α, β} and

K1 = sup
t∈[0,1]

∫ 1

0
G(t, s) ds = sup

t∈[0,1]

t(1− t)
2

=
1
8
. (8)

The conditions (h2), (k2-3), (M) and L0 > 1
MK2

(respectively, L∞ > 1
MK2

)
remain to be fulfilled.

The condition (h2) becomes

(1− a)α + aβ ≥ Mβ, if α ≤ β (9)

(1− b)α + bβ ≥ Mα, if α > β

The conditions (k2-3) give

G(t, s) ≥ Ms(1− s), ∀ t, s ∈ [0, 1] (10)
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since sup
t∈[0,1]

G(t, s) = s(1− s) (attained for t = s). It can be shown easily that

together (k2-3) and (M) are equivalent to

0 < M ≤ a < b ≤ 1−M (11)

which also gives

0 < M <
1
2

(12)

Also, it is not difficult to prove that (11) and (12) assure that (9) (hence (h2))
is satisfied.

In order to have in L0 > 1
MK2

(respectively, in L∞ > 1
MK2

) a less restrictive
condition, we will choose a, b and M such that MK2 becomes maximum.
Therefore, [a, b] is the largest possible (a = M , b = 1 −M). We obtain from
simple computation that:

M sup
t∈[0,1]

∫ 1−M

M
G(t, s) ds =

M

8
− M3

2
for t∗ =

1
2

sup
M∈(0, 1

2)

M

8
− M3

2
=
√

3
72

for M =
√

3
6

and
1

MK2
= 24

√
3

Concluding, by applying Theorem 14, the following result takes place:

Theorem 16. Assume that:

(i) f : [0,+∞) → [0,+∞) is continuous
(ii) α, β ≥ 0
(iii) lim

u→0

f(u)
u > 24

√
3 and lim

u→∞
f(u)

u < 8

Then there exists u > 0 as large as wanted such that

max {α, β}+ 1
8 sup f [0, u] ≤ u,

v ∈ (0, u) small enough such that

v ≤ 1
12 inf f

[√
3

6 v, v
]

and a solution y of the problem (5) such that:

0 < v < |y|∞ < u and y(t) ≥
√

3
6 v, ∀ t ∈

[√
3

6 , 1−
√

3
6

]
.

Also, by applying Theorem 15, the following result takes place:

Theorem 17. Assume that:
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(i) f : [0,+∞) → [0,+∞) is continuous
(ii) α = β = 0
(iii) lim

u→0

f(u)
u < 8 and lim

u→∞
f(u)

u > 24
√

3

Then there exists u > 0 small enough such that

1
8 sup f [0, u] ≤ u,

v > u large enough such that

v ≤ 1
12 inf f

[√
3

6 v, v
]

and a solution y of the problem (5) such that

0 < u < |y|∞ < v and y(t) ≥
√

3
6 u, ∀ t ∈

[√
3

6 , 1−
√

3
6

]
.
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