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Abstract. Existence and localization results for the nonlinear wave equation are established

by Krasnoselskii’s compression-expansion fixed point theorem in cones. The main idea is to

handle two equivalent operator forms of the wave equation, one of fixed point type giving the

operator to which Krasnoselskii’s theorem applies and an other one of coincidence type for

the localization of a solution. In this way, the compression-expansion technique is extended

from scalar equations to abstract equations, specifically to partial differential equations.
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1. Introduction

Krasnoselskii’s compression-expansion fixed point theorem in cones [8] is
one of the most significant results of nonlinear functional analysis.

Theorem 1.1 (Krasnoselskii). Let (E, |.|) be a normed linear space, C ⊂ E

a proper wedge and N : C → C a completely continuous map. Assume that
for some numbers ρ and R with 0 < ρ < R, one of the following conditions is
satisfied:

(a) |N (x)| ≤ |x| for |x| = ρ and |N (x)| ≥ |x| for |x| = R,

(b) |N (x)| ≥ |x| for |x| = ρ and |N (x)| ≤ |x| for |x| = R.

Then N has a fixed point x with ρ ≤ |x| ≤ R.

This paper was presented at International Conference on Nonlinear Operators, Differential

Equations and Applications held in Cluj-Napoca (Romania) from August 24 to August 27,

2004.
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This result as well as similar others are simple applications of the index
(see Amann [2], Deimling [3] and Granas and Dugundji [6, p 325]) and can
be proved elementarily using the notion of an essential map (see O’Regan and
Precup [13], Precup [14] and Simon and Volkmann [16]).

Krasnoselskii type theorems in cones have been successfully applied to dis-
cuss existence, localization and multiplicity of nonnegative solutions for two-
point boundary value problems, see Agarwal, Meehan, O’Regan and Precup
[1], Erbe, Hu and Wang [4], Erbe and Wang [5], Guo, Lakshmikantham and
Liu [7], Lan and Webb [9], Lian, Wong and Yeh [10], Meehan and O’Regan
[12] and O’Regan and Precup [13]. All these applications are based on upper
and lower inequalities for the appropriate Green’s functions.

Similar inequalities for boundary value problems to partial differential equa-
tions are not known and Krasnoselskii’s Theorem appears quite unapplicable
to this type of problems. The main goal of this paper is to explain how this
difficulty can be overcome when treating partial differential equations.

We finish this introductory section by some notations. For a bounded and
open set Ω ⊂ Rn, 1 ≤ p < ∞ and 0 < T < ∞, we consider the space Lp (Ω)
with norm |u|p =

(∫
Ω |u (x)|p dx

)1/p and the space C ([0, T ] ; Lp (Ω)) with norm
|.|∞,p defined by

|u|∞,p = max
t∈[0,T ]

|u (t)|p .

The space H−1 (Ω) with norm |.|−1 is the dual of the Sobolev space H1
0 (Ω) , the

notation Lp (Ω;R+) stands for the set of nonnegative functions of Lp (Ω) and
H−1 (Ω;R+) is the set of all u ∈ H−1 (Ω) whose values (u, v) on all nonnegative
functions v ∈ H1

0 (Ω) are nonnegative. Also we use the notation |u|∞,−1 to
denote the norm |u|∞,−1 = max

t∈[0,T ]
|u (t)|−1 on C

(
[0, T ] ; H−1 (Ω)

)
. We recall

that H1
0 (Ω) ⊂ Lp (Ω) and Lq (Ω) ⊂ H−1 (Ω) (with continuous imbeddings) for

1 ≤ p ≤ 2∗ = 2n
n−2 and q ≥ (2∗)′ = 2n

n+2 if n ≥ 3 and for all p, q ≥ 1 if n = 1 or
n = 2.

2. Main existence and localization result

We shall discuss the mixed Cauchy–Dirichlet problem for the nonlinear wave
equation
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
−u′′ (t) + ∆u (t)−mu (t) = F (u) (t) , t ∈ [0, T ]
u (0) = u (T ) = 0
u ∈ C

(
[0, T ] ; H1

0 (Ω)
)
∩ C2

(
[0, T ] ; H−1 (Ω)

)
.

(2.1)

Here 0 < T < ∞, Ω ⊂ Rn is a bounded open subset, m > −λ1 (λ1 is the first
eigenvalue corresponding to −∆ and to the homogenous Dirichlet boundary
condition) and F is a map from C

(
[0, T ] ; H1

0 (Ω)
)

to C
(
[0, T ] ; H−1 (Ω)

)
.

