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1. Introduction

R.Williams [18] in 1971 has studied finite collections of contractions and
the set of fixed points for various their compositions. He was concerned with
topological properties of these sets (compactness, topological dimension, etc.).
More precisely, R.Williams has proved that given contractions f1, . . . , fm the
set

K = cls
( ⋃

n≥1

⋃
1≤i1,...,in≤m

Fix (fi1 ◦ fi2 ◦ · · · ◦ fin)
)

(1.1)

is the unique compact set satisfying the equation

K = f1(K) ∪ · · · ∪ fm(K). (1.2)
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Although this interesting work of Williams contains the main ideas of the
modern fractal geometry (e.g. the equation (1.2) as a prototype of self-
similarity, strings methods to prove the equality (1.1) as prototype of symbolic
Iterated Function Systems, topological dimension of the attractor), it seems
that this paper remained unobserved by many specialists in fractals.

In 1981 J.Hutchinson [7], when studying self-similar sets, also considered
the equation (1.2) and solved it using Banach Fixed Point Principle in the
Hausdorff-Pompeiu metric space. He proved that (1.1) represents the unique
solution of the equation (1.2).

On the other hand, G.Julia [8], when studying iterations of rational func-
tions, has proved that a set, later coined the Julia set, is completely invariant
and equals the closure of repelling periodic points. The complete invariance
corresponds to the equality (1.2) with f1, . . . , fm as branches of the inverse of
the rational function, while denseness of repelling periodic points means the
equality (1.1).

These two aspects of dynamics: a ordinary one, generated by (forward)
iterations of an expanding function, and another one as iterations of finite
collections of contracting functions (which can be regarded as a backward
evolution of a rational function) have been evolved for a long time separately.

After the seminal Hutchinson’s work [7] a series of researches dedicated to
Iterated Function Systems (IFS) occurred (see, e.g. [3] and the bibliography
therein).

In 1985 M.Hata [6] has been relaxed the contractivity condition up to a
weak form of contraction and obtained similar results to those of Williams
and of Hutchinson, i.e. he proved the existence of the attractor as the solution
of the equation (1.2) and stated the equality (1.1).

In all these papers the equality (1.1) is proved by using symbolic IFS.
In [5] the authors have stated the existence of the attractor and have proved

the equality (1.1) for general contracting relations on metric spaces. Denseness
of periodic points on the attractor has been obtained as a consequence of the
Shadowing Property of contracting relations. The latter in turn has been
proved by using a Fixed Point Theorem for contracting multifunctions with
bounded and closed values.

Here we are concerned with the equality (1.1) as the solution of an equation
similar to (1.2) for compact valued weak contractions. The existence of a
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compact attractor for such a multifunction has been stated by A.Petruşel and
I.A.Rus (see [12, 14, 15]).

We formulate and prove the Shadowing Property for a larger class of rela-
tions, namely for so called weakly contracting functions with compact values.
As a consequence we obtain that the periodic points form a dense subset on
the attractor. Thus, we obtain a equality similar to (1.1).

The authors would like to thank J.Andres, J.Fǐser, A.Petruşel, I.A.Rus and
C.Ursescu for valuable discussions on the subject of this paper.

2. Preliminaries

Let (X, d) be a complete metric space. A relation on X is a subset f ⊂
X ×X. Any relation can be regarded also as a (set-valued) function from X

to the power set P(X), associating to each x ∈ X a subset f(x) of X. These
two aspects of relations (set theoretical and functional) allows one to apply
subset operations, such as union, intersection and closure, on the one hand,
and the functional operations, such as composition, inverse and iterations, on
the other hand.

A relation on a metric space is said to be closed, if it is a closed subset
of the Cartesian product of the space with itself. In a compact space this is
equivalent to the upper semicontinuity of the relation (see [1] or [10]).

