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Abstract. A fuzzy metric is a function of the form X×X 3 (p, q)→F Fpq ∈ ∆+, where ∆+

is the set of all distance distribution functions, and in many cases F generates a metrizable

uniformity. Starting from this fundamental property, we present several metric-like functions

determined by fuzzy metrics and we emphasize their role in getting and proving fixed point

theorems for different types of contractions. There are identified large classes of t-norms

and general formulae of (extended) metrics, which are seen to generalize the distances of M.

Fréchet, P. Lévy and Ky Fan.
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1. Preliminaries on triangular norms and fuzzy metrics

The concept of a triangular norm has been introduced in [71] by slightly
modifying the Menger’s axioms [36]. A mapping T : [0, 1]×[0, 1] → [0, 1] = I is
called a triangular norm (shortly a t-norm) if (tn1) T (a, 1) = a, (∀)a ∈ I,

(tn2) T is symmetric, (tn3) T is nondecreasing in each variable and (tn4)
T is associative. We will make use of three basic t-norms, namely the min-
imum operator TM , the algebraic product TP , and the Lukasiewicz t-norm
TL defined by: TM (x, y) = Min(x, y) = min{x, y}, TP (x, y) = Prod(x, y) =
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xy, TL(x, y) = W (x, y) = max(0, x + y − 1). These t-norms are ranked as:
TL ≤ TP ≤ TM ; in fact, TM is the strongest t-norm.

A continuous t-norm T is Archimedean iff there exists a continuous
strictly decreasing mapping g : [0, 1] → [0,∞] such that g(1) = 0,
g(0) ∈ {1,∞} and we have the representation

T (a, b) = Tg(a, b) := g(−1)(g(a) + g(b)), ∀ u, v ∈ [0, 1], (1.1.1)

where [0,∞] 3 x → g(−1)(x) = g−1(Min {x, g(0)}) defines the pseudo-inverse
of the additive generator g. The powers of a t-norm T are defined by the
following formulae:

T 0(t1) = t1, T
m(t1, ..., tm+1) = T (Tm−1(t1, ..., tm), tm+1), (∀) m ≥ 1.

Let Tm(t) := Tm(t, t, ..., t),∀t ∈ [0, 1]. We say that T is of Hadžić type ( of
h-type or an h-t-norm) if the family {Tm}m∈N is equicontinuous at t = 1.

More details can be found in the monographs [72], [31] and [18].
The set of all left-continuous on R and nondecreasing functions F :

[−∞,+∞] → [0, 1], for which F (0) = 0 and F (+∞) = 1, is denoted by
∆+ while its subset of all F with limx→+∞ F (x) = 1 is denoted by D+. For
every a ≥ 0, εa is the unique element of ∆+ for which εa(t) = 0 if t < a and
εa(t) = 1 if t > a. Let X be a nonempty set and suppose we are given a
mapping F : X ×X −→ ∆+. Its values F(x, y) are usually denoted by Fxy.
(X,F) is called a fuzzy semimetric space (shortly FSM-space) if and only
if, for all x, y, z ∈ X,

Fxy = ε0 if and only if x = y, (FSM1)

Fxy = Fyx. (FSM2)

If at least the following implication holds, then we use the generic term fuzzy
metric space (FM-space):

[Fxy(t) = 1, Fyz(s) = 1] ⇒ Fxz(t + s) = 1. (FM3SS)

If there exists a t-norm T such that

Fxy(t + s) ≥ T (Fxz(t), Fzy(s)), (FM3M )

then we say that (X,F , T ) is a fuzzy Menger space, or a generalized Menger
space ([32], [27]). A more general form of triangle inequality, defining fuzzy S-
metric spaces and fuzzy S-Menger spaces, respectively, can be formulated
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by replacing the addition (t, s) → t + s with some operations (t, s) → S(t, s)
on [0,∞]. For example, if S = max we have fuzzy ultrametric spaces (
or nonArchimedean fuzzy metric spaces). We can also use some operations
τ on ∆+ (S̆erstnev-functions) and the following triangle inequality for fuzzy
S̆erstnev spaces:

Fpq ≥ τ(Fpr, Frq),∀p, q, r ∈ X. (FM3S)

Generally, the mapping F is called a fuzzy (semi) metric. If it happens
that Fxy ∈ D+ for every x, y ∈ X, then F is called a probabilistic (semi)
metric and (X,F , T ) is a Menger space ( (X,F , τ) is a S̆erstnev space).
Notice that our definition includes properly the fuzzy metric spaces considered
in [6] or [10], for which we shall use the term strong fuzzy metric spaces.

For every FSM-space (X,F) we can consider the sets

Uε,λ = {(p, q) ∈ X ×X, Fpq(ε) > 1− λ }, ε > 0, λ ∈ (0, 1),

which generate a semiuniformity UF and a topology TF , called the F−topology
or the strong topology. UF is also generated by the family of the sets Vδ := Uδ,δ

and the following result ([72], see also [73]) holds: If supa<1 T (a, a) = 1, then
UF is a uniformity, and it is metrizable. As shown by B. Morrel & J.
Nagata [44] and U. Höhle [25], the above condition is the weakest one ensuring
the existence of the F−uniformity UF . A sequence in (X,F) is a Cauchy
sequence (or F-Cauchy) iff ∀ε > 0,∀λ ∈ (0, 1),∃n0 : Fxnxn+k

(ε) > 1−λ, ∀n ≥
n0,∀k ≥ 0, and (X,F) is said to be complete if every Cauchy sequence is
F-convergent. Notice that, by definition,

pn
F→ p iff ∀ε > 0,∀λ ∈ (0, 1) ,∃n0 such that Fpnp (ε) > 1− λ,∀n ≥ n0.

In [76] and [9] one can find details on the completion of Menger spaces and
strong fuzzy metric spaces, respectively. The notions not given here, as well as
other contributions and developments in the domain of nonlinear probabilistic
analysis can be found in [72, 14, 5, 60, 17, 3, 18, 64, 66].
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1.1. Fundamental examples I. Example 1.1.1. We obtain a complete
fuzzy semimetric space on X = [0,∞] if

Fxy(t) :=
2min(x,y)t

2min(x,y)t + |x− y|
=: Fyx(t),∀t ∈ (0,∞),∀x, y ∈ [0,∞], x 6= y1.