Let A : D (A) → C
(
[0, T ] ; H−1 (Ω)

)
be given by

(Au) (t) = −u′′ (t) .

Here D (A) =
{
u ∈ C2

(
[0, T ] ; H−1 (Ω)

)
: u (0) = u (T ) = 0

}
. Clearly A is in-

vertible and(
A−1v

)
(t) =

∫ T

0
g (t, s) v (s) ds, v ∈ C

(
[0, T ] ; H−1 (Ω)

)
where g is the Green’s function of the differential operator A with respect to
the boundary condition u (0) = u (T ) = 0, i.e.

g (t, s) =

{
s(T−t)

T , 0 ≤ s ≤ t ≤ T
t(T−s)

T , 0 ≤ t ≤ s ≤ T.

Notice that for every subinterval [a, b] of [0, T ] , 0 < a < b < T, g satisfies the
following upper and lower inequalities

g (t, s) ≤ g (s, s) for t ∈ [0, T ] and s ∈ [0, T ] (2.2)

ka,bg (s, s) ≤ g (t, s) for t ∈ [a, b] and s ∈ [0, T ] .

Here ka,b = min
{

a
T , T−b

T

}
. Obviously 0 < ka,b < 1. In what follows we shall

also use the notation

g∗a,b = max
t∈[0,T ]

∫ b

a
g (t, s) ds.

Clearly g∗a,b ≥ ka,b

∫ b
a g (s, s) ds > 0. Also note that

∫ T
0 g (s, s) ds = T 2

6 .

Let B : H1
0 (Ω) → H−1 (Ω) be defined by

Bu = −∆u + m u, u ∈ H1
0 (Ω) .

Since m > −λ1, B is invertible and its inverse B−1 is a linear continuous and
positive (by the maximum principle) operator. We make the convention that
for a function u ∈ C

(
[0, T ] ; H1

0 (Ω)
)
, Bu is the function in C

(
[0, T ] ; H−1 (Ω)

)
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defined by (Bu) (t) = Bu (t) for t ∈ [0, T ] . An analogue convention is made
for B−1.

Basic theory on the non-homogenous linear wave equation (see Lions and
Magenes [11] and Precup [15]) guarantees that the operator A − B from
C([0, T ] ; H1

0 (Ω)) ∩ D (A) to C
(
[0, T ] ; H−1 (Ω)

)
is invertible and its inverse

(A−B)−1 is a linear operator, completely continuous from C
(
[0, T ] ; H−1 (Ω)

)
to C([0, T ] ; Lp (Ω)) for (2∗)′ ≤ p < 2∗ if n ≥ 3 and any p ≥ 1 if n = 1 or
n = 2.

One can check that the following equality is true(
B−1 −A−1

)−1 = (A−B)−1 BA

for operators acting from C2
(
[0, T ] ; H1

0 (Ω)
)

to C
(
[0, T ] ; H1

0 (Ω)
)
∩C2([0, T ] ;

H−1 (Ω)).
Now solving (2.1) is equivalent to the problem

(A−B) u = F (u) , u ∈ C
(
[0, T ] ; H1

0 (Ω)
)
∩D (A) (2.3)

which can be written under the form

u = (A−B)−1 F (u) (2.4)

or equivalently as (
B−1 −A−1

)
u = A−1B−1F (u) . (2.5)

Under suitable conditions on F, the complete continuity of (A−B)−1 implies
that the nonlinear operator N := (A−B)−1 F associated to the right hand
side of equation (2.4) is completely continuous. Hence equation (2.4) gives us
the operator to which Krasnoselskii’s Theorem applies. On the other hand,
the upper and lower inequalities (2.2) for the Green’s kernel in A−1 make
equation (2.5) useful for the localization of a solution of (2.4) in a conical shell
of the form

0 < ρ ≤
∣∣(B−1 −A−1

)
u
∣∣
∞,q

≤ R.

More exactly, we have the following result on the existence and the localization
of a solution of (2.1).