For two relations f, g : X → P(X) we define the composition g ◦ f : X →
P(X) by: (x, y) ∈ g ◦ f , if there exists z ∈ X such that (x, z) ∈ f and
(z, y) ∈ g. The inverse of f is, by definition, f−1 := {(y, x) | (x, y) ∈ f}. The
composition is associative, so for n ∈ N = {0, 1, 2, . . .} we define fn to be the
n-fold composition of f , and similarly f−n :=

(
f−1

)n. From associativity it
follows that fm+n = fm ◦ fn for m,n ≥ 0 or m,n ≤ 0. We call Of :=

⋃
n≥1

fn

the orbit relation.
Given a relation f : X → P(X) one can construct the Hutchinson-Barnsley

mapping f∗ : P(X) → P(X), defined for any A ∈ P(X) by f∗(A) := f [A],
where f [A] =

⋃
a∈A

f(a) and S stands for the closure of the set S.

A subset A ⊂ X is said to be positive invariant with respect to a relation
f on X (written “A is f +invariant”), if f [A] ⊂ A. Further, A is called f

invariant, if f [A] = A. The last means that A is f +invariant and, in addition,
f−1(x) ∩A 6= ∅ for all x ∈ A.
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For relations among many possibilities of generalization of an orbit is the
notion of the chain. The finite or infinite sequence {xn} in X is called a chain
for a relation f : X → P(X), if xn+1 ∈ f(xn) for all n, or, in other words, if
(xn, xn+1) ∈ f .

Given a relation f : X → P(X) a point x ∈ X is called a fixed point for
f , if x ∈ f(x). Thus, x ∈ Of(x) if and only if there exists n ≥ 1 such that
x ∈ fn(x). Such point is called a periodic point for f .

Denote by Pb,cl(X) and Pcp(X) the set of all nonempty bounded and closed
and respectively compact subsets of X.

Recall that for any two bounded and closed subsets B1 and B2 of a metric
space (X, d) the quantity %(B1, B2), given by

%(B1, B2) := sup
b1∈B1

inf
b2∈B2

d(b1, b2),

defines the Hausdorff-Pompeiu metric as follows:

H(B1, B2) := max {%(B1, B2), %(B2, B1)}.

This metric on the space Pb,cl(X) or Pcp(X) is complete, if d is complete.
The following lemmas will be useful in the sequel.

Lemma 2.1. Let A and B be nonempty bounded subsets of X. Then for any
a ∈ A and any ε > 0 there exists b ∈ B such that

d(a, b) ≤ %(a,B) + ε ≤ H(A,B) + ε. (2.1)

Proof. Since %(a,B) = inf {d(a, b) | b ∈ B}, for any a ∈ A and any ε > 0 there
exists b ∈ B such that (2.1) holds. �

Lemma 2.2. [14] Let A and B be compacts in X. Then for any a ∈ A there
exists b ∈ B such that

d(a, b) = %(a,B) ≤ H(A,B).

Lemma 2.3. [5] For any nonempty bounded subsets B1, B2 ⊂ X and a point
x ∈ X the following inequality holds:

%(x,B1) ≤ %(x,B2) +H(B1, B2).
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3. Weak contractions

A function ϕ : R+ → R+ is called a comparison function [6, 14] if:

• ϕ is monotonically increasing, i.e. t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2);
• ϕn(t) → 0 as n→∞ for all t ≥ 0.

Lemma 3.1. [14] If ϕ : R+ → R+ is a comparison function, then ϕ(t) < t for
all t > 0.

Theorem 3.2. If ϕ : R+ → R+ is a right continuous comparison function,
then for any b > a > 0 there exists M = max{ϕ(t)/t | a ≤ t ≤ b} and
0 ≤M < 1.

Proof. Let b > a > 0. Consider the function g, g(t) = ϕ(t)/t for any t ∈ [a, b].
Since ϕ(t)/t < 1 for all t > 0, there exists M = sup{g(t) | a ≤ t ≤ b} < ∞.
Thus, there exists a sequence {tn}n∈N in [a, b] such that {g(tn)} → M as
n → ∞. Due to the compactness of the segment [a, b] one can choose a
convergent subsequence. Therefore, we can consider a convergent sequence
{tn}n∈N → τ ∈ [a, b] such that {g(tn)} →M as n→∞.

