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Abstract. One studies the existence of positive continuous solutions of Fredholm integral

equation
T
y(t) = h(t) +/ k(t, ) f(y(s) ds, te€[0,T], T >0 fixed,
0

using limit type conditions for f in 0 and +oo. The results obtained are applied to the
study of the bilocal problem

—y" = f(y) on [0,1]
y(0) =a, y(1) =3
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1. INTRODUCTION

The purpose of this note is to find nice conditions which ensure the existence

of continuous positive solutions to the Fredholm nonlinear integral equation:

T
y(t) = h(t) —l—/o k(t,s)f(y(s))ds, tel0,T], T >0 fixed. (1)

A very common approach is to make use of some fixed point principle, such
as Schauder’s fixed point theorem or Krasnoselskii’s compression-expansion

fixed point theorem in cones.

This paper was presented at International Conference on Nonlinear Operators, Differential
Equations and Applications held in Cluj-Napoca (Romania) from August 24 to August 27,
2004.
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Theorem 1 (Schauder, [11]). Let X be a Banach space and C C X a non-
empty, closed, bounded, convex set. If K : C' — C' 1is a completely continuous
operator, then K has a fixed point in C.

Theorem 2 (Krasnoselskii, [5]). Let (X, |-|) be a Banach space and C C X a
cone. Consider Qq, Qo open sets in X such that 0 € Q1 C Qo, and

K:Cﬂ(@\ﬂl)—)O

a completely continuous operator such that either
(i) Kyl <yl Vy € CNON and |[Ky| = |y|, Vy € CN Oy
or
(if) [Ky| = [yl, Vy € CNOY and |[Ky| < [y|, Vy € C'N O
takes place. Then K has a fized point in C'N ((272 \ Ql).

Define X = C0,7T] endowed with the sup-norm [-| . and Cj the positive
cone in X, i.e. Cop={y € X :y>0on [0,T]}. Also take

T
Ky(t) = h(t) + /O k(t,s)f(y(s)) ds, ¢ €[0,T].

First of all, it is needed that K : Cy — Cp, y — Ky is well defined
and completely continuous (the first step in applying any of the fixed point
theorems previously stated).

This takes place if the following conditions are satisfied:

(f1): f:[0,400) — [0,400) is continuous

(h1): h:[0,T] — [0,+00) is continuous

(k1): k € C ([0,T]; L0, T]) if considered as t LA k(t) = k(t,-), and k(t)

is positive a.e. on [0,T].
Instead of (k1) a less general condition can be considered:

(k1”): k:[0,T] x [0,7] — [0, +00) is continuous.
Notation 3. For a function f : D C R — R we will denote sup f(E) :=
sup f(t) and inf f(F) = 1tin]I;f(t), for any E C D. When E is a compact
teA €

interval |a,b], we will write sup fla,b] instead of sup f([a,b]) and inf f[a, b]
instead of inf f([a,b]).
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To apply Schauder’s theorem, one only needs a closed ball (therefore a
radius u) such that the intersection with the cone Cj is invariant through K.
Taking a radius u > 0, then for every y € Cy, |y|,, < u, we obtain that

T

T
KMﬂZMﬂ+Akﬁﬁﬁ@@ﬁhémm+<A

for every t € [0,T7], hence

k(t,s) ds> -sup f [0, u]

Kyl < |hlo + K1 - sup f[0, u] (2)
where K7 = sup fOTk(t, s) ds.

te[0,T]
Therefore, the invariance in Schauder’s theorem is achieved if we ask that:

(u): Ju>0:|h| + K1 -sup f[0,u] <wu

The result obtained is the following existence theorem:

Theorem 4. If (f1), (h1), (k1), (u) are satisfied, then the problem (1) has
at least one solution y in Cy.

Remark 5. Ify is a solution of (1) in Cy, then

T T
y(t)= Ky(t) = h(t)+/0 k(t,s)f(y(s))ds > h(t)—i—(/o k(t, s)ds) Ainf f[0, ul,

therefore
|1l o + K1 - inf f[0, u] < Jy| -
Hence
Bl + K1 - inf £10,0] < [yloy < [Bloy + K1 - sup £[0,1]. 3)
h = T
Remark 6. If{ f[()();m—[((); ] , then 0 is a solution for (1) in Cy. In this

situation, there is no use in applying Schauder’s theorem.

For the existence of non-trivial solutions, Krasnoselskii’s theorem is a useful
tool, because the fixed point can not be 0 in this case.