Theorem 2.1. Let (2∗)′ ≤ p < 2∗, 1 ≤ q ≤ 2∗ if n ≥ 3 and p ≥ 1, q ≥ 1 if
n = 1 or n = 2. Let C be the cone of C ([0, T ] ; Lp (Ω)) given by

C =
{

u ∈ C ([0, T ] ; Lp (Ω)) : u = (A−B)−1 v, v ∈ C
(
[0, T ] ; H−1 (Ω;R+)

)}
.
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10 Assume that the following two conditions are satisfied:
(h1) F : C → C

(
[0, T ] ; H−1 (Ω;R+)

)
is continuous and sends bounded sets

into bounded sets;
(h2) there exists α > 0 such that∣∣B−1F (u) (t)

∣∣
q
≤ 6α

T 2
, t ∈ [0, T ]

for every u ∈ C with ‖u‖ :=
∣∣(B−1 −A−1

)
u
∣∣
∞,q

= α.

Then (2.1) has at least one solution u ∈ C with ‖u‖ ≤ α.

20 Assume that (h1), (h2) and the following additional condition are satis-
fied:

(h3) there exists an interval [a, b] with 0 < a < b < T, a map φ : C →
H−1 (Ω;R+) and a number β > 0, β 6= α, such that

φ (u) ≤ F (u) (t) , t ∈ [a, b] (2.6)

and ∣∣B−1φ (u)
∣∣
q
≥ β

g∗a,b

(2.7)

for all u ∈ C with ‖u‖ = β.

Then (2.1) has at least one solution u ∈ C with

min {α, β} ≤ ‖u‖ ≤ max {α, β} .

Proof. We shall apply Theorem 1.1 to the space E = C ([0, T ] ; Lp (Ω)) with
norm ‖u‖ and to the operator N = (A−B)−1 F. From (h1) we have for every
u ∈ C that F (u) ∈ C

(
[0, T ] ; H−1 (Ω;R+)

)
. It follows that (A−B)−1 F (u) ∈

C, that is N (u) ∈ C. Also (h1) and the complete continuity of (A−B)−1

guarantee that N : C → C is completely continuous.
Let u ∈ C with ‖u‖ = α. Since N (u) =

(
B−1 −A−1

)−1
A−1B−1F (u) , we

have

‖N (u)‖ =
∣∣A−1B−1F (u)

∣∣
∞,q

.

On the other hand, in virtue of (2.2) one has

0 ≤ A−1B−1F (u) (t) =
∫ T

0
g (t, s) B−1F (u) (s) ds

≤
∫ T

0
g (s, s) B−1F (u) (s) ds.
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Then, since the norm |.|q is monotone,

∣∣A−1B−1F (u) (t)
∣∣
q
≤

∫ T

0
g (s, s)

∣∣B−1F (u) (s)
∣∣
q
ds

≤ 6α

T 2

∫ T

0
g (s, s) ds = α.

Hence

‖N (u)‖ ≤ α = ‖u‖ . (2.8)

10 Inequality (2.8) clearly guarantees that the boundary condition u 6=
λN (u) holds for all λ ∈ (0, 1) and u ∈ ∂U, where U := {u ∈ C : ‖u‖ < α} .

Thus the conclusion follows from the Leray-Schauder Fixed Point Theorem
(see Granas and Dugundji [6, p 123]).

20 Under assumptions (h1)-(h3), condition (a) or (b) holds (with ρ =
min {α, β} and R = max {α, β}) if α < β or β < α, respectively. To show this,
assume u ∈ C and ‖u‖ = β. Let t∗ ∈ [0, T ] with g∗a,b =

∫ b
a g (t∗, s) ds. Using

(2.6), we obtain(
B−1 −A−1

)
N (u) (t∗) = A−1B−1F (u) (t∗)

=
∫ T

0
g (t∗, s) B−1F (u) (s) ds

≥
∫ b

a
g (t∗, s) B−1F (u) (s) ds

≥ g∗a,bB
−1φ (u) .

Then, by (2.7), we deduce that∣∣(B−1 −A−1
)
N (u) (t∗)

∣∣
q
≥ g∗a,b

∣∣B−1φ (u)
∣∣
q
≥ β.

It follows that

‖N (u)‖ ≥ β = ‖u‖ .

This together with (2.8) shows that (a) or (b) holds if α < β, respectively
β < α. Thus Krasnoselskii’s Theorem applies. �

Remark 2.1. For each u ∈ C and all t ∈ [0, T ] and t′ ∈ [a, b] , we have

0 ≤ ka,b

(
B−1 −A−1

)
u (t) ≤

(
B−1 −A−1

)
u

(
t′
)
. (2.9)
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Indeed, if u = (A−B)−1 v with v ∈ C
(
[0, T ] ; H−1 (Ω;R+)

)
, then

ka,b

(
B−1 −A−1

)
u (t) = ka,bA

−1B−1v (t) = ka,b

∫ T

0
g (t, s) B−1v (s) ds

≤ ka,b

∫ T

0
g (s, s) B−1v (s) ds

≤
∫ T

0
g

(
t′, s

)
B−1v (s) ds

= A−1B−1v
(
t′
)

=
(
B−1 −A−1

)
u

(
t′
)
.