We have only two possible cases.
a) If ϕ is continuous in τ , then g is also continuous in τ and g(τ) = M .
b) If ϕ is discontinuous in τ , let denote α = lim

t→τ−0
ϕ(t) and β = ϕ(τ). Since

ϕ is monotonically increasing and right continuous, it follows that β > α ≥ 0.
Take ε = (β − α)τ/β > 0. For any t ∈ (τ − ε, τ) one has ϕ(t) ≤ α and

g(t) =
ϕ(t)
t

<
α

τ − ε
=
β

τ
= g(τ) < M.

Since {τn} → τ and {g(tn)} → M as n → ∞, it follows that tn ≥ τ for
big enough n. Due to the right continuity of the function g one has g(τ) =
lim

n→∞
g(tn) = M .

Thus, in any case the function g reaches its greatest value on the segment
[a, b] and there exists M = max{ϕ(t)/t | a ≤ t ≤ b}. Obviously, 0 ≤ M <

1. �

Following [6, 14], we will call a relation f : X → Pb,cl(X) as a weak con-
traction, if there exists a comparison function ϕ : R+ → R+ such that

H(f(x), f(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X. (3.1)
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In this case we will say also that f is a contraction with respect to ϕ, or that
f is a ϕ-contraction (see [14]).

Example 3.1. The relation f : R+ → Pcp(R+), f(x) =
[

x
2(1 + x) ,

x
1 + x

]
, is a

weak contraction with ϕ : R+ → R+, ϕ(t) = t
1 + t , as a comparison function.

Given a weak contraction f : X → Pb,cl(X) we will say that a comparison
function ϕ : R+ → R+ is an optimal comparison function for f if the following
conditions hold:

• f is a ϕ-contraction;
• for any other comparison function ψ such that f is a ψ-contraction one

has that ψ(t) ≥ ϕ(t) for all t ≥ 0.

Remark 3.1. Obviously, the optimal comparison function for f , if it exists, is
unique.

Theorem 3.3. Any weak contraction f : X → Pb,cl(X) admits an optimal
comparison function.

Proof. Let f : X → Pb,cl(X) be a weak contraction. Denote by Ψf the
nonempty set of all comparison functions with respect to which f is a weak
contraction, and put

ϕ(t) = inf {ψ(t) |ψ ∈ Ψf}, ∀ t ≥ 0.

The function ϕ : R+ → R+ is well defined, since ψ(t) ≥ 0 for any ψ ∈ Ψf ,
t ≥ 0. We will show that ϕ is an optimal comparison function for f .

It is easily seen that ϕ is monotonically increasing. For, given 0 < t1 <

t2 one has ψ(t1) ≤ ψ(t2) for any ψ ∈ Ψf and, taking infimum on Ψf , the
corresponding inequality for ϕ is obtained as well. Moreover, since 0 ≤ ϕ(t) ≤
ψ(t) for any ψ ∈ Ψf and for all t ≥ 0, one has that

ϕ2(t) = ϕ(ϕ(t)) ≤ ϕ(ψ(t)) ≤ ψ(ψ(t)) = ψ2(t).

One can show by induction that 0 ≤ ϕn(t) ≤ ψn(t) for all t ≥ 0 and any
n ≥ 0. It follows that ϕn(t) → 0 as n → ∞ for all t ≥ 0. This means that ϕ
is a comparison function.
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Finally, we prove that ϕ ∈ Ψf , i.e. f is a ϕ-contraction. For any x, y ∈ X

and any ψ ∈ Ψf we have

H(f(x), f(y)) ≤ ψ(d(x, y)).

Taking infimum of the right hand side with respect to ψ ∈ Ψf , one ob-
tains (3.1). Thus, ϕ is an optimal comparison function for f . �

Denote by B(x, r) = {z ∈ X | d(x, z) < r} the open ball of radius r centered
at x.

We will say that the space (X, d) is γ-convex, if for any x, y ∈ X and any
r1, r2 > 0 such that r1 + r2 > d(x, y) we have B(x, r1) ∩B(y, r2) 6= ∅.