Example 1.1.2. Let (X, d) be an (extended) metric space.
a. If we set F = Ed, that is Fxy = εd(x,y), then (X,F , T ) is a (fuzzy) Menger

space for every t-norm T. The F -uniformity is exactly Ud.

b. One can define Fxy(t) = t
t+d(x,y) ,∀t ∈ (0,∞). Obviously we obtain a

fuzzy metric space ( under any triangular norm ) whose F-uniformity is Ud.

c.The same result is obtained if Fxy ∈ ∆+ and

Fxy(t) :=

{
t

d(x,y) , 0 < t < d(x, y)

1 t > d(x, y)
.

In all cases (X,F) is complete iff (X, d) is complete.
Example 1.1.3. Let Fxx := ε0 and Fxy(t) := min(x,y)

max(x,y) ,∀t ∈ (0,∞),∀x, y ≥
0, x 6= y.

a. X0 = (0,∞) is a complete strict fuzzy metric space under the Archime-
dean triangular norm TP , for a sequence (xn) is Cauchy if and only if there
exists x > 0 such that |xn − x| → 0 in R .

b. X = [0,∞) is a complete fuzzy Menger space under the triangular norm
TP .

c. t →
(

min(x,y)
max(x,y)

) 1
t
, for x, y ≥ 0, x 6= y, defines a fuzzy Menger space on

[0,∞) and a Menger space on (0,∞), under TP .

All these spaces are nonArchimedean.
Example 1.1.4. Let X = X(Ω,K, P ) be the space of all classes of real

random variables on a probability measure space (Ω,K,P ). If we define, for
p, q ∈ X

Fpq(t) = P{ω ∈ Ω, d(p(ω), q(ω)) < t},

that is the distribution function of d(p, q) = |p− q|, then (X, (p, q) → Fpq, TL)
is a Menger space whose strong topology is the topology of the convergence in
probability. If the random variables take their values in a separable extended
metric space, then we obtain a fuzzy Menger space under TL.

1We automatically assume that Fxx = ε0 as well as F (t) = 0,∀t ≤ 0 and F (∞) = 1, for

every F ∈ ∆+
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2. Extended metrics and Hicks-type contractions

2.1. Fuzzy metric spaces of type M and fixed points for Φ−M con-
tractions. The proof of the following simple result is easy to reproduce:

Proposition 2.1.1. Let (X,F) be a FSM-space and K(x, y) := sup{t | t ≤
1− Fxy(t)}. Then

K(x, y) < δ ⇔ Fxy(δ) > 1− δ ∀δ > 0. (2.1.1)

Therefore K generates the topology TF and the semi-uniformity UF , so that K

is a [0, 1]−valued semi-metric on X.
Example 2.1.2. (i) If d is an extended semi-metric on X and we set

Fxy := εd(x,y) then (X, εd(.,.)) is an FSM-space and K(x, y) = min(d(x, y), 1).
(ii) If X = X(Ω,K, P ) and F(x, y) is the distribution function of d(x, y) ( see
Example 1.1.4), then K is the Ky Fan metric for the convergence in probability.

Generally, K need not to be a metric. Notice that in order to ensure
the triangle inequality for K, T. L. Hicks identified the following condition2

for a probabilistic metric space (X,F):

[Fxy(t) > 1− t, Fyz(s) > 1− s] ⇒ Fxz(t + s) > 1− (t + s) (III1)

and observed that III1 holds for every Menger space (X,F , T ) with T ≥ TL

(see [22]). Actually, one has the following

Proposition 2.1.3. Let T be a t-norm such that the property (III1) holds
for every fuzzy Menger space (X,F , T ). Then T ≥ TL.
The proof follows from the next example: Let X = {x, y, z}, Fxy = Fyx, Fyz =

Fzy, Fxz = Fzx, where Fxy(t) =

{
0 t ≤ 0
a t > 0

, Fyz(t) =

{
0 t ≤ 0
b t > 0

, Fzx(t) ={
0 t ≤ 0

T (a, b) t > 0
, and Fxx = Fyy = Fzz = ε0. Then (X,F , T ) is a Menger

2Recall that in [23] was proposed the following triangle inequality for a probabilistic

metric (structure):

∀ε > 0 ∃δ > 0 s. t. [Fxy(δ) > 1− δ, Fyz(δ) > 1− δ] ⇒ Fxz(ε) > 1− ε; (IIIH)

and we generalized it by using additive generators ( see, e.g., [55], [59], [60]):

∀ε > 0 ∃δ > 0 such that [f ◦ Fxy(δ) < δ, f ◦ Fyz(δ) < δ] ⇒ f ◦ Fxz(ε) < ε. (IIIf )
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space and K(x, y) = 1− a, K(y, z) = 1− b, while K(x, z) = 1− T (a, b). Thus
we see that K(x, z) ≤ K(x, y) + K(y, z) ⇔ T (a, b) ≥ a + b− 1.

Remark 2.1.4. Let (X,F , T ) be as in the above example and suppose that
T (a, b) < a + b − 1. Therefore 0 < a, b < 1 and there exists p > 1 such that
((1− a)

1
p + (1− b)

1
p )p > 1−T (a, b). Thus (1− a)

1
p + (1− b)

1
p > (1−T (a, b))

1
p

and we see that Kp, given by Kp(u, v) = sup{t | tp ≤ 1− Fuv(t)}, is verifying
the triangle inequality. This shows that the more general formulae proposed
in [55, 59] can give metrics in many situations:

Let us consider the family M of all functions µ : [0,∞] −→ [0,∞] with the
properties (M0) µ(t) = 0 ⇔ t = 0, (M1) µ is continuous and (M2) µ(t + s) ≥
µ(t) + µ(s), ∀t, s ≥ 0. Notice that for each µ ∈ M there exists tµ > 0 such
that µ : [0, tµ) −→ [0,∞) is strictly increasing and invertible. If we set

Kµ(x, y) = sup{t | t ≥ 0, µ(t) ≤ 1− Fxy(t)}, (1µ)

then Kµ is a semi-metric, and

Kµ(x, y) < δ ⇔ Fxy(δ) > 1− µ(δ), (2µ)

so that Kµ generates TF and UF . This motivates the following slight general-
ization of (III1).