Also, the positivity of A−1 and B−1 guarantees A−1B−1v (t) ≥ 0. Hence(
B−1 −A−1

)
u (t) ≥ 0, t ∈ [0, T ] .

Remark 2.2. The norms |.|∞,p and ‖.‖ are equivalent on C ([0, T ] ; Lp (Ω)) .

Indeed, if for any u ∈ C ([0, T ] ; Lp (Ω)) we let v =
(
B−1 −A−1

)
u, then∣∣∣(B−1 −A−1

)−1
∣∣∣−1

|u|∞,p ≤ ‖u‖ = |v|∞,q ≤
∣∣(B−1 −A−1

)∣∣ |u|∞,p .

Thus

c0 |u|∞,p ≤ ‖u‖ ≤ c1 |u|∞,p , u ∈ C ([0, T ] ; Lp (Ω)) (2.10)

where

c0 =
∣∣∣(B−1 −A−1

)−1
∣∣∣−1

and c1 =
∣∣(B−1 −A−1

)∣∣ .

Here c−1
0 is the norm of operator

(
B−1 −A−1

)−1 acting from Lq (Ω) to Lp (Ω) ,

while c1 is the norm of operator
(
B−1 −A−1

)
from Lp (Ω) to Lq (Ω) .

Remark 2.3. A sufficient condition for (h2) is that

lim
|u|∞,p→0

|F (u)|∞,−1

|u|∞,p

= 0 or lim
|u|∞,p→∞

|F (u)|∞,−1

|u|∞,p

= 0. (2.11)

Indeed, under condition (2.11), for every ε > 0 there exists a δ = δ (ε) > 0
such that if |u|∞,p ≤ δ (respectively, |u|∞,p ≥ δ), then |F (u)|∞,−1 ≤ ε |u|∞,p .

Consequently, if c is a constant with
∣∣B−1w

∣∣
Lq(Ω)

≤ c |w|H−1(Ω) , then∣∣B−1F (u)
∣∣
∞,q

≤ c |F (u)|∞,−1 ≤ cε |u|∞,p ≤ cεc−1
0 ‖u‖ .

Thus (h2) holds for ε = ε0 := 6c0
T 2c

and any α > 0 with α ≤ c0δ (ε0) (respec-
tively, α ≥ c1δ (ε0)).



316 RADU PRECUP

Remark 2.4. A sufficient condition for (2.7) is that

lim
|u|∞,p→0

∣∣B−1φ (u)
∣∣
q

|u|∞,p

= ∞ or lim
|u|∞,p→∞

∣∣B−1φ (u)
∣∣
q

|u|∞,p

= ∞.

Indeed, under this condition, for every ε > 0 there is a δ = δ (ε) > 0 such
that if |u|∞,p ≤ δ (respectively, |u|∞,p ≥ δ), then

∣∣B−1φ (u)
∣∣
q
≥ ε |u|∞,p ,

hence ∣∣B−1φ (u)
∣∣
q
≥ εc−1

1 ‖u‖ .

Thus (2.7) holds for ε = ε0 := c1
g∗a,b

and any β > 0, β 6= α with β ≤ c0δ (ε0)

(respectively, β ≥ c1δ (ε0)).

Remark 2.5. A sufficient condition for (h3) is to exist an interval [a, b] with
0 < a < b < T, a continuous nondecreasing function f : R+ → R+ and
a number β > 0, β 6= α, such that f (v) = f ◦ v ∈ H−1 (Ω;R+) for every
v ∈ Lq (Ω;R+) ,

F (u) (t) ≥ f
((

B−1 −A−1
)
u (t)

)
, t ∈ [a, b] , u ∈ C (2.12)

and

inf
{∣∣B−1f (ka,bv)

∣∣
q

: v ∈ Lq (Ω;R+) , |v|q = β
}
≥ β

g∗a,b

. (2.13)

Indeed, if u ∈ C, then (2.9) is true and (2.12) and the monotonicity of f

imply

F (u) (t) ≥ f
(
ka,b

(
B−1 −A−1

)
u (tu)

)
, t ∈ [a, b] ,

where tu ∈ [0, T ] and
∣∣(B−1 −A−1

)
u (tu)

∣∣
q

= ‖u‖ . Hence (2.6) holds with
φ (u) = f

(
ka,b

(
B−1 −A−1

)
u (tu)

)
. Now (2.13) guarantees (2.7).