Example 3.2. Examples of γ-convex metric spaces: any linear normed space,
the space of rational points Qm endowed with the standard metric from Rm.
At the same time, the space X of shape of the letter ”H” endowed with the
standard metric from R2 is not γ-convex.

Remark 3.2. C.Ursescu [17] studied a class of special metric spaces, having a
property equivalent to the γ-convexity (see Appendix).

Theorem 3.4. Let (X, d) be a γ-convex metric space. Any weak contraction
f : X → Pb,cl(X) admits a continuous optimal comparison function.

Proof. Let f : X → Pb,cl(X) be a weak contraction and let ϕ : R+ → R+ be
the optimal comparison function for f , the latter exists due to Theorem 3.3.
We have to show that ϕ is continuous.

Assume, for the contrary, that there exists c > 0 such that

lim
t→c−0

ϕ(t) = α < β = lim
t→c+0

ϕ(t).

The fact that ϕ is the optimal comparison function for f implies that for
any ε > 0, in particular for ε = (β − α)/2 > 0, there exist x0, y0 ∈ X such
that c ≤ d(x0, y0) < c+ ε and

H(f(x0), f(y0)) > ϕ(d(x0, y0))− ε ≥ β − ε =
α+ β

2
. (3.2)

Since X is γ-convex and c+ε > d(x0, y0), it follows that there exists z0 ∈ X
such that z0 ∈ B(x0, c) ∩ B(y0, ε) 6= ∅. From d(x0, z0) < c and d(z0, y0) < ε
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one obtains, using Lemma 3.1,

H(f(x0), f(y0)) ≤ H(f(x0), f(z0)) +H(f(z0), f(y0)) ≤

ϕ(d(x0, z0)) + ϕ(d(z0, y0)) ≤ lim
t→c−0

ϕ(t) + ϕ(ε) < α+ ε = α+ β
2 .

The latter contradicts (3.2). Therefore, ϕ is continuous. �

Remark 3.3. The condition of γ-convexity, imposed on the space (X, d), is
essential for the continuity of the optimal comparison function as the following
examples show.

Example 3.3. Let X = [0, 1] ∪ [3, 4] be a metric space, endowed with the
standard metric from R. The space X is not γ-convex. Consider the function
f : X → X,

f(x) =

{
0, x ∈ [0, 1],

1, x ∈ [3, 4].

The function f is a weak contraction with the optimal comparison function

ϕ(t) = sup
|x−y|≤t

|f(x)− f(y)| =

{
0, 0 ≤ t < 2,

1, t ≥ 2,

which is not continuous. At the same time, f admits a continuous comparison
function.

Example 3.4. Let X = {xn}n∈N, with x0 = 0, xn+1 = xn + 1 + 1
n+ 1 (n ≥ 0),

be a metric space endowed with the standard metric from R. The space X is
not γ-convex. Consider the function f : X → X, defined by f(xn) = xn+1 for
all n ≥ 0. One can show that f is a weak contraction, which does not admit
a continuous (nor yet a right continuous) comparison function.

Theorem 3.5. Let f : X → Pb,cl(X) be a weak contraction with respect to a
right continuous comparison function ϕ : R+ → R+. Then the Hutchinson-
Barnsley mapping f∗ : Pb,cl(X) → Pb,cl(X), f∗(A) = f [A], is also a ϕ-
contraction, i.e. for any A,B ∈ Pb,cl(X) the following inequality holds

H(f∗(A), f∗(B)) ≤ ϕ(H(A,B)). (3.3)

Proof. Firstly, the mapping f∗ is well defined. If A ∈ Pb,cl(X), then f∗(A) =
f [A] is a bounded and closed subset of X.
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Let A,B ∈ Pb,cl(X). Fix an arbitrary ε > 0. By Lemma 2.1 for any a ∈ A
there exists b ∈ B such that d(a, b) ≤ H(A,B) + ε. Analogously, for any
ξ ∈ f(a) ⊂ f [A] there exists η ∈ f(b) ⊂ f [B] ⊂ f∗(B) such that

d(ξ, η) ≤ H(f(a), f(b)) + ε ≤ ϕ(d(a, b)) + ε ≤ ϕ(H(A,B) + ε) + ε.