Unfortunately, in the extreme situation as above, the cone Cj is too “large”
to achieve the expansion condition. Simply, there exists no radius v > 0 such
that |Ky| > |yl., Yy € Co, Y|, = v. Therefore, the cone has to be made
“small” enough. In [4] and [9], two examples of such “small” cones can be
seen, together with existence results regarding our problem. In this paper, we
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will use the results from [4] since here the cone is more general than the one in
[9]. We will also use the methods from [9] in order to obtain limit type results
for the problem (1).
In [4], the chosen cone is C':= {y € Cy : miny[a,b] > M |y| }, where
M): 0<M<land0<a<b<T
are ‘a priori’ chosen. The invariance condition of the cone C' through K leads
to the following conditions:
(h2): h(t) > M |h|, Vi € [a,b];

(k2): s(s) := sup k(t,s) < +oo, for a.e. s € [0,T] and x € L[0,T].
te[0,7)
(k3): k(t,s) > Mk(s), YVt € [a,b], a.e. s€[0,T).

Notice that (k2), like (k1), is implied by (k1’).

The compression condition in Krasnoselskii’s theorem, written for our prob-
lem, is the same with the invariance condition in Schauder’s theorem, i.e. the
condition (u).

The expansion condition is satisfied by

b
(v): 3t* €[0,7], 3v>0:v < h(t")+ (/ k:(t*,s)ds) “inf f[Muv,v]
or by a simpler one:

b
(v?): 3v > 0:v < Ky -inf f[Mv,v], where Ko = sup / k(t, s) ds.
t€[0,T] Ja

The following theorem is a slight extension of the Theorem 2.1 from [9]:

Theorem 7. If (f1-2), (h1-2), (k1-3), (M), (u) ,(v) take place and u and
v found are distinct, then the problem has at least one solution y such that

either
(A) 0 <u <yl <vandy(t) > Mu, Vt € [a,b] (ifu<wv)
or

(B) 0 <v < |yl <u andy(t) > Mv, Vt € [a,b] (if v <u).

The aim of this note is to give sufficient conditions to ensure (u) and (v).
Our results complement those from [1] and [9].

2. LIMIT TYPE EXISTENCE RESULTS

We will begin with a very simple lemma.
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Lemma 8. If f satisfies (f1) and is not bounded, then there exists u > 0 as
large as needed such that sup f[0,u] = f(u).

Proof. Assume that there exists ug > 0 such that
sup f [0, u] > f(u), Yu > up.
Fix u > ug. Using the continuity of f, we can find @ € [ug,u] such that
f (@) = sup f [ug, u|. Moreover,
sup f [0,u] = sup f[0,7] > f(u) = sup f [uo, u]
Hence,
Vu > :sup f[0,u] > sup f [uo,u]. (4)

But sup f [0,u] = max {sup f [uo,u], sup f[0,up]} and using (4), we obtain
that
Vu> Uug : Supf [07u0} > Sllpf[U(),’LL] > f(U)
Concluding,
f(u) < M :=sup f[0,up] < +oo, Vu > up
f(u) <M :=sup f[0,up] < +oo, Vu < ug
which represents a contradiction with the unboundedness of f.
Therefore,
Yug > 0,3u > ug : sup f[0,u] = f(u).

The lemma, is proved. 4
Assuming their existence, we make the following notations:

Notation 9. Lo, = lim M, Lo = lim L&),
u v

U—00 v]0

The following partial results take place:

Proposition 10. If Lo, < I% and (f1) is satisfied, then there exists u > 0
as large as needed such that (u) is satisfied.

Proof. If f is bounded by some constant M > 0 (which means that Lo, = 0),

then (u) is satisfied for every u > |h|  + K1 M.

If f is unbounded, then lim @ < % implies that lim
U—00 1

uU—00

Al oo+ f (1)
u

<1,

which means that there exists some ug > 0 for which W <1,Vu > ug.
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Using the above lemma, there exists u large enough (i.e. u > wug) such
that f(u) = sup f [0, u]. Therefore, there exists u > 0 large enough such that
|h|°°+K1usqu [0.u] < 1, which concludes our proof. O

Proposition 11. If Ly > #&, (f1) and (M) take place, then there exists
vo > 0 such that (v’) is satisfied for every v € (0, vp].

Proof. 11)13% ! E}v) > M1K2 implies the existence of some vy > 0 such that f(v) >

v>0
i, for every v € (0, vl

Fix v € (0,v0] and take any v' € [Mwv,v]. We will have that Mv < v' <

. . . v _ Mo v v’ / :
v < v, which implies 2= = 372 < 377 since g7 < f(@"), we obtain that

v < Kof(v'). Since v’ is arbitrary chosen in [Mwv,v], we can conclude that
v < Ky -inf f[Mv,v]. O

Using the same arguments as in the proofs of Propositions 10 and 11, we
can easily prove also the following two results.