3. Applications

We shall specialize Theorem 2.1 to discuss the existence and the localization
of solutions for nonlinear problems of the form

−u′′ (t) + ∆u (t)−mu (t)=h
(∣∣(B−1 −A−1

)
u (t)

∣∣
q

)
f (t, u (t)) on [0, T ]

u (0) = u (T ) = 0
u ∈ C

(
[0, T ] ; H1

0 (Ω)
)
∩ C2

(
[0, T ] ; H−1 (Ω)

)
.

(3.1)
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Theorem 3.1. Let h : R+ → R+ be continuous and nondecreasing and f :
[0, T ]×R → R+ be continuous and

f (t, u) ≤ c + d |u|γ , t ∈ [0, T ] , u ∈ R (3.2)

for some c, d > 0, 1 ≤ γ < 2∗ − 1 = n+2
n−2 if n ≥ 3 and 1 ≤ γ < ∞ if n = 1

or n = 2. Let
∣∣B−1

∣∣ denotes the norm of operator B−1 from Lr (Ω) to Lq (Ω)
where r = (2∗)′ , q = 2∗ if n ≥ 3 and r ≥ 1, q ≥ 1 in case that n = 1 or n = 2.

Denote c∗ = c |1|r and let p = γr. Assume that there exists α > 0 such that∣∣B−1
∣∣ (

c∗ + dc−γ
0 αγ

) T 2

6
≤ α

h (α)
. (3.3)

Then problem (3.1) has at least one solution u with

‖u‖ =
∣∣(B−1 −A−1

)
u
∣∣
∞,q

≤ α.

If in addition there exists an interval [a, b] with 0 < a < b < T, a number σ

with

0 < σ ≤ f (t, u) , t ∈ [a, b] , u ∈ R (3.4)

and a number β > 0, β 6= α, such that

σ g∗a,b |ϕ1|q
(λ1 + m) |ϕ1|∞

≥ β

h (ka,bβ)
(3.5)

then (3.1) has at least one solution u with

min {α, β} ≤ ‖u‖ ≤ max {α, β} .

Proof. We shall apply Theorem 2.1. Notice that for n ≥ 3, from 1 ≤ γ <

2∗ − 1 = 2∗

(2∗)′
, we have (2∗)′ ≤ p = γ (2∗)′ < 2∗.

Let F : C ([0, T ] ; Lp (Ω)) → C ([0, T ] ; Lr (Ω;R+)) be given by

F (u) (t) = h
(∣∣(B−1 −A−1

)
u (t)

∣∣
q

)
f (t, u (t)) .

From (3.2) we immediately see that

|f (t, u (t))|r ≤ c∗ + d |u (t)|γp , t ∈ [0, T ] . (3.6)

Here c∗ = c |1|r . Then, also using the monotonicity of h, we deduce

|F (u) (t)|r ≤ h (‖u‖)
(
c∗ + d |u (t)|γp

)
, t ∈ [0, T ] . (3.7)
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Consequently, F sends bounded subsets of C ([0, T ] ; Lp (Ω)) into bounded sets
of C ([0, T ] ; Lr (Ω)) . Also the continuity of f and h guarantees that F is
continuous. Thus (h1) holds.

Next, using (3.6) and (2.10) we obtain∣∣B−1F (u) (t)
∣∣
q

= h
(∣∣(B−1 −A−1

)
u (t)

∣∣
q

) ∣∣B−1f (t, u (t))
∣∣
q

≤ h (‖u‖)
∣∣B−1

∣∣ (
c∗ + d |u (t)|γp

)
≤ h (‖u‖)

∣∣B−1
∣∣ (

c∗ + dc−γ
0 ‖u‖γ

)
.

This together with (3.3) proves (h2). Now the existence of a solution u with
‖u‖ ≤ α is guarantees by Theorem 2.1 10.

Next we prove that the additional assumption guarantees (h3). Indeed,
according to (2.9), (2.6) holds with φ (u) = σh (ka,b ‖u‖) . It remains to check
(2.7). It is well known that any eigenfunction of −∆ is bounded on Ω, so
0 < ϕ1 (x) ≤ |ϕ1|∞ < ∞ for all x ∈ Ω. Then

0 <
1

|ϕ1|∞
ϕ1 (x) ≤ 1, x ∈ Ω.