Definition 2.1.5. A FSM-space (X,F) is called an FM-space of type
M if and only if

[Fxy(t) > 1− µ(t), Fyz(s) > 1− µ(s)] ⇒ Fxz(t + s) > 1− µ(t + s). (IIIµ)

Remark 2.1.6. The triangle inequality (IIIµ) can be useful and ap-
propriate in many cases. For example, if (X,F) verifies (III1) - that is
(IIIµ) for µ(t) = t - then F̃ , defined by Fxy ◦ µ, is a fuzzy semi-metric
and F̃xy(δ) > 1 − µ(δ) ⇔ Fxy(µ(δ)) > 1 − µ(δ). The formula (1µ) leads
to Kµ(x, y) = µ−1(K(x, y)). For spaces of random variables (see Example
2.1.2 (ii) ), F̃xy(t) = P (|x− y| < µ(t)) = P (µ−1(|x− y|) < t) and µ−1 ◦K is a
metric for the convergence in probability. Generally, one has

Theorem 2.1.7. Let (X,F) be a FM-space of type M , for which the trian-
gle inequality (IIIµ) holds. Then Kµ, defined by (1µ), is a metric on X which
generates TF and UF .
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Corollary 2.1.8. Let T be a t-norm such that T (a, b) ≥ Tµ(a, b) :=
max{1− µ[µ−1(1− a) + µ−1(1− b)], 0}. Then Kµ is a metric for every fuzzy
Menger space (X,F , T ).

Remark 2.1.9. Since µ is super-additive, then µ(µ−1(α)+µ−1(β)) ≥ α+β

and Tµ(a, b) ≤ max(a + b− 1, 0) = TL(a, b). Therefore our results are slightly
more general than their counterparts from [22].

T. L. Hicks introduced in [21] the following contraction condition on PM-
spaces,

t > 0, Fpq(t) > 1− t ⇒ FApAq(Lt) > 1− Lt [L ∈ (0, 1)] (C)

and proved that every such an A on a complete Menger space (X,F ,Min)
has a unique fixed point. In [55, 58] we proved the above result for every
t-norm for which supa<1 T (a, a) = 1 and the proof was given directly by
the method of successive approximations. We also observed in [55, 58] that
the idea of Hicks can be applied for a larger class of t-norms, namely for
T ≥ Tm = Max(Sum − 1, 0). This idea was used in [4] for φ-probabilistic
contractions:

t > 0, Fpq(t) > 1− t ⇒ FApAq(φ(t)) > 1− φ(t) (Cφ)

where φ ∈ Φ, the family of all functions φ : [0,∞) −→ [0,∞) for which (Φ0) φ

is strictly increasing, (Φ1) φ is right continuous and (Φ2) lim
n→∞

φn(t) = 0 ∀t ≥ 0.

By using the idea from [48], we can extend all these results to FSM-spaces:
Definition 2.1.10. Let (X,F) be a FSM-space. We say that A : X → X

is a Φ−M contraction if there exist φ ∈ Φ and µ ∈ M such that

Fxy(t) > 1− µ(t) ⇒ FAxAy(φ(t)) > 1− µ ◦ φ(t) (φµ− C)

For a concrete pair (φ, µ) we use the term φ− µ contraction.
Example 2.1.11. Let A be a contraction of Hicks type, consider the fuzzy

semi-metric F̃ defined by F̃xy = Fxy ◦ µ and suppose that tµ = ∞. Then
φ̃ := µ−1 ◦ φ ◦ µ ∈ Φ and A verifies (φ̃µ− c) for every µ.

By using Kµ, one can prove the following two fixed point theorems, slightly
extending results from [48] and [22].

Theorem 2.1.12. Let (X,F) be a complete FM-space of type M , for which
the triangle inequality (IIIµ) holds. Then every φ−µ contraction has a unique
fixed point which can be obtained by successive approximations.
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Theorem 2.1.13. Let (X,F , T ) be a complete Menger space, for which
T ≥ Tµ. Then every φ− µ contraction on X has a unique fixed point.

Remark 2.1.14. Notice that Tµ(a, b) ≤ max(a + b− 1, 0) = TL(a, b).
If we set f(s) = 1− s, then (Cϕ) can be slightly generalized as

f ◦ Fpq(t) < t ⇒ f ◦ FApAq(ϕ(t)) < ϕ(t) (Cf
ϕ)

and we can extend our result from [59]:

Theorem 2.1.15. Let (X,F , T ) be a complete (fuzzy) Menger space such
that T ≥ Tf (and f(0) < ∞). Then every mapping A : X → X which satisfies,
for some m ∈ M and ϕ ∈ Φ, the following condition

f ◦ Fpq(t) < m(t) ⇒ f ◦ FApAq(ϕ(t)) < m(ϕ(t)), (Cf
ϕ,m)

has a unique fixed point which is the limit of successive approximations.
The proof uses the fact that

d(p, q) = Km
f (p, q) := sup{t, m(t) ≤ f ◦ Fpq(t)},

gives a complete metric on X ( see Theorem 4.2.A below). Moreover,
d(Ap, Aq) ≤ ϕ(d(p, q)), that is A is a (classical) ϕ-contraction.

We can also extend to fuzzy Menger spaces an idea from [20] and [64]. Let
(X,F) be a given FSM-space and A : X → X a fixed mapping.

Definition 2.1.16. A is called a generalized C-contraction of Kras-

noselski type if for each pair of real numbers (a, b), with 0 < a < b, there
exists Lab ∈ (0, 1) such that the following implication holds:

a ≤ 1− Fpq(a) & 1− Fpq(b+) ≤ b & Fpq(t) > 1− t ⇒ FAxAy(Labt) > 1− Labt

(Cab)
Theorem 2.1.17. Every generalized C-contraction on a complete fuzzy

Menger space (X,F , T ), where T ≥ TL, has a unique fixed point, which is
globally attractive.
Proof. As in [20], one shows that A is a Krasnoselski contraction [33] in the
complete metric space (X,K):

K(Ap, Aq) ≤ LabK(p, q), if K(p, q) ∈ [a, b].
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2.2. Applications to weak Hicks C-contractions. We will emphasize two
recent results of D. Miheţ, also relaxing the contraction condition of Hicks type,
whose proofs can be obtained by using the Ky Fan type (semi)metric.

Definition 2.2.1. Let (X,F) be a FSM-space. A self-mapping A of X

is called a weak Hicks-contraction iff there exists L ∈ (0, 1) such that for all
p, q ∈ X the following implication holds

(w −H) t ∈ (0, 1), Fpq(t) > 1− t ⇒ FApAq(Lt) > 1− Lt;

Theorem 2.2.2([40]). Let (X,F , T ) be a complete fuzzy Menger space
with T ≥ TL and let us suppose that A : X → X is a weak Hicks-contraction
with the property that FqAq(t) > 0 for some q ∈ X and some t ∈ (0, 1). Then
A has a fixed point.

