Fixed Point Theory, Volume 5, No. 2, 2004, 299-302 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.htm

SHIFT POINTS AND THE FIXED POINT PROPERTY FOR PRODUCTS

T. BRUCE MCLEAN¹ AND SAM B. NADLER, JR.²

¹Department of Mathematical Sciences Georgia Southern University Statesboro, Ga 30460-8093 E-mail: bmclean@georgiasouthern.edu

> ²Department of Mathematics P. O. Box 6310 West Virginia University Morgantown, WV 26506-6310 E-mail: nadler@math.wvu.edu

Abstract. Characterizations of when countable Cartesian products have the fixed property are given in terms of shift points.

Key Words and Phrases: Absolute retract, Cartesian product, fixed point property, infinite shift point, *n*-sfhit point.

2000 Mathematics Subject Classification: 54H25, 54B10.

1. INTRODUCTION

A map is a continuous function; X always denotes a nonempty topological space (sometimes satisfying conditions that we specify); X^{∞} denotes the countably infinite Cartesian product of X with itself with the product topology.

This paper began when we observed the following consequence of 3.10 of [4]: Let X be a compact metric absolute retract, and let $f: X^{\infty} \to X^{\infty}$ be a map; then, for each positive integer n, there is a point $p^n = (p_i^n)_{i=1}^{\infty} \in X^{\infty}$ such that f shifts p^n to the left n coordinates; that is,

$$f(p_1^n, p_2^n, \dots, p_n^n, \dots) = (p_{n+1}^n, p_{n+2}^n, \dots).$$
299

We became interested in determining the points of X^{∞} that are limits as $n \to \infty$ of points that are shifted n coordinates to the left under various maps $f: X^{\infty} \to X^{\infty}$. At first we thought that whether or not all points are such limits always depended on the map, not on the space; then we discovered that for any topological space X, all points of X^{∞} are such limits for every map $f: X^{\infty} \to X^{\infty}$ if and only if X^{∞} has the fixed point property. We prove this theorem together with two other characterizations of the fixed point property for X^{∞} (one of which we use to formulate a corollary). Our theorem generalizes and substantially strengthens the result for absolute retracts that we stated above. In addition, the proof of our theorem is elementary; in particular, the proof does not use CE-maps (which were used in [4]).

2. NOTATION AND TERMINOLOGY

For each $n = 1, 2, ..., \sigma_n : X^{\infty} \to X^{\infty}$ is the map that shifts coordinates to the left *n* places; that is,

$$\sigma_n((x_i)_{i=1}^{\infty}) = (x_i)_{i=n+1}^{\infty}, \text{ all } (x_i)_{i=1}^{\infty} \in X^{\infty}.$$

Let $f: X^{\infty} \to X^{\infty}$ be a map. For any n = 1, 2, ..., we call a point y in X^{∞} an *n*-shift point for f provided that $f(y) = \sigma_n(y)$. We call a point p in X^{∞} an infinite shift point for f provided that there is a sequence $\{y^n\}_{n=1}^{\infty}$ in X^{∞} such that $\{y^n\}_{n=1}^{\infty}$ converges to p and y^n is an *n*-shift point for f for each n (i.e., $f(y^n) = \sigma_n(y^n)$ for each n).

3. Characterization theorem

Theorem. For any nonempty topological space X, the following four conditions are equivalent:

(1) for some integer $n_0 \ge 1$, every map of X^{∞} into X^{∞} has an n_0 -shift point;

(2) for each integer $n \ge 1$, every map of X^{∞} into X^{∞} has an n-shift point;

(3) every point of X^{∞} is an infinite shift point for every map of X^{∞} to X^{∞} ;

(4) X^{∞} has the fixed point property.

Proof. It is obvious that (3) implies (2) and that (2) implies (1). We prove that (1) implies (4) and that (4) implies (3).

Let $f: X^{\infty} \to X^{\infty}$ be a given map.

300

301

Assume (1). Then the map $f \circ \sigma_{n_0} : X^{\infty} \to X^{\infty}$ has an n_0 -shift point p. This means $(f \circ \sigma_{n_0})(p) = \sigma_{n_0}(p)$. Therefore, $\sigma_{n_0}(p)$ is a fixed point of f. This proves (1) implies (4).

Assume (4). Fix a point $p = (p_i)_{i=1}^{\infty} \in X^{\infty}$. Convergence in X^{∞} is coordinatewise convergence; thus, to prove (3), it suffices to prove that for each $n = 1, 2, \ldots$, there is a point $y^n = (y_i^n)_{i=1}^{\infty}$ in X^{∞} such that $y_i^n = p_i$ for all $i \leq n$ and $f(y^n) = \sigma_n(y^n)$.

Fix *n*. Define a map $\varphi : X^{\infty} \to X^{\infty}$ by

$$\varphi(x) = f(p_1, \dots, p_n, x_1, x_2, \dots), \text{ all } x = (x_i)_{i=1}^{\infty} \in X^{\infty}.$$

By (4), $\varphi(q) = q$ for some point $q = (q_i)_{i=1}^{\infty} \in X^{\infty}$. Let

$$y^n = (p_1, \dots, p_n, q_1, q_2, \dots).$$

Then $y_i^n = p_i$ for all $i \leq n$ and

$$f(y^n) = \varphi(q) = q = \sigma_n(y^n).$$

This proves (4) implies (3). \Box

Corollary. If X is a nonempty topological space such that for some integer $n_0 \ge 1$, every map of X^{∞} into X^{∞} has an n_0 -shift point, then X has the fixed point property.

Proof. By our Theorem, X^{∞} has the fixed point property. Therefore, since X (as the Cartesian product $X \times \{p\} \times \{p\} \times \dots$, where p is a given point of X) is a retract of X^{∞} , X has the fixed point property. \Box

The following example shows that the converse of the Corollary is false even for compact metric spaces.

Example. There are compact metric spaces X with the fixed point property such that for each integer $n \ge 1$, there is a map $f_n : X^{\infty} \to X^{\infty}$ that has no *n*-shift point. This is seen by applying our Theorem to R. J. Knill's example B in [2]: Knill proved that B (which is compact and metric) has the fixed point property and that the Cartesian product $B \times [0, 1]$ does not have the fixed point property. Since B contains arcs, $B \times B$ retracts onto $B \times arc$; hence, $B \times B$ does not have the fixed point property. Thus, B^{∞} does not have the fixed point property. Therefore, by our Theorem, there is a map $f_n : B^{\infty} \to B^{\infty}$ with no *n*-shift point for each integer $n \ge 1$. (An example of a noncompact metric space X with the fixed point property for which it is easy to verify that $X \times X$ does not have the fixed point property is in [1, Example 2].)

If X is a compact metric space such that every finite Cartesian product of X with itself has the fixed point property, then X^{∞} has the fixed point property (apply 21.3 of [3, p.182]). However, we do not know the answer to the following:

Question. Is there a metric space X such that every finite Cartesian product of X with itself has the fixed point property but such that X^{∞} does not have the fixed point property?

References

- E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10(1959), 974-979.
- [2] R. J. Knill, Cones, products and fixed points, Fund. Math., 60(1967), 35-46.
- [3] A. Illanes, S. B. Nadler, Jr., Hyperspaces: Fundamentals and recent advances, Pure and Applied Mathematics Series, Vol. 216, Marcel Dekker, Inc., New York and Basel, 1999.
- [4] S. B. Nadler, Jr., Universal mappings and weakly confluent mappings, Fund. Math., 110(1980), 221-235.