
Fixed Point Theory, Volume 5, No. 2, 2004, 285-298

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.htm

THE METRIC PROJECTION AND ITS APPLICATIONS
TO SOLVING VARIATIONAL INEQUALITIES IN

BANACH SPACES

JINLU LI

Department of Mathematical Sciences

Shawnee State University

Portsmouth, Ohio 45662, USA

E-mail: hli@shawnee.edu
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1. Preliminaries

Let (X, d) be a metric space and let K be a nonempty subset of X. For
every x ∈ X, the distance between point x and the set K is denoted by d(x,K)
and is defined by the following minimum equation

d(x,K) = inf
y∈K

d(x, y).

The metric projection operator PK defined on X is a mapping from X to
2K :

PK(x) = {z ∈ K : d(x, z) = d(x,K)}, for all x ∈ X.

If PK(x) 6= ∅, for every x ∈ X, then K is called proximal. If PK(x) is a
singleton, for every x ∈ X, then K is said to be a Chebyshev set.
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In a special case, let (B, ‖ · ‖) be a Banach space with the topological
dual space B∗, and let 〈ϕ, x〉 denote the duality pairing of B∗ and B, where
ϕ ∈ B∗ and x ∈ B. Let K be a subset of B. The metric projection operator
(the nearest point projection) PK : B → 2K has been used in many areas of
mathematics such as: theory of optimization and approximation, fixed point
theory. It is interesting to know what conditions to imply that a subset K is
a proximal set, or, furthermore, is a Chebyshev set in a given Banach space.
For example, in [9], Goeble and Reich proved the following theorem.

Theorem A. [9] Every closed convex subset of a uniformly convex Banach
space is a Chebyshev set.

In [14], the present author studied the characteristics of the operator PK

based on the properties of Banach spaces. A non-proximal set example was
given. We list the example and some properties below.

Example. Let B = l1. It is known that l1 is a non-reflexive Banach space
with dual space l∞. For any positive integer n, let en ∈ l1 such that its nth
entry is (n+ 1)/n and all other entries are 0. Let K = co{e1, e2, . . . , en, . . . }.
Then K is a closed convex subset of l1 and is not proximal.

From the above example, we see that the reflexive condition of a Banach
space is required for a closed convex subset to be proximal. In fact, this
condition is sufficient. It is described by the following theorem.

Theorem B. [14] Let (B, ‖ · ‖) be a Banach space. Then B is reflexive if
and only if every nonempty closed convex subset K ⊂ B is a proximal set.

In order for a closed convex subset to be a Chebyshev set, we need stronger
conditions on the Banach space.

Theorem C. [14] Let (B, ‖ · ‖) be a reflexive Banach space. Then B is
strictly convex if and only if every nonempty closed convex subset K ⊂ B is a
Chebyshev set.

Noting that every uniformly convex Banach space is reflexive and strictly
convex, we see that Theorem C implies Theorem A immediately. Furthermore,
as a special case of uniformly convex and uniformly smooth Banach space,
every nonempty closed convex subset of a Hilbert space is a Chebyshev set.

From Theorem C, we have that in a reflexive Banach and strictly convex
Banach space, every nonempty closed convex subset K is a Chebyshev set.
Can we prove that in some Banach spaces, a nonempty subset is a Chebyshev
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set if and only if it is closed and convex? This is an open problem. Even in a
special case of infinite-dimensional Hilbert space, it is an open problem too.

In 1934 L. N. H. Bunt proved that each Chebyshev set in a finite-dimensional
Hilbert space must be convex (see [5]). From this result, we see that in a finite-
dimensional Hilbert space, a nonempty subset is a Chebyshev set if and only
if it is closed and convex.

In [12], G. G. Johnson gave an example: there exists an incomplete inner
product space (not Hilbert space) that has a Chebyshev set which is not
convex (M. Jiang completed the proof in 1993). Is there an infinity-dimensional
Hilbert space that has a Chebyshev set which is not convex? As addressed
above, it is unknown.