This together with −∆ϕ1 + mϕ1 = (λ1 + m) ϕ1 and the positivity of B−1,

guarantees that

B−11 ≥ 1
|ϕ1|∞

B−1ϕ1 =
1

|ϕ1|∞ (λ1 + m)
ϕ1.

Hence ∣∣B−11
∣∣
q
≥ 1
|ϕ1|∞ (λ1 + m)

|ϕ1|q .

As a result∣∣B−1φ (u)
∣∣
q

= φ (u)
∣∣B−11

∣∣
q
≥ σh (ka,b ‖u‖)

1
|ϕ1|∞ (λ1 + m)

|ϕ1|q .

This together with (3.5) guarantees (2.7).
Thus all the assumptions of Theorem 2.1 are satisfied. �

Remark 3.1. Multiple solutions to problem (3.1) are guaranteed by Theorem
3.1 if f and h satisfy all the assumptions for several disjoint intervals [α, β]
(or [β, α]).
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In particular, for h ≡ 1, Theorem 3.1 yields the following existence and
localization result for the problem

−u′′ (t) + ∆u (t)−mu (t) = f (t, u (t)) , t ∈ [0, T ]
u (0) = u (T ) = 0
u ∈ C

(
[0, T ] ; H1

0 (Ω)
)
∩ C2

(
[0, T ] ; H−1 (Ω)

)
.

(3.8)

Corollary 3.2. Let f : [0, T ]×R → R+ be continuous and

f (t, u) ≤ c + d |u|γ , t ∈ [0, T ] , u ∈ R (3.9)

for some c, d > 0, 1 ≤ γ < 2∗ − 1 if n ≥ 3 and 1 ≤ γ < ∞ if n = 1 or
n = 2. Let

∣∣B−1
∣∣ denotes the norm of operator B−1 from Lr (Ω) to Lq (Ω)

where r = (2∗)′ , q = 2∗ if n ≥ 3 and r ≥ 1, q ≥ 1 in case that n = 1 or n = 2.

Let c∗ = c |1|r and p = γr. Assume that there exists α > 0 such that∣∣B−1
∣∣ (

c∗ + dc−γ
0 αγ

) T 2

6
≤ α. (3.10)

Then problem (3.8) has at least one solution u with

‖u‖ =
∣∣(B−1 −A−1

)
u
∣∣
∞,q

≤ α.

If in addition there exists an interval [a, b] with 0 < a < b < T and a number
σ with

0 < σ ≤ f (t, u) , t ∈ [a, b] , u ∈ R, (3.11)

then ‖u‖ ≥ β, where

β :=
σ g∗a,b |ϕ1|q

(λ1 + m) |ϕ1|∞
.

Proof. The result is a direct consequence of Theorem 3.1 for h ≡ 1. Notice
that β < α. Indeed, if α satisfies (3.10), then

α ≥ T 2

6

∣∣B−1
∣∣ (

c∗ + d c−γ
0 αγ

)
≥ T 2

6

∣∣B−1
∣∣ c∗ =

∣∣B−1
∣∣ c |1|r

∫ T

0
g (s, s) ds.

(3.12)
On the other hand, from Bϕ1 = (λ1 + m) ϕ1 we have

1
λ1 + m

|ϕ1|q =
∣∣B−1ϕ1

∣∣
q
≤

∣∣B−1
∣∣ |ϕ1|r .

Hence ∣∣B−1
∣∣ ≥ |ϕ1|q

(λ1 + m) |ϕ1|r
≥

|ϕ1|q
(λ1 + m) |1|r |ϕ1|∞

. (3.13)



320 RADU PRECUP

Now (3.12) and (3.13) imply

α ≥
c |ϕ1|q

(λ1 + m) |ϕ1|∞

∫ T

0
g (s, s) ds. (3.14)

Conditions (3.9) and (3.11) yield in particular σ ≤ f (t, 0) ≤ c for t ∈ [a, b] .
Hence σ ≤ c. Also, taking into account

g∗a,b =
∫ b

a
g (t∗, s) ds ≤

∫ b

a
g (s, s) ds <

∫ T

0
g (s, s) ds,

we deduce from (3.14) that α > β as claimed. �

Remark 3.2. The existence result in Corollary 3.2 also follows from the
Schauder fixed point theorem, while the localization part can also be established
by showing that any solution u satisfies ‖u‖ ≥ β.
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