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1. Introduction

A map is a continuous function; X always denotes a nonempty topologi-
cal space (sometimes satisfying conditions that we specify); X∞ denotes the
countably infinite Cartesian product of X with itself with the product topo-
logy.

This paper began when we observed the following consequence of 3.10 of
[4]: Let X be a compact metric absolute retract, and let f : X∞ → X∞ be
a map; then, for each positive integer n, there is a point pn = (pn

i )∞i=1 ∈ X∞

such that f shifts pn to the left n coordinates; that is,

f(pn
1 , pn

2 , . . . , pn
n, . . . ) = (pn

n+1, p
n
n+2, . . . ).
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We became interested in determining the points of X∞ that are limits as
n →∞ of points that are shifted n coordinates to the left under various maps
f : X∞ → X∞. At first we thought that whether or not all points are such
limits always depended on the map, not on the space; then we discovered that
for any topological space X, all points of X∞ are such limits for every map
f : X∞ → X∞ if and only if X∞ has the fixed point property. We prove this
theorem together with two other characterizations of the fixed point property
for X∞ (one of which we use to formulate a corollary). Our theorem generalizes
and substantially strengthens the result for absolute retracts that we stated
above. In addition, the proof of our theorem is elementary; in particular, the
proof does not use CE-maps (which were used in [4]).

2. Notation and terminology

For each n = 1, 2, . . . , σn : X∞ → X∞ is the map that shifts coordinates to
the left n places; that is,

σn((xi)∞i=1) = (xi)∞i=n+1, all (xi)∞i=1 ∈ X∞.

Let f : X∞ → X∞ be a map. For any n = 1, 2, . . . , we call a point y in
X∞ an n-shift point for f provided that f(y) = σn(y). We call a point p in
X∞ an infinite shift point for f provided that there is a sequence {yn}∞n=1 in
X∞ such that {yn}∞n=1 converges to p and yn is an n-shift point for f for each
n (i.e., f(yn) = σn(yn) for each n).

3. Characterization theorem

Theorem. For any nonempty topological space X, the following four con-
ditions are equivalent:

(1) for some integer n0 ≥ 1, every map of X∞ into X∞ has an n0-shift
point;

(2) for each integer n ≥ 1, every map of X∞ into X∞ has an n-shift point;
(3) every point of X∞ is an infinite shift point for every map of X∞ to

X∞;
(4) X∞ has the fixed point property.
Proof. It is obvious that (3) implies (2) and that (2) implies (1). We prove

that (1) implies (4) and that (4) implies (3).
Let f : X∞ → X∞ be a given map.
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Assume (1). Then the map f ◦ σn0 : X∞ → X∞ has an n0-shift point p.
This means (f ◦σn0)(p) = σn0(p). Therefore, σn0(p) is a fixed point of f . This
proves (1) implies (4).

Assume (4). Fix a point p = (pi)∞i=1 ∈ X∞. Convergence in X∞ is coor-
dinatewise convergence; thus, to prove (3), it suffices to prove that for each
n = 1, 2, . . . , there is a point yn = (yn

i )∞i=1 in X∞ such that yn
i = pi for all

i ≤ n and f(yn) = σn(yn).
Fix n. Define a map ϕ : X∞ → X∞ by

ϕ(x) = f(p1, . . . , pn, x1, x2, . . . ), all x = (xi)∞i=1 ∈ X∞.

By (4), ϕ(q) = q for some point q = (qi)∞i=1 ∈ X∞. Let

yn = (p1, . . . , pn, q1, q2, . . . ).

Then yn
i = pi for all i ≤ n and

f(yn) = ϕ(q) = q = σn(yn).

This proves (4) implies (3). �

Corollary. If X is a nonempty topological space such that for some integer
n0 ≥ 1, every map of X∞ into X∞ has an n0-shift point, then X has the fixed
point property.

Proof. By our Theorem, X∞ has the fixed point property. Therefore, since
X (as the Cartesian product X × {p} × {p} × . . . , where p is a given point of
X) is a retract of X∞, X has the fixed point property. �

The following example shows that the converse of the Corollary is false even
for compact metric spaces.

Example. There are compact metric spaces X with the fixed point prop-
erty such that for each integer n ≥ 1, there is a map fn : X∞ → X∞ that
has no n-shift point. This is seen by applying our Theorem to R. J. Knill’s
example B in [2]: Knill proved that B (which is compact and metric) has the
fixed point property and that the Cartesian product B × [0, 1] does not have
the fixed point property. Since B contains arcs, B ×B retracts onto B × arc;
hence, B × B does not have the fixed point property. Thus, B∞ does not
have the fixed point property. Therefore, by our Theorem, there is a map
fn : B∞ → B∞ with no n-shift point for each integer n ≥ 1. (An example of a
noncompact metric space X with the fixed point property for which it is easy
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to verify that X ×X does not have the fixed point property is in [1, Example
2].)

If X is a compact metric space such that every finite Cartesian product
of X with itself has the fixed point property, then X∞ has the fixed point
property (apply 21.3 of [3, p.182]). However, we do not know the answer to
the following:

Question. Is there a metric space X such that every finite Cartesian
product of X with itself has the fixed point property but such that X∞ does
not have the fixed point property?
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