Theorem 2.2.3. ([42]). Let T be a t-norm with supa<1T (a, a) = 1
and A : X → X be a weak Hicks-contraction in a complete fuzzy Menger
space (X,F , T ). Then A has a fixed point iff there exists x ∈ X such that
DO(A,x)(1) > 0 .
The proof follows easily by using the semimetric of Ky Fan. Firstly, as we
know,

a) K(p, q) < η ⇔ Fpq(η) > 1− η, ∀η < 1;
Moreover,
b) K(Ap, Aq) ≤ K(p, q) ≤ 1,∀p, q ∈ X, and A is uniformly continuous;
c) K(p, q) < 1 ⇒ K(Ap, Aq) ≤ LK(p, q).

We have to emphasize that K does not necessarily satisfy the triangle inequal-
ity, so that it is a semimetric only. But we can see that

DO(A,x)(1) > 0 ⇒ ∃δ < 1, DO(A,x)(δ) > 1− δ ⇒ K(p, q) < δ,∀p, q ∈ O(A, x).

Therefore A is K-strictly contractive on the bounded set O(A, x). Ac-
tually, as it is easily seen,

K(An(x), An+s(x)) ≤ LnK(x,As(x)) ≤ Lnδ.

Therefore ( see the equivalence a) above ) (An(x))n≥0 is an F−Cauchy se-
quence, so convergent etc.

Example 2.2.4. Let us consider the discrete Menger space X under TM

determined by the mapping (x, y) → ε1,∀x 6= y on a set containing at least
two elements. Clearly, any mapping A : X → X is a weak Hicks-contraction
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and the constant mappings are (the only) Hicks C-contractions. One can
construct different kinds (having in mind the fixed point set) of weak Hicks-
contraction mappings ( It is clear that only the eventually constant sequences
are Cauchy/convergent).

3. Extended metrics and Sehgal-type contractions

V. M. Sehgal introduced a natural class of probabilistic B-contractions on
Menger spaces, as mappings A for which there exists L ∈ (0, 1) such that

FApAq(Lt) ≥ Fpq(t), ∀p, q, t, (BCL)

and proved a partial analogue of the contraction principle ( see [74]). H.
Sherwood proved that a B-contraction on a given Menger space either has
a globally attractive fixed point or has no fixed points, and constructed fixed
point free probabilistic B-contractions on complete Menger spaces ( see [76]
or Theorem 3.2.2.1 below). In the case of fuzzy Menger spaces the situation
is much more complex.

3.1. Fundamental examples II. As we have seen, X = [0,∞) is a complete
fuzzy Menger space under the Archimedean triangular norm TP , if one sets
Fxx := ε0 and Fxy(t) := min(x,y)

max(x,y) ,∀t ∈ (0,∞),∀x, y ≥ 0, x 6= y.

1. If Ax := x1−signx, then A is a B-contraction with two fixed points.
Clearly An0 → 0 = A0, and Anx → 1 = A1, for each x > 0.

2. The mapping x → Ax := Lx, where L ∈ (0, 1), is a B-contraction with
the unique fixed point 0 and Anx → 0 only for x = 0.

3. X0 = (0,∞) is also a complete fuzzy Menger space under the t-norm TP .

Clearly x → Ax := Lx, where L ∈ (0, 1), is a B-contraction and has no fixed
point. It is worth noting that FpAp(t) = L, ∀t > 0, ∀p ∈ X0, K (x, y) =
|x−y|

max(x,y) and K (Ax,Ay) = K (x, y) ,∀x, y ∈ (0,∞). Thus the probabilistic
B-contraction x → Lx is a K-isometry and has no fixed point.

3.2. Methods of type Maia.

3.2.1. A proof for the theorem of Hadžić-Istrăţescu. Let F : X ×X → ∆+ be
a fuzzy metric, such that (S,F , TM ) is a fuzzy Menger space, and consider an
arbitrary fixed element F of D+.
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Lemma 3.2.1.1. The function dF , defined on X ×X by

dF (p, q) = inf{a > 0, Fpq(at) ≥ F (t) , ∀t ∈ R},

is an extended metric on X ( as usually, inf ∅ = +∞). Moreover, the
dF−topology is stronger than the F-topology and every dF -Cauchy sequence
is an F-Cauchy sequence.

Lemma 3.2.1.2. If A : X → X is a B-contraction on the fuzzy Menger
space (X,F , TM ), then A is a strict contraction on (X, dF ).

Theorem 3.2.1.3. Let (X,F , TM ) be a complete fuzzy Menger space and
suppose that A : X → X is a probabilistic B-contraction. Then A has a fixed
point iff there exists some p ∈ X such that FpAp ∈ D+.
Proof. Choose F = FpAp ∈ D+ and apply the above lemmas.

Example 3.2.1.4. For the mapping from Example 3.1.1,

dF (Anp, An+1p) = ∞,∀p ∈ X0,∀F ∈ D+.

Remark 3.2.1.5. One can prove that the above result remains true in fuzzy
Menger spaces under t-norms of Hadz̆ić type3 and generalized B-contractions
of type Krasnoselski (see Theorem 2.9 from [20], for the case of Menger spaces).

3.2.2. Other types of B-contractions in fuzzy Menger spaces. The family of
h-t-norms is the largest class of continuous t-norms with the property that
the contraction principle holds for any complete Menger space (X,F , T ) and
any Sehgal B-contraction ( [51, 52, 58, 61, 64, 66]). Consequently, for other
t-norms one has to impose additional conditions either on the probabilistic
contraction, or on the probabilistic metric (space). Results in this direction
are largely presented in [18], Chapter 3.