Therefore, for any ξ ∈ f∗(A) = f [A] there exists ξ′ ∈ f [A] and η ∈ f∗(B)
such that d(ξ, ξ′) ≤ ε and

d(ξ, η) ≤ d(ξ, ξ′) + d(ξ′, η) ≤ ϕ(H(A,B) + ε) + 2ε. (3.4)

Taking infimum with respect to η ∈ f∗(B) in (3.4), and subsequently supre-
mum with respect to ξ ∈ f∗(A), we obtain

%(f∗(A), f∗(B)) ≤ ϕ(H(A,B) + ε) + 2ε.

Changing places of A and B, we have

%(f∗(B), f∗(A)) ≤ ϕ(H(A,B) + ε) + 2ε.

This means that

H(f∗(A), f∗(B)) ≤ ϕ(H(A,B) + ε) + 2ε.

Due to the arbitrariness of ε > 0 and to the right continuity of ϕ we ob-
tain (3.3). �

Corollary 3.6. Let f : X → Pb,cl(X) be a weak contraction with respect
to a right continuous comparison function ϕ : R+ → R+. Then for any
A,B ∈ Pb,cl(X) one has

H(fn
∗ (A), fn

∗ (B)) ≤ ϕn(H(A,B)) → 0, as n→∞. (3.5)

For a compact valued weakly contracting relations the condition of right
continuity of the comparison function can be dropped.

Theorem 3.7. Let f : X → Pcp(X) be a compact valued weakly contract-
ing relation with respect to a comparison function ϕ : R+ → R+. Then the
Hutchinson-Barnsley mapping f∗ : Pcp(X) → Pcp(X), f∗(A) = f [A], is also a
ϕ-contraction.

Proof. Since the image of a compact set under a compact valued continuous
mapping is a compact set, the mapping f∗ is well defined. Use the proof of
Theorem 3.5, taking ε = 0. �
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Remark 3.4. As a consequence we obtain that for compact valued weakly
contracting relations the inequality (3.5) with A,B as compact sets holds true
without the condition of right continuity of the comparison function.

4. Attractors in weak contractions

The dynamics of a contracting mapping is trivial: the unique fixed point
attracts all points and even all bounded subsets of the phase space. As for
set-valued functions the dynamics is much more complicated. Firstly, a fixed
point, if it exists, need not be unique, nor attractive. Moreover, the set of
fixed points is not even invariant. Secondly, the attractor of a hyperbolic
IFS, a particular case of a contracting relation, is an invariant set, although
containing the fixed points, it is a scene of a much more complicated dynamics,
e.g. it contains a dense subset of periodic points as well as a dense chain
(see [3]).

There are various definitions of attractor in dynamical systems. In ordinary
dynamics (e.g. iterations of mappings) one usually means by an attractor an
invariant set, which is dynamically indivisible and whose basin – the set of
attracted points – is a large set. The dynamical indivisibility sometimes is
understood as the existence of a dense orbit. As for the basin, it must contain
a neighborhood of the attractor, or at least the nonvoid interior, sometimes
positive Lebesgue measure is required.

In the case of relations in compact spaces in [1] (see also [10]) the following
definition has been proposed: A is an attractor, if it is invariant and there
exists a closed neighborhood V of A such that

⋂
n≥0

fn[V ] is contained in A.

For another definition of attractor see [9].
In [11] the invariance f [A] = A is relaxed up to the condition f [A] ⊃ A with

the assumption that A attracts any bounded subset of a neighborhood of A.
Let X be a metric space and let f : X → P(X) be a closed relation. A

nonempty closed subset A ⊂ X is called an attractor for f , if:

• f [A] ⊃ A;
• there is a closed neighborhood V = cls {x ∈ X | %(x,A) < δ} of A

such that
⋂

n≥0
fn[V ] ⊂ A.