2. Continuity

In case B is a Hilbert space, it is known that for any closed convex subset
K, the metric projection operator PK : B → K is single valued and is not only
continuous but also nonexpansive. In general Banach spaces, the nonexpansive
property does not hold. Fortunately, there exist some continuity properties
and some inequalities for some special Banach spaces. We need to recall some
definitions before we study the continuity property of the operator PK .

A Banach space B is uniformly convex if and only if its modulus of convexity
δ satisfies the following inequality

δ(ε) = inf
{

1− 1
2
‖x+ y‖ : ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ = ε

}
> 0,

for all ε ∈ (0, 2].
It follows that δ is a strictly increasing, convex and continuous function

from (0, 2] to [0, 1], and it is known that
δ(ε)
ε

is nondecreasing on (0, 2].
A Banach space B is uniformly smooth if and only if its modulus of smooth-

ness denoted by ρ(τ) satisfies the following

ρ(τ) = sup
{

1
2
‖x+ y‖+

1
2
‖x− y‖ − 1 : ‖x‖ = 1, ‖y‖ ≤ τ

}
> 0,

for all τ ∈ (0,∞).
It can be shown that ρ is a convex and continuous function from [0,∞) to

[0,∞) with the properties that
ρ(τ)
τ

is nondecreasing, ρ(τ) ≤ τ , for all τ ≥ 0,



288 JINLU LI

lim
τ→0+

ρ(τ)
τ

= 0, and ρ(0) = 0. For the details of the properties of δ and ρ, the

reader is referred to [6], [18] and [20]. In [9], Goeble and Reich proved the
following result.

Theorem D. ([9]) The nearest point projection on to a closed convex subset
of a uniformly convex Banach space is continuous.

Noting again that every uniformly convex Banach space is reflexive and
strictly convex, in [14], the present author extended the above result to more
broad Banach spaces.

Theorem E. ([14]) Let (B, ‖ · ‖) be a reflexive and strictly convex Banach
space and K ⊂ B a nonempty convex subset. Then PK : B → K is continu-
ous.

Since uniformly convex and uniformly smooth Banach spaces are reflexive
and strictly convex, the above theorem implies that if (B, ‖ · ‖) is a uniformly
convex and uniformly smooth Banach space, then every nonempty closed con-
vex subset K ⊂ B is a Chebyshev set. In case B is a uniformly convex and
uniformly smooth Banach space, the continuity property of the metric projec-
tion operator PK can be given by Theorem B. In [5], Goebel directly proved
the continuity. Furthermore, in 1992, Roach and Xu proved some inequalities
(see [21] and [22]).

Theorem F. (Xu and Roach [22]). Let M be a convex Chebyshev set of a
uniformly convex and uniformly smooth Banach space X and P : X → M be
the metric projection. Then for every x, y in X

‖P (x)− P (y)‖ ≤ ‖x− y‖+ 4(‖x− P (y)‖ ∨ ‖P (x)− y‖)·

·δ−1

(
C1ψ

(
‖x− y‖

‖x− P (y)‖ ∨ ‖y − P (x)‖

))
,

where C1 is a fixed constant and ψ is defined by

ψ(t) =
∫ t

0

ρ(s)
s
ds.

Theorem G. (Xu and Roach [22]). Let M be a convex Chebyshev set of a
uniformly convex and uniformly smooth Banach space X and P : X → M be
the metric projection. Then
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(i) P is a Lipschitz continuous mod M ; namely, there exists a constant
k > 0 such that

‖P (x)− z‖ ≤ k‖x− z‖, for any x ∈ X and z ∈M,

(ii) P is uniformly continuous on every bounded subset of X and, further-
more, there exist positive constants kr for every Br = {x ∈ X : ‖x‖ ≤ r} such
that

‖P (x)− P (y)‖ ≤ ‖x− y‖+ krδ
−1(ψ(‖x− y‖)), for any x, y ∈ Br,

where ψ is defined by Theorem F.

3. Existence of solutions of variational inequalities

Let B be a general Banach space, the normalized duality mapping J : B →
2B∗

is defined by

J(x) = {j(x) ∈ B∗ : 〈j(x), x〉 = ‖j(x)‖‖x‖ = ‖x‖2 = ‖j(x)‖2}.