3For example, in the continuous case, using a sequence bn which is strictly increasing to 1

and such that T (bn, bn) = bn, it easy to verify that rn(x, y) := inf{t, Fxy(t) ≥ bn} defines a

countable family of ecarts which generates the F-uniformity. If we suppose that rn(x, y) < ε,

then Fxy(ε) ≥ bn and, by the contraction condition (BCL), we see that FAxAy(Lε) ≥ bn,

which says that rn(Ax, Ay) ≤ Lε. Therefore rn(Ax, Ay) ≤ Lrn(x, y),∀x, y ∈ X,∀n. From

the hypothesis FxAx ∈ D+ we can easily see that for each n there exists cn < ∞ such that

rn(x, Ax) ≤ cn. Now we can apply either Monna’s theorem ([43], Théorème 1) or the direct

method as in [2] and obtain the existence of a fixed point.
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In [63], we introduced the notion of B-contraction of type r ( a parameter
in [0, 1] ), by the following condition:

(PCrL) FAxAy(Lrt) ≥ Fxy(t)
Fxy(t) + L1−r(1− Fxy(t))

, ∀t > 0, ∀x, y ∈ X,

for some L ∈ (0, 1). Notice that for r = 1 we obtain B-contractions of type
Sehgal on Menger spaces and fuzzy Menger spaces. Since in our definition
Fxy(t) is not necessarily (0, 1)-valued, the case r = 0 includes properly the
notion of fuzzy contraction on strong fuzzy metric spaces, as defined in [10]:

(FCL)
1

FAxAy(t)
− 1 ≤ L(

1
Fxy(t)

− 1), ∀x, y ∈ X, ∀t > 0.

Clearly, every B-contraction of type r having the Lipschitz constant L is a
B-contraction of type 1 with the Lipschitz constant Lr.

In [65] ( see also [66, 67]), we considered the class of strict B-contractions,
having the property that, for a λ ∈ (0, 1),

FAxAy(λt) ≥ Fxy(t)
Fxy(t) + λ(1− Fxy(t)

,∀x, y ∈ X, ∀t > 0. (PSCλ)

Actually, the following results hold.
Theorem 3.2.2.1. Let A be a B-contraction of type r on a complete fuzzy

Menger space (X,F , T ).
1. Suppose that supa<1 T (a, a) = 1. Then

(1.i) If r ∈ (0, 1], A has a fixed point iff there exists x ∈ X such that
limt→∞ infp≥0 FxApx > 0.

(1.ii) If r = 0, A has a fixed point iff there exists x ∈ X such that
infp≥0 FxApx(t) > 0,∀t > 0.

2. Suppose that T ≥ TL. Then a B-contraction of type r ∈ (0, 1) has a fixed
point iff FxAx(t) > 0 for some x ∈ X and some t > 0.

3. Let T be of Hadz̆ić-type and r > 0. Then A has a fixed point iff FxAx ∈ D+

for some x ∈ X.
The proofs have essentially used the following metric-like mappings Kg on

a fuzzy semi-metric space (X,F): Kg(x, y) = sup{t|t ≤ g ◦ Fxy(t)}. Since
Kg(x, y) < δ ⇔ Fxy(δ) > g−1(δ ),∀δ ∈ (0, g(0)), for every fuzzy semimetric F
and every additive generator g, then
a) Kggenerates the F-topology and the semiuniformity UF , that is Kg is an
extended semimetric;
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b) X is F−complete iff it is Kg−complete;
c) Kg is an extended metric on every fuzzy Menger space under a t-norm
T ≥ Tg.
d) Kg(x, y) = ∞ iff g(0) = ∞ and Fxy(t) = 0 for every t. If g(0) = 1, Kg is
a [0, 1]−valued semimetric.

Remark 3.2.2.2. As we have already seen ( see Fundamental examples
II), by setting

Fxy(t) =
min(x, y)
max(x, y)

,∀t ∈ (0,∞),∀x, y ≥ 0, x 6= y,

X = [0,∞) becomes a complete fuzzy Menger space under the triangular norm
TP . Simple calculations show that

(i) K(x, y) = |x−y|
max{x,y} andKg

P
(x, y) = log max{x,y}

min{x,y} give (extended) metrics.

(ii) For g1(s) = 1
s − 1 we obtain Kg1(x, y) = |x−y|

min{x,y} , which gives only an
extended semimetric, and

K(x, y) ≤ Kg
P
(x, y) ≤ Kg1(x, y).

(iii) For the mapping Ax := ax, where a > 0 is given, K (Ax,Ay) =
K (x, y) ,∀x, y ∈ (0,∞). Hence x → Ax is a deterministic isometry as well
as a B-contraction of type 1 without fixed points.

(iv) For Ax := a + x, we have K (Ax,Ay) = |x−y|
max(a+x,a+y) ≤ K (x, y) , and

limy→∞
K(Ax,Ay)
K(x,y) = 1.

Remark 3.2.2.3. In [66], by remarking that the condition (PSCλ) can be
rewritten as g1 ◦ FAxAy(λt) ≤ λg1 ◦ Fxy(t), where g1(s) := 1

s − 1 generates the
(strict) t-norm given, for a+ b > 0, by T1(a, b) := ab

a+b−ab ≥ TP (ab) ≥ TL(a, b),
we have proven the following more general fixed point result by the method
of Maia [34] applied to Kg and Kh:

Theorem 3.2.2.4. Suppose the next conditions (i)-(iii) are verified for a
selfmapping A of a complete fuzzy Menger space (X,F , T ) and the additive
generators g, h:

(i) g (a) ≥ h (a) and T (a, b) ≥ Th(a, b),∀a, b ∈ [0, 1] ;
(ii) A is a strict g-contraction, that is, for some fixed λ ∈ (0, 1) ,

FAxAy(λt) ≥ g(−1) ◦ (λg) ◦ Fxy(t),∀t > 0,∀x, y ∈ X; (PSCg
λ)

(iii) FzAz(u) > 0 for some z ∈ X and some u > 0.

Then A has a fixed point.
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3.3. Methods of type Luxemburg-Margoliz.

3.3.1. Power-exponential weights and fixed points in FM-spaces. By using the
following nonnegative functions, we can measure the distance between the
maximal element ε0 and the elements of ∆+. Let k be a (fixed) positive real
number.

Lemma 3.3.1.1. The mapping δk : ∆+ → R+, given by

δk(F ) := sup
x>0

{xk[1− F (x)]e−x}, (3.3.1.1)

has the following properties:
(i) δk(F ) = 0 ⇔ F = ε0;
(ii) If F1 ≤ F2, then δk(F1) ≥ δk(F2);
(iii) δk(λ ◦ F ) ≤ λkδk(F ),∀λ ≥ 1;

Let β = K(F ) = sup{t | t ≤ 1− F (t)} define the écart of Lévy-Ky Fan. Then
(iv) βk+1e−β ≤ δk(F ) ≤ max{βk, βkke−k};
(v) δk(Fn) → 0 ⇔ Fn(x) → 1, for each x > 0.