Remark 4.1. Both of inclusions are, in fact, equalities [5].
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Theorem 4.1. For any weak contraction f : X → Pb,cl(X) with respect to
a right continuous comparison function there exists an unique bounded and
closed set A such that f [A] = A.

Proof. Let f : X → Pb,cl(X) be a weak contraction with respect to a right con-
tinuous comparison function ϕ : R+ → R+. By Theorem 3.5 the Hutchinson-
Barnsley mapping f∗ is also a ϕ-contraction. It is known [14], that in a com-
plete metric space any weakly contracting mapping has an unique fixed point.
Therefore, the equation f [A] = A has a solution in Pb,cl(X) and this solution
is unique. �

Theorem 4.2. A bounded and closed subset A ⊂ X is an attractor for a
compact valued weakly contracting relation f : X → Pcp(X) with respect to a
right continuous comparison function, if and only if A is a compact invariant
set for f .

Proof. Let f : X → Pcp(X) be a compact valued weakly contracting relation
with respect to a right continuous comparison function ϕ : R+ → R+.

If A is a bounded attractor for f , then A is a bounded and closed invariant
set for f (see Remark 4.1). Since A is closed, one has f [A] = A. So A is
the unique fixed point for the corresponding Hutchinson-Barnsley mapping f∗
on Pb,cl(X). On the other hand, f∗ restricted to Pcp(X) takes values also in
Pcp(X). As a weak contraction it has an unique fixed point in Pcp(X) [14].
Therefore, the bounded and closed subset A ⊂ X is actually compact.

Conversely, assume that A is a compact (and so, a bounded and closed)
invariant set for f . Take a closed neighborhood V of A of small enough radius
δ > 0. It is bounded as well.

By Corollary 3.6, we have for any n ≥ 0

H(fn
∗ (V ), A) = H(fn

∗ (V ), fn
∗ (A)) ≤ ϕn(H(V,A)). (4.1)

We will prove that f [V ] ⊂ V . If x ∈ V , then %(x,A) < δ. This means that
there exists a ∈ A such that d(x, a) < δ. Using Theorem 3.7, we obtain

H(f(x), f(a)) ≤ ϕ(d(x, a)) ≤ ϕ(δ) < δ.

Since f(a) ⊂ f [A] = A, it follows that

%(f(x), A) ≤ %(f(x), f(a)) ≤ H(f(x), f(a)) < δ.
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As a consequence, f(x) ⊂ V . Therefore, f [V ] ⊂ V .
Because of the inclusion fn+1[V ] ⊂ fn[V ], the inequality (4.1) implies the

following one:

H(
n⋂

k=0

fk
∗ (V ), A) ≤ ϕn(H(V,A)) (n ≥ 0).

Passing to the limit as n → ∞, one obtains H(
⋂

k≥0

fk
∗ (V ), A) = 0, which is

equivalent to the equality
⋂

k≥0

fk
∗ (V ) = A. Hence, A is an attractor. �

Remark 4.2. The condition on the relation to take compact values is neces-
sary. As a counterexample one can take a constant relation on an infinitely
dimensional Banach space with the unit closed ball as value. Unfortunately,
this example invalidates Theorem 2.2 from [5], in which the compact valued
condition should be added.

Corollary 4.3. Any compact valued weakly contracting relation with respect
to a right continuous comparison function has a nonempty compact attractor
and this attractor is unique.

Theorem 4.4. Let f : X → Pcp(X) be a compact valued weakly contracting
relation with respect to a comparison function ϕ : R+ → R+. Then for any
chain {xn}n∈N in X and any y0 ∈ X there exists a chain {yn}n∈N in X,
starting at y0, such that

d(xn, yn) ≤ ϕn(d(x0, y0)) (n ≥ 0).

Proof. Let {xn}n∈N in X and let y0 ∈ X be arbitrary. By Lemma 2.2, given
x1 ∈ f(x0) there exists y1 ∈ f(y0) such that

d(x1, y1) ≤ H(f(x0), f(y0)) ≤ ϕ(d(x0, y0)).