Clearly ‖j(x)‖ is the B∗-norm of j(x) and ‖x‖ is the B-norm of x. It is
known that if B is uniformly convex and uniformly smooth, then J is single
valued, strictly monotone, homogeneous, continuous and uniformly continuous
operator on each bounded set. Furthermore, J is the identity in Hilbert spaces;
i.e. J = I.

Let (B, ‖ · ‖) be a Banach space and K a subset of B. Let f : K → B be
a mapping. The variational inequality defined by the mapping F and the set
K is:

V I(F,K) : find x∗ ∈ K, and j(F (x∗)) ∈ J(F (x∗)) such that

〈j(F (x∗)), y − x∗〉 ≥ 0, for every y ∈ K. (1)

It is known that J is a single valued mapping if B∗ is strictly convex. Hence
if B∗ is strictly convex, then the above definition can be restated as follows:
the variational inequality defined by the mapping F and the set K is:

V I(F,K) : find x∗ ∈ K, such that 〈J(F (x∗)), y − x∗〉 ≥ 0, for every y ∈ K.
(2)

In 1994, Alber [1] introduced the generalized projections πK : B∗ → K

and ΠK : B → K that are generalizations of metric projection PK from
Hilbert spaces to uniformly convex and uniformly smooth Banach spaces and
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studied their properties in detail. In [2]-[4], Alber presented some important
properties of the generalized projections, such as continuity, some inequalities
and some applications to approximate solutions of variational inequalities and
J. von-Neumann intersection problem in a uniformly convex and uniformly
smooth Banach space. In this paper, we use the metric projection Pk instead
of πK . The continuity property of the operator PK stated in Theorem E can
be used for studying the existence of solutions of variational inequalities. The
inequalities given in Theorem F and G provide tools for approximating the
solutions.

The following theorem provides a tool to solve a variational inequality by
finding a fixed point of a certain operator.

Theorem H. (Li [14]) Let (B, ‖ · ‖) be a reflexive and smooth Banach
space and K ⊂ B a nonempty closed convex subset. For any given x ∈ B,
x0 ∈ PK(x) if and only if

〈J(x− x0), x0 − y〉 ≥ 0, for all y ∈ K.

By using Theorem H, similar to the proof of Theorem 8 in [14], we can
prove the following theorem.

Theorem 1. Let (B, ‖·‖) be a reflexive, strictly convex and smooth Banach
space and K ⊂ B a nonempty closed convex subset. Let F : K → B be a
mapping. Then an element x∗ ∈ K is a solution of V I(F,K) if and only if
x∗ = PK(x∗ − αF (x∗)), for any α > 0.

Proof. Since B is reflexive, strictly convex and smooth, so is B∗. Noting
that both J and PK are single valued in this case, from Theorem H, x∗ =
PK(x∗ − αF (x∗)), if and only if

〈J((x∗ − αF (x∗))− x∗), x∗ − y〉 ≥ 0, for all y ∈ K,

that is

〈J(−αF (x∗)), x∗ − y〉 ≥ 0, for all y ∈ K.

Since J is homogeneous and α > 0, it is equivalent to the inequality

〈J(F (x∗)), y − x∗〉 ≥ 0, for all y ∈ K.

This theorem is proved.
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Remark. From the proof of Theorem 1, we see that for an element x∗ ∈ K,
if there exists a number α > 0 such that x∗ ∈ PK(x∗ − αF (x∗)), then x∗ is a
solution of V I(F,K).

The Fan-KKM theorem, Leray-Schauder Alternative Theorems and the con-
cept of exceptional family of element (EFE) play important roles for studying
the existence of solutions of variational inequalities.

KKM mapping. Let K be a nonempty subset of a linear space X. A
set-valued mapping G : K → 2X is said to be a KKM mapping if for any finite
subset {y1, y2, . . . , yn} of K, we have

co{y1, y2, . . . , yn} ⊆
n⋃

i=1

G(yi),

where co{y1, y2, . . . , yn} denotes the convex hull of {y1, y2, . . . , yn}.
Fan-KKM Theorem. Let K be a nonempty convex subset of a Hausdorff

topological vector space X and let G : K → 2X be a KKM mapping with closed
values. If there exists a nonempty compact convex subset D of C such that⋂
y∈D

G(y) is contained in a compact subset of K, then
⋂

y∈K

G(y) 6= ∅.