Theorem 3.3.1.2. Let (X,F) be a fuzzy metric space and

ek(p, q) := δk(Fpq) = sup
x>0

xk[1− Fpq(x)]e−x,∀p, q ∈ X (3.3.1.2)

Then
10 ek is a semi-metric that generates the semi-uniformity UF ;
20 If (X,F , TL) is a fuzzy Menger space, then

(p, q) → θk(p, q) := {ek(p, q)}
1

k+1 (3.3.1.3)

gives a metric on X. Moreover, (X,F) is complete if and only if (X, θk) is
complete.

Proof. 10 follows from Lemma 3.3.1.1. and the definitions. For 20, notice
that (X,F , TL) is a fuzzy Menger space iff the following inequality holds:

1− Fpq(x) ≤ 1− Fpr(tx) + 1− Frq[(1− t)x],∀p, q, r ∈ X, ∀x ∈ R,∀t ∈ [0, 1].
(3.3.1.4)

Therefore, for each x > 0,

xk[1− Fpq(x)]e−x ≤ 1
tk

ek(p, r) +
1

(1− t)k
ek(r, q),∀t ∈ (0, 1).
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This implies the inequality

ek(p, q) ≤ 1
tk

ek(p, r) +
1

(1− t)k
ek(r, q),∀t ∈ (0, 1)

and we easily see that

{ek(p, q)}
1

k+1 ≤ {ek(p, r)}
1

k+1 + {ek(r, q)}
1

k+1

that is θk verifies the triangle inequality. The last part follows from the in-
equality (iv) of Lemma 3.3.1.1.

Remark 3.3.1.3. The above proof shows that in the case (X,F , TL) is
nonArchimedean, ek itself is a metric, generating the F - uniformity.

θk can be successfully used to prove a rather general fixed point result:
Theorem 3.3.1.4. Let (X,F , T ) be a complete fuzzy Menger space such

that T ≥ TL. If A : X → X is a B-contraction, that is

FApAq(x) ≥ Fpq(
x

L
),∀x ∈ R (3.3.1.5)

for some L ∈ (0, 1) and all pairs (p, q) ∈ X × X, then the following are
equivalent

(3.3.1.6.1) A has a fixed point
(3.3.1.6.2) There exist p ∈ X and k ∈ (0,∞) such that

Ek(p) := sup
x>0

{xk[1− FpAp(x)]} < ∞ (3.3.1.6)

Proof. The implication (3.3.1.6.1) ⇒ (3.3.1.6.2) is obvious:

p = Ap ⇒ FpAp(x) = 1, ∀x > 0 ⇒ Ek(p) = 0.

If Ek(p) < ∞ for some p ∈ X and k ∈ (0,∞), then we see that δk(FpAp) ≤
Ek(p). Using the inequality (3.3.1.5) we get

xk[1− FApA2p(x)]e−x ≤ xk[1− FpAp(
x

L
)]e−x

= Lk{(x

L
)k[1− FpAp(

x

L
)]}e−x ≤ LkEk(p).

This shows that
θ(Ap, A2p) ≤ L

k
k+1 (Ek(p))

1
k+1 (3.3.1.7)

By applying (3.3.1.7) for An, which verifies (3.3.1.5) with the Lipschitz con-
stant Ln, we obtain

∞∑
n=0

θk(Anp, An+1p) ≤ {
∞∑

n=0

(L
k

k+1 )n}{Ek(p)}
1

k+1 < ∞. (3.3.1.8)
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Therefore (Anp)n≥0 is a Cauchy sequence in the complete metric space (X, θk),
thus it converges to some point p∗ ∈ X. Since (5) implies also the continuity
of A, then p∗ is a fixed point.

Remark 3.3.1.5. a) Generally, A is not contractive relatively to θk or ek.
b) The suppremum in (3.3.1.6) may be infinite for certain values of k or for

different points in X.
c) Clearly, the condition (3.3.1.6) is verified whenever FpAp(tp) = 1 for some

tp > 0.

3.3.2. Metrics of mean type and a fixed point principle. The concrete formulae
proposed by us in [62, 64] can also be applied to fuzzy metrics:

Lemma 3.3.2.1. 1. The function ρ0, defined by

ρ0(p, q) =
∫ 1

0
(1− Fpq(t))dt, ∀ (p, q) ∈ X ×X, (3.3.2.1)

is a semi-metric on X, which generates UF . Moreover,

K2 ≤ ρ0 ≤ 2K−K2. (3.3.2.2)

2. If (X,F , T ) is a fuzzy Menger space and T ≥ TL, then the mapping
defined by

R0(p, q) =
{∫ 1

0
[1− Fpq(t)] dt

} 1
2

, ∀p, q ∈ X ×X (3.3.2.3)

is a metric generating the strong uniformity UF . Moreover, K(p, q) ≤
R0(p, q) ≤

√
2K(p, q), ∀p, q ∈ X so that (X,F , T ) is complete iff (X, Ro)is

complete.
Now, let λ be fixed in [0,1] and define

Rλ(p, q) :=
(∫ 1

0

1− Fpq(t)
(1 + t)λ

dt

) 1
2

, ∀p, q ∈ X. (3.3.2.3λ)

Theorem 3.3.2.2. Let (X,F , T ) be a fuzzy Menger space with T ≥ TL.
Then

(i) Rλ is a metric, for each λ ∈ [0, 1].
(ii) 0 ≤ λ < µ ≤ 1 ⇒ 1√

2
R0(p, q) ≤ R1(p, q) ≤ Rµ(p, q) ≤ Rλ(p, q) ≤

R0(p, q), ∀p, q ∈ X.

(iii) Rλ generates the strong F-uniformity on X.
(iv) (X,F , T ) is complete iff (X, Rλ) is complete for some λ ∈ [0, 1].
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By using the above metric-like functions and the alternative of fixed point,
one can obtain the following fixed point result.

Theorem 3.3.2.3. Let A be a B-contraction on a complete fuzzy Menger
space (X,F , T ) .

(i) For every λ ∈ [0, 1],

Rλ(Ap, Aq) ≤ L
1−λ

2

{∫ 1
L

0

1− Fpq(t)
(1 + x)λ

dt

} 1
2

.

(ii) If the t-norm T is stronger than TL, then the following statements are
equivalent:

10 A has a fixed point.
20 There exist p ∈ X and λ ∈ [0, 1) such that

E
(λ)
pAp :=

∫ ∞

0

1− FpAp(t)
(1 + t)λ

dx < ∞.