Similarly, for any x2 ∈ f(x1) there exists y2 ∈ f(y1) such that

d(x2, y2) ≤ H(f(x1), f(y1)) ≤ ϕ(d(x1, y1)) ≤ ϕ2(d(x0, y0)).

Moreover, by induction, for any n ≥ 0 one can choose yn ∈ f(yn−1) such
that d(xn, yn) ≤ ϕn(d(x0, y0)). The chain {yn}n∈N is a required one. �

As a consequence we obtain the following result.
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Theorem 4.5 (Asymptotic phase theorem for weakly contracting relations).
Let f : X → Pcp(X) be a compact valued weakly contracting relation with
respect to a right continuous comparison function and let A stand for its at-
tractor. Then for any chain {xn}n∈N in X and any a0 ∈ A there exists a chain
{an}n∈N in A, starting at a0, such that d(xn, an) → 0 as n→∞.

Proof. Let ϕ : R+ → R+ be a right continuous comparison function with
respect to which f is a weak contraction. Due to the invariance of A and to
Theorem 4.4 one has that given a chain {xn}n∈N and a0 ∈ A there exists a
chain {an}n∈N in A, starting at a0, such that for all n ≥ 0 one has d(xn, an) ≤
ϕn(d(x0, y0)). The latter converges to 0 as n→∞. �

Theorem 4.6. Let f : X → Pb,cl(X) be a weak contraction with respect to
a right continuous comparison function, and let A stand for the fixed point
of the corresponding Hutchinson-Barnsley mapping f∗ : Pb,cl(X) → Pb,cl(X).
Then for any a ∈ A one has Of(a) = A.

Proof. Since Of =
⋃

n≥1
fn, the inclusion Of(a) ⊂ A follows from the positive

invariance of A and from its closeness.
To prove the inverse inclusion we use Corollary 3.6 and observe that

H(fn(a), A) = H(fn
∗ ({a}), fn

∗ (A)) ≤ ϕn(H(a,A)). (4.2)

Since the right hand side of (4.2) converges to 0 as n → ∞, for any b ∈ A

and any ε > 0 there exists a natural n such that %(b, fn(a)) < ε/2.
Therefore, for any b ∈ A and any ε > 0 there exist a natural n and a point

a′ ∈ fn(a) such that d(b, a′) < ε. This implies the equality Of(a) = A. �

5. Shadowing in weak contractions

In [4] a generalization of the concept of Shadowing has been proposed for
IFS’s. In [5] this concept has been developed for any contracting relation.

Given δ > 0 a finite or infinite sequence {xn} in X is called a δ-chain (or a
δ-pseudo-orbit) for a relation f : X → P(X), if %(xn+1, f(xn)) ≤ δ for all n.

One says that the relation f : X → P(X) has the Shadowing Property on
X, if given ε > 0 there exists δ > 0 such that for any δ-chain {xn}n∈N in X

there exists a chain {yn}n∈N in X such that d(xn, yn) ≤ ε for all n (one says
that the δ-chain {xn} is ε-shadowed by the chain {yn}).
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Remark 5.1. In [16] another concept of δ-pseudo-orbit has been proposed.
More precisely, treating relations as subsets of the Cartesian product of the
space with itself, a δ-pseudo-orbit is called a sequence {zn} of points in X,
which are close to the relation as a subset, i.e. dist((zn, zn+1), f) < δ for all n.
In these terms a Shadowing Property is stated for so called hyperbolic smooth
relations. For Shadowing in some abelian group actions see [13].

Remark 5.2. In [2] the Shadowing Property has been considered for the corre-
sponding Hutchinson-Barnsley mapping on the hyperspace and an interesting
notion of ”digitalization”, as a kind of ”collage” by using finite sets, has been
introduced and studied with applications to computer construction of fractals.