The Fan-KKM Theorem has another version.
Fan-KKM Theorem. Let K be a nonempty convex subset of a Hausdorff

topological vector space X and let G : K → 2X be a KKM mapping with closed
values. If there exists a point y0 ∈ K such that G(y0) is contained in a compact
subset of K, then

⋂
y∈K

G(y) 6= 0.

Theorem 2. Let K be a nonempty closed convex subset of a reflexive,
strictly convex and smooth Banach space B. Let F : K → B be a continuous
mapping. If there exists an element y0 ∈ K such that the subset of K

{x ∈ K : ‖x− PK(x− F (x))‖ ≤ ‖y0 − PK(x− F (x))‖} (3)

is compact, then the variational inequality (2) has at least one solution.
Proof. From Theorem 1, we only need to prove that the following equation

has a solution

x = PK(x− F (x)).

Define G : K → 2K as follows:

G(y) = {x ∈ K : ‖x− PK(x− F (x))‖ ≤ ‖y − PK(x− F (x))‖}.
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It is clear that for all y ∈ K, we have y ∈ G(y). From the continuity
condition of F and the continuity property of PK (Theorem E), it yields that
for every y ∈ K, G(y) is nonempty and closed.

Next we prove that the map G : K → 2K is a KKM map in K. Let n be an
arbitrary positive integer. For any y1, y2, . . . , yn ∈ K and 0 < λ1, λ2, . . . , λn ≤

1, such that
n∑

i=1

λi = 1, let v =
n∑

i=1

λiyi. We have

‖v − PK(v − F (v))‖ =

∥∥∥∥∥
n∑

i=1

λiyi − PK(v − F (v))

∥∥∥∥∥
≤

n∑
i=1

λi‖yi − PK(v − F (v))‖

≤ max
1≤i≤n

{‖yi − PK(v − F (v))‖}.

Hence there is at least one number j = 1, 2, . . . , n, such that

‖v − PK(v − F (v))‖ ≤ ‖yj − PK(v − F (v))‖,

i.e., v ∈ G(yj). We obtain v =
n∑

i=1

λiyi ∈
n⋃

i=1

G(yi). Thus K is a KKM

mapping.
Condition (3) implies that G(y0) is compact. From the Fan-KKM Theorem,

we have
⋂

y∈K

G(y) 6= ∅. Then there exist at least one element x∗ ∈
⋂

y∈K

G(y),

that is,

‖x∗ − PK(x∗ − F (x∗))‖ ≤ ‖y − PK(x∗ − F (x∗))‖, for all y ∈ K.

Taking y = PK(x∗ − F (x∗), we obtain ‖x∗ − PK(x∗ − F (x∗))‖ = 0, that is,

x∗ = PK(x∗ − F (x∗)).

This theorem is proved.
Corollary 3. Let K be a nonempty compact convex subset of a reflexive,

strictly convex and smooth Banach space B. Let F : K → B be a continuous
mapping. Then the variational inequality (2) has a solution.

Proof. This corollary follows immediately from Theorem 2.
Corollary 4. Let B be a uniformly convex and uniformly smooth Banach

space and K a closed convex subset of B. Let F : K → B be a continuous
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mapping. If there exists an element y0 ∈ K such that the subset of K

{x ∈ K : ‖x− PK(x− F (x))‖ ≤ k‖y0 − (x− F (x))‖} (3′)

is compact, where k is the constant given in Theorem F, then the variational
inequality (2) has a solution.

Proof. Since B is uniformly convex and uniformly smooth, from Theorem
C, K is a Chebyshev set. Since y0 ∈ K, applying Theorem G, we get

‖y0 − PK(x− F (x))‖ ≤ k‖y0 − (x− F (x))‖, for all x ∈ B.