Notice that, as in [62, 64], the above method can be applied to any
Archimedean t-norm T .

4. General formulae for distances

In the sequel, we will make use of continuous operations S on R+ = [0,∞]
having, at least, the following properties: 1◦ S(x, y) = S(y, x), 2◦ S(x, y) ≤
S(x, z) if y ≤ z and 3◦ S(0, 0) = 0 and S(x, y) ≥ max{x, y}. The most
important examples are the well-known operations Sp : Sp(a, b) = (ap+bp)1/p,

for 0 < p < ∞, and S∞(a, b) = Max(a, b). Other examples can be obtained
using representation theorems for continuous Archimedean semigroups: There
exists a generator s : R+ → R+ such that (a) s(0) = 0, (b) s is continuous,
(c) s is strictly increasing and

S(a, b) = Ss(a, b := s(−1)(s(a) + s(b))),

where s(−1)(b) :=s−1[Min(b, s(∞))].
We say that λ : [0,∞] → [0,∞] is an element of Λ(S) iff (Λ-0): λ(t) =

0 ⇔ t = 0, (Λ-l): λ is continuous and non-decreasing and (Λ-2): λ ◦ S(a, b) ≤
λ(a)+λ(b) for all a, b ∈ R+. Notice that, for λ strictly increasing, the condition
(Λ-2) is equivalent to the fact that S is weaker than Sλ. It is clear that
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Λ := Λ(S1) is a family of sub-additive functions, a fact also true for every
S ≥ S1.

Let M(S) denote the family of all applications µ : [0,∞] → [0,∞], possess-
ing the following three properties: (M -0): µ(t) = 0 ⇔ t = 0 ; µ(∞) = ∞,
(M -1): µ is continuous and increasing, and (M -2): S(µ(a), µ(b)) ≤ µ ◦ S(a, b)
for all a, b ∈ R+. Notice that µ−1 ∈ Λ(S) if µ ∈ M(S) and S ≤ S1. Clearly
M(S1) = M .

4.1. A general formula of type Fréchet. J. F. C. Kingman introduced in
[30] the first (deterministic) metric for Wald spaces. By means of so called T-
conjugate transforms, the Kingman’s formula was extended to Menger spaces
under a continuous Archimedean t-norm T , in terms of its multiplicative gen-
erators (see [45] or [72], p. 131). Our idea from [49, 50], to use additive
generators, can be successfully applied to fuzzy Menger spaces in a very gen-
eral setting.

Lemma 4.1.1. Let λ ∈ Λ(S) and µ ∈ M(S) be fixed. For any t ≥ 0 and
F ∈ ∆+, set

dt(F ) = λ(t) + f ◦ F ◦ µ(t). (4.1.1)

Then
(1) dt(ε0) = λ(t) for all t > 0;
(2) F = ε0 ⇔ inf

t≥0
dt(F ) = 0;

(3) dS(s,t)(F ) ≤ ds(G) + dt(H), provided

F ◦ (µ(s), µ(t)) ≥ Tf (G(µ(s)),H(µ(t))).

Theorem 4.1.A. Let (X,F , T ) be a fuzzy S-Menger space with the t-norm
stronger than Tf and consider the function ρ = Fλ,µ

f defined by

Fλ,µ
f (x, y) = inf

t>0
{λ(t) + f ◦ Fxy ◦ µ(t)},∀x, y ∈ X. (4.1.2)

Then Fλ,µ
f is an extended metric which generates the uniformity UF .

Proof. Using the triangle axiom with T ≥ Tf and Lemma 4.1.1. we obtain
the inequalities dS(s,t)(Fxz) ≤ ds(Fxy)+dt(Fyz) and ρ(x, z) ≤ ρ(x, y)+ρ(y, z).
For any δ < f(0),

ρ(x, y) < δ ⇔ ∃ t > 0 : λ(t)+f◦Fxy◦µ(t) < δ ⇒ Fxy◦µ(t) > f−1(δ) & λ(t) < δ.
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Now, for any given ε > 0 and p ∈ (0, 1), choose δ > 0 such that f−1(δ) ≥ 1−p

and δ < λ◦µ−1(ε). Therefore {(x, y) : ρ(x, y) < δ} ⊂ {(x, y) : Fxy(ε) > 1−p}.
On the other hand, by the continuity of λ and f , there exist t > 0 and p ∈ (0, 1)
such that f(1 − p) + λ(t) < δ. If ε = µ(t), then {(x, y) : Fxy(ε) > 1 − p} ⊂
{(x, y) : ρ(x, y) < δ}.

4.1.1. Some particular cases and applications. Corollary 4.1.B. Let f be an
additive generator of Tf ≤ T and, for a given fuzzy Menger space (X,F , T ),
consider the mapping defined by

Ff (p, q) = inf
t>0
{t + f ◦ Fpq(t)}, p, q ∈ X. (4.1.3)

Then
(i) Ff is an extended metric on X. Ff (p, q) < ∞ if Fpq ∈ D+ or T is

nonstrict ;
(ii) The uniformity generated by Ff is the F-uniformity ;
(iii) If a is a positive real number, then Fa

f defined by

Fa
f (p, q) = inf

t>0
{at + f ◦ Fpq(t)} (4.1.3a)

has the properties (i)-(ii);
(iv) For each a ∈ (0, 1] one has

aFf ≤ Faf ≤ Ff (4.1.4)

and so all Ff are uniformly equivalent.
We only notice that Ff (p, q) = inft≥0{t+ f ◦Fpq(t)}, that g = 1

af is also an
additive generator of T and, for a ≤ 1, aFf (p, q) = inft>0{at + af ◦Fpq(t)} ≤
inft>0{t+af ◦Fpq(t) = Faf (p, q) ≤ inft>0{t+f ◦Fpq(t)} = Ff (p, q); moreover,
for every additive generator g of T there exists a ∈ (0, 1] such that g = af or
f = ag.