Proposition 12. If Ly < I%’ h =0 on [0,T] and (f1) is satisfied, then there
exists ug > 0 such that (u) is satisfied for every u € (0, up).

Proposition 13. If Lo, > ﬁ, (f1) and (M) take place, then there exists
vo > 0 such that (v’) is satisfied for every v € [vg, +00)

Using the results form Propositions 10 and 11, we can choose u > v such
that the conditions (u) and (v’) are satisfied. Also, using the results form
Propositions 12 and 13, we can choose v < v such that the conditions (u)
and (v’) are satisfied. Applying Theorem 7, we obtain the following existence
results for our problem.

1 1
LOO<717LO>M71(2

(1), (h1-2), (k1-3), (M)

a non-trivial solution y such that 0 < v < |y| < u and y(t) > Mv, Yt € [a,b],

Theorem 14. If{ take place, then there exists

where u comes from the condition (w) large enough and v comes from (v’)
small enough.

L0<%1, Ly > MlKg

non-trivial solution y such that 0 < u < |y|, <wv and y(t) > Mu, Vt € [a,b],

Theorem 15. If{ take place, then there exists a

where u comes from the condition (u) small enough and v comes from (v’)

large enough.
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3. APPLICATIONS

We study the existence of positive non-trivial solutions for the two point

boundary value problem

—y = 0,1
v =W onl0 U ¢ g,y )
y(0) = a, y(1) =B
using the two final results from the previous section.
This problem can be written as a Fredholm integral equation:

1
y(t) = h(t) + /0 G(t.5)f(y(s))ds, ye 0,1 (6)

where
h(t)=(1—t)a+tp
and
1—1t <s<t<l1
Gt,s) = Um0 0sssts
t(l—s), 0<t<s<l1
is the Green function associated to this problem.
We proceed by checking the conditions of Theorem 14 and Theorem 15.
Since G : [0, 1] x [0,1] — [0, 4+00) is continuous, conditions (f1), (h1l) and
(h1) hold if:

f:10,400) — [0, 4+00) is continuous 7
a>0,8>0
Moreover, |h|, = max {a, 3} and
! 1— 1
K; = sup / G(t,s)ds = sup =1 == (8)
te[0,1] Jo t€[0,1] 2 8

The conditions (h2), (k2-3), (M) and Lo > ﬁm (respectively, Loo > ﬁ&)
remain to be fulfilled.
The condition (h2) becomes

(I1—a)a+aB>Mp,ifa<p (9)
(1-ba+b8>Ma,ifa>p
The conditions (k2-3) give

G(t,s) > Ms(1 —s), Vt, s €[0,1] (10)
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since sup G(t,s) = s(1 —s) (attained for ¢t = s). It can be shown easily that
te[0,1]
together (k2-3) and (M) are equivalent to

0O<M<a<b1-M (11)
which also gives
1

Also, it is not difficult to prove that (11) and (12) assure that (9) (hence (h2))
is satisfied.

In order to have in Ly > ﬁ (respectively, in Lo, > ﬁ) a less restrictive
condition, we will choose a, b and M such that M K5 becomes maximum.
Therefore, [a,b] is the largest possible (a = M, b =1 — M). We obtain from
simple computation that:

1-M 3
M M 1
Msup/ G(t,s)ds:———fort*:§

tef01] Jm 8 2
M M 3 V3
sup — — — = — for M = — and = 24V/3
we(oy 8 2 T2 6 M

Concluding, by applying Theorem 14, the following result takes place:

Theorem 16. Assume that:
(i) f:1]0,400) — [0,+00) is continuous
(i) o, 8>0
(i) lim £ > 24v/3 and lim fG <8
Then there exists u > 0 as large as wanted such that
max {a, B} + Lsup £[0,u] < u,
v € (0,u) small enough such that
v < TIQinff [%v,v]
and a solution y of the problem (5) such that:
0<v<lyl, <uandy(t) > ?v, Vit e [%,1—%} .
Also, by applying Theorem 15, the following result takes place:

Theorem 17. Assume that:
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(i) f:[0,400) — [0,400) is continuous

(i) a=p=0
(ii}) lim 7 <8 and lim 72 > 243

Then there exists u > 0 small enough such that

gsup f[0,u] <u,

v > u large enough such that

v < %inff {%v,v]

and a solution y of the problem (5) such that

1]

2]
3]

[4]

[5]
[6]
[7]
8]
[9]

(10]

(1]

0<u<lyly, <vandy(t) > Lu, Vte[%,l—%}.
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