It implies

{x ∈ K : ‖x− PK(x− F (x))‖ ≤ ‖y0 − PK(x− F (x))‖}

⊆ {x ∈ K : ‖x− PK(x− F (x))‖ ≤ k‖y0 − (x− F (x))‖}.

Therefore the set {x ∈ K : ‖x−PK(x−F (x))‖ ≤ ‖y0 −PK(x−F (x))‖} is
compact and the corollary is achieved immediately by following Theorem 2.

Leray-Schauder Alternative. Let X be a closed subset of a locally convex
space E such that 0 ∈ int(X) and f : X → E a compact u.s.c. set-valued
mapping with non-empty compact contractible values. If f is fixed point free,
then it satisfies the following Leray-Schauder condition:

there exists (λ∗, x∗) ∈ (0, 1)× ∂X such that x∗ ∈ λ∗f(x∗).
We recall that a mapping T : B → B is said to be completely continuous if

T is continuous and for any bounded set D ⊂ B, T (D) is relatively compact.
A mapping F : B → B is said to be a completely continuous field if F has
a representation F (x) = x − T (x), for all x ∈ B, where T : B → B is a
completely continuous mapping.

Theorem 4. Let (B, ‖·‖) be a reflexive, strictly convex and smooth Banach
space, K ⊂ B a closed convex cone and F : K → B a completely continuous
field with the representation F (x) = x− T (x). Then F has at least one of the
following two properties:

(i) the problem V I(F,K) has a solution;
(ii) for all r > 0, there exist λr ∈ (0, 1) and xr ∈ K satisfying ‖xr‖ = r.

Let Fr(x) = x− λrT (x). Then xr is a solution of the problem V I(Fr,K).
Proof. From Theorem 1, the problem V I(F,K) has a solution if and only

if the following mapping

φK(x) = PK(x− F (x)) = PK(T (x)), for all x ∈ K,
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has a fixed point. If it has a fixed point, it is clearly in K.
Hence if φK(x) has a fixed point, the problem V I(F,K) has a solution.

Therefore the proof is completed.
Assume that the problem V I(F,K) has no solution. Obviously the mapping

φK is fixed point free. Define a mapping φ from B to K as follows:

φ(x) = φK(PK(x)) = PK(PK(x)− F (PK(x))) = PK(T (PK(x))),

for any x ∈ B.
Let P(φK),P(φ) denote the sets of fixed points of φK and φ respectively.

It is clear that P(φK),P(φ) are subsets of K. Since PK(x) = x, for all x ∈ K,
we obtain φ|K = φK . Therefore P(φK) = P(φ). Then the hypothesis that the
mapping φK has no fixed point in K implies P(φ) = ∅.

The continuity property of PK and the completely continuous condition on
T imply that the operator φ is continuous and compact from B to K.

For any r > 0, we define a closed convex set

Dr = {x ∈ B : ‖x‖ ≤ r}.

It is clear that the set Dr has a non-empty interior and 0 ∈ int(Dr).
The property that the mapping φ has no fixed point in K implies that the

mapping φ has no fixed point in Dr, for any r > 0. As φ is restricted to
Dr, applying the Leray-Schauder type alternative, we have that there exist
xr ∈ ∂Dr and λr ∈ (0, 1) such that

xr = λrφ(xr) = λrPK(T (PK(xr))),

that is
1
λr
xr = φ(xr) = PK(T (PK(xr))).

Since PK(T (PK(xr))) ∈ K and K is a cone, we have xr ∈ K. Then we
obtain PK(xr) = xr. Therefore,

1
λr
xr = φ(xr) = PK(T (xr)). (4)

From Theorem H, we have〈
J

(
(T (xr))−

1
λr
xr

)
,

1
λr
xr − y

〉
≥ 0, for all y ∈ K. (5)

Since J is homogeneous and K is a cone, (5) is equivalent to

〈J(λrT (xr))− xr), xr − y〉 ≥ 0, for all y ∈ K, (6)
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that is,

〈J(xr − λrT (xr)), y − xr ≥ 0, for all y ∈ K. (7)

It implies that xr is a solution of V I(Fr,K). From xr ∈ ∂Dr, we have
‖xr‖ = r, for all r > 0. This theorem is proved.