The case of TL, with the additive generator t → 1 − t, gives the Fréchet-
type metric:

Corollary 4.1.C. If (X,F , TL) is a fuzzy Menger space, then the function
F defined by

F(p, q) = inf
t>0
{t + 1− Fpq(t)} (4.1.5)
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is a metric on X. In particular, F metrizes the topology of the convergence in
probability for every E-space.
As a matter of fact, this result can be used for every Archimedean t-norm:

Corollary 4.1.D. Let (X,F , T ) be a fuzzy Menger space under a contin-
uous Archimedean t-norm T . Then there exists an increasing bijection

h : [0, 1] → [0, 1] such that the function FLh is a metric on X:

FLh(p, q) = inf
t>0
{t + 1− h ◦ Fpq(t)}. (4.1.6)

The proof is simple: To each continuous Archimedean t-norm T there cor-
responds an h as in the theorem such that T (a, b) ≥ h−1(TL(h(a), h(b)) =
TLh(a, b). Thus (X, h◦F ,TL) is a fuzzy Menger space and we can apply (4.1.5)
for h ◦ F . Notice that TLh has the additive generator fLh = fL ◦ h = 1− h.

Remark 4.1.2. On a fuzzy Menger space (X,F ,Min), one obtains metrics
for every f in (4.1.3) and for every increasing bijection h in (4.1.6). Ap-
plied to an arbitrary FM-space, (4.1.5) gives a symmetric positively defined
mapping. Although it does not necessarily verify the triangle inequality, F
generates the F−uniformity on X. The same is true for Ff from (4.1.3). The
above results, giving sufficient conditions for the corresponding functions to
verify the triangle inequality, are best possible in the following sense; for each
t-norm T ′ weaker than the Archimedean t-norm T there exists a Menger space
(X,F , T ′) such that ρf given by (4.1.3) is a metric for no additive genera-
tor f of T : For X = {p, q, r} of three distinct points, choose a, b ∈ (0, 1) such

that T ′(a, b) < T (a, b) and set Fpr(t) =

{
0, t ≤ a

1, t > a
, Frq(t) =

{
0, t ≤ b

1, t > b

and Fpq(t) =

{
0, t ≤ T ′(a, b)
1, t > T1(a, b)

. Then (X,F , T ′) is a Menger space and

ρf (p, r) = f(a), ρf (r, q) = f(b), ρf (p, q) = f(T ′(a, b)).
Remark 4.1.3. Like in [50], [56], a family of extended metrics of Lévy type

on the set of distance distribution functions can be obtained: Let T be a left-
continuous t-norm and consider the corresponding t-function τT ([75],[72]).
Then, as in [26], there exists a mapping FT : ∆+ ×∆+ → ∆+,

FT (F,G) = sup{H ∈ ∆+, τT (F,H) ≤ G, τT (G, H) ≤ F}
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such that (∆+, FT , T ) is a fuzzy Menger space. Then, using (4.1.3) for T ≥ Tf ,
we obtain an extended metric on ∆+, which is a metric if f(0) < ∞:

Lf (F,G) = inf
t>0
{t + f ◦ FT (F,G)(t)}.

4.2. A general formula of type Ky Fan. We can also obtain a compre-
hensive class of extended metrics of type Ky Fan. For ν ∈ M := M(S1), µ ∈
M(S), and f an additive generator, let us consider the following formula:

Kν,µ
f (x, y) = sup{t, t ≥ 0, ν(t) ≤ f ◦ Fxy ◦ µ(t)}. (4.2.1)

Theorem 4.2.A. If (X,F , T ) is a fuzzy S-Menger space, where S ≤ S1

and T ≥ Tf , then r = Kν,µ
f is an extended metric on X and Ur ≡ UF .

Proof. From (4.2.1) it is clear, for ν(ε) < f(0), that

Kν,µ
f (x, y) < ε ⇔ Fxy(µ(ε)) > f−1(ν(ε)), (4.2.2)

which also implies the last affirmation. Suppose that r(x, y) < ε and r(y, z) <

δ. Then we have f ◦Fxy ◦µ(ε) < v(ε), f ◦Fyz ◦µ(δ) < v(δ). Since ν ∈ M,µ ∈
M(S) and F verifies the triangle inequality, one can write successively

f ◦ Fxz ◦ µ ◦ S1(ε, δ) ≤ f ◦ Fxz ◦ µ ◦ S(ε, δ) ≤ f ◦ Fxz ◦ S(µ(ε), µ(δ)) ≤

≤ f ◦ Fxz(µ(ε)) + f ◦ Fyz(µ(δ)) < v(ε) + v(δ) ≤ v(S1(ε, δ)).

Hence r(x, z) < S1(ε, δ) = ε + δ. Therefore r(x, z) ≤ r(x, y) + r(y, z).

Example 4.2.1. (1) In every (extended) metric space (X, d), considered as
a (fuzzy) Menger space (X, Ed,Min), Kν,µ

f (x, y) = min{µ−1(d), ν−1(f(0))}
gives an equivalent (extended) metric.
(2) Applied to X(Ω,K, P ), (4.2.2) leads to a whole family of metrics for the
convergence in probability:

Kν,µ(x, y) = sup{t : ν(t) ≤ P (|x− y| ≥ µ(t))}.
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[13] O. Hadžić, A generalization of the contraction principle in PM spaces, Review of Re-

search, Faculty of Science, Univ. Novi Sad, 10(1980), 13-21.
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[16] O. Hadžić, On (n, f, g) - locally contractions in PM-spaces, Review of Research, Faculty

of Science, Univ. Novi Sad, 22(1992), 1-10.
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[27] I. Istrăţescu, On some fixed point theorems in general Menger spaces, Boll. U. M. I.,

5(1976), 95-100.

[28] J. Jachymski, J. Matkowski, T. Swiatkowski, Nonlinear contractions on semimetric

spaces, Journal of Applied Analysis, 1(1995), 125-134.

[29] O. Kaleva, O. Seikalla, On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984),

215-229.

[30] J. F. C. Kingman, A metric for Wald Spaces, J. London Math. Soc., 39(1964), 129-130.

[31] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Acad. Publ., Dordrecht,

2000.

[32] O. Kramosil, J. Michalek, Fuzzy metric and SM-spaces, Kybernetica (Praha), 11(1975),

326-334.

[33] M. A. Krasnoselski, et al., Approximate solutions of operator equations, Moscow, 1969.

[34] M. Maia, Un’osservazione sulle contrazioni metriche, Sem. Mat. U. Padova, 40(1968),

139-143.

[35] B. Margolis, On some fixed points theorems in generalized complete metric spaces, Bull.

Amer. Math. Soc., 74(1968), 275-282.

[36] K. Menger, Statistical metrics, Proc. Nat. Academy Sci. U. S. A., 28(1942), 535-537.
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Mat.-Inform., 39(2001), 155-156.
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