Remark. If the set {xr} satisfies condition (ii) of Theorem 4, is said to be
an exceptional family of elements of F with respect to K.

From the proof of Theorem 4, we can explain the conclusion of Theorem 4
as follows.

Corollary 5. Let (B, ‖·‖) be a reflexive, strictly convex and smooth Banach
space, K ⊂ B a closed convex cone and F : K → B a completely continuous
field with the representation F (x) = x− T (x). Then F has at least one of the
following two properties:

(i) the mapping PK ◦T has a fixed point (an eigenvector with eigenvalue 1);
(ii) for all r > 0, PK ◦ T has an eigenvector xr ∈ K satisfying ‖xr‖ = r

with eigenvalue µr > 1.
Proof. Let λr and xr be given in the proof of Theorem 4 and let µr =

1
λr

> 1, for all r > 0. The corollary follows immediately from (4) in the proof

of Theorem 4.
Comments. Let (B, ‖ · ‖) be a Banach space and K a subset of B. Let f :

K → B∗ be a mapping. We may define another type of variational inequality
defined by the mapping f and the set K:

V I(f,K) : find x∗ ∈ K, such that 〈f(x∗), y−x∗〉 ≥ 0, for every y ∈ K. (2′)

It is known that J∗ : B∗ → B and J : B → B∗ are single valued mappings
if B is reflexive, strictly convex and smooth. We define a mapping F : K → B

by

F (x) = J∗(f(x)), for every x ∈ K.

Noting J ◦J∗ = I∗, we see that to solve the variational inequality V I(f,K)
defined by (2’) is equivalent to solve the variational inequality V I(F,K) de-
fined by (2).

4. Approximations of solutions of variational inequalities

In this section, we always assume that B is a uniformly convex and uni-
formly smooth Banach space. Applying Theorems F and G, the solutions of
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variational inequalities can be approximated by some iterated sequences. We
list some results obtained by the present author and Rhoades. For the details
of the results, the reader is referred to [15].

Theorem 6. ([15]) Let (B, ‖·‖) be a uniformly convex and uniformly smooth
Banach space and K a nonempty closed convex subset of B. Let F : K → B

be a continuous mapping. Suppose V I(F,K) has a solution x∗ ∈ K and F

satisfies the following condition

‖x− x∗ − (F (x)− F (x∗))‖+ krδ
−1(ρ‖x− x∗ − (F (x)− F (x∗))‖)

≤ ‖x− x∗‖, for every x ∈ K, (8)

where kr is a positive constant given in Theorem G that depends on the bounded
subset K. For any x0 ∈ K, we define the Mann type iteration scheme as
follows:

xn+1 = (1− αn)xn + αnPK(xn − F (xn)), n = 1, 2, 3, . . . (9)

where {αn} satisfies conditions
(a) 0 ≤ αn ≤ 1, for all n,

(b)
∞∑

n=1

αn(1− αn) = ∞.

Then there exists a subsequence {n(i)} ⊆ {n} such that {xn(i)} converges to a
solution x′ of V I(F,K).

Theorem 7. ([15]) Let B,K,F be given as in Theorem 6. If the inequality
(8) holds for all solutions of V I(F,K), then the sequence {xn} defined by (9)
converges to a solution x′ of the V I(F,K) problem.

In the case K is unbounded, for example if K is a closed convex cone, we
have the following theorem for our estimation.

Theorem 8. ([15]) Let (B, ‖·‖) be a uniformly convex and uniformly smooth
Banach space and K a nonempty closed convex subset of B. Let F : K → B be
a continuous mapping such that the V I(F,K) problem has a solution x∗ ∈ K.
If there exist positive constants κ and λ satisfying the following conditions

(i) ‖x− x∗ − (F (x)− F (x∗))‖ ≤ κ‖x− x∗‖, for every x ∈ K;
(ii) t−1δ−1(t) ≤ λ, for all t;
(iii) (κ+ 4C1κλ) < 1, where C1 is the constant given in Theorem F,

then the sequence {xn} defined by (9) converges to the solution x∗ of the
V I(F,K) problem.
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