Lemma 5.1. Let f : X → Pcp(X) be a compact valued weakly contracting
relation with respect to a comparison function ϕ : R+ → R+. Then for any
δ > 0, any δ-chain {xn}n∈N of f and any y0 ∈ X there exists a chain {yn}n∈N,
starting at y0, which verifies the following inequality for any n ≥ 0:

d(xn+1, yn+1) ≤ δ + ϕ(d(xn, yn)). (5.1)

Proof. Let {xn}n∈N be a δ-chain. In what follows we construct inductively the
desired chain {yn}n∈N.

Assume that given y0 we have constructed a finite segment y0, y1, . . . , yn of
the chain. We choose the next term as follows: by Lemma 2.2 there exists
z ∈ f(xn) such that

d(xn+1, z) = %(xn+1, f(xn)) ≤ δ.

Moreover, for this z ∈ f(xn) there exists yn+1 ∈ f(yn) such that

d(z, yn+1) ≤ H(f(xn), f(yn)).

Using (3.1), we obtain

d(xn+1, yn+1) ≤ d(xn+1, z) + d(z, yn+1) ≤

δ +H(f(xn), f(yn)) ≤ δ + ϕ(d(xn, yn)).

This completes the proof. �

Theorem 5.2. Any compact valued weakly contracting relation f : X →
Pcp(X) with respect to a right continuous comparison function has the Shad-
owing Property on X.
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Proof. Let f : X → Pcp(X) be a weak contraction with respect to a right
continuous comparison function ϕ : R+ → R+.

Fix ε > 0. Due to the right continuity of the function ϕ and to Theorem 3.2
there exists

M = max{ϕ(t)/t | ε/2 ≤ t ≤ ε}, (5.2)

and 0 ≤M < 1. Moreover, (5.2) implies that

ϕ(t) ≤Mt, ∀ t ∈ [ε/2, ε]. (5.3)

Take δ = ε(1−M)/2 ≤ ε/2.
Let {xn}n∈N be a δ-chain of f . This means that %(xn+1, f(xn)) ≤ δ for all

n ≥ 0. Take an arbitrary y0 ∈ X such that d(x0, y0) ≤ ε/2. By Lemma 5.1
there exists a chain {yn}n∈N, starting at y0, which verifies (5.1). We will prove
inductively that the chain {yn}n∈N ε-shadows {xn}n∈N, i.e. for all n ≥ 0

d(xn, yn) ≤ ε. (5.4)

For n = 0 the equality (5.4) holds due to the choice of y0.
Assume that (5.4) holds for any 0 ≤ n ≤ k. We have to prove that (5.4)

holds for n = k + 1.
There are only two possible cases.
a) If d(xk, yk) < ε/2, then

d(xk+1, yk+1) ≤ δ + ϕ(d(xk, yk)) ≤ δ + d(xk, yk) ≤ ε/2 + ε/2 = ε.

Here we have used (5.1) and Lemma 3.1.
b) If d(xk, yk) ≥ ε/2, then let m, 0 ≤ m < k, denote the maximal natural

such that d(xm, ym) < ε/2. Using successively (5.1) and (5.3), one obtains:

d(xk+1, yk+1) ≤ δ + ϕ(d(xk, yk)) ≤ δ +Md(xk, yk) ≤

δ +M(δ +Md(xk−1, yk−1)) = δ +Mδ +M2d(xk−1, yk−1) ≤ · · · ≤

δ +Mδ +M2δ + · · ·+Mk−mδ +Mk−mϕ(d(xm, ym)) ≤
δ

1−M + d(xm, ym) ≤ ε/2 + ε/2 = ε.

Therefore, the equality (5.4) holds for all n ≥ 0. This means that the chain
{yn}n∈N ε-shadows the δ-chain {xn}n∈N. �

Corollary 5.3. Let (X, d) be a γ-convex metric space. Then any compact
valued weakly contracting relation on X has the Shadowing Property.
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Corollary 5.4. A finite IFS, consisting of weakly contracting mappings, such
that each of them admits a right continuous comparison function, has the
Shadowing Property.

Proof. Let F = {X; f1, . . . , fm} be an IFS, consisting of weakly contracting
mappings fi, i = 1,m. Let ϕi be a right continuous comparison function for
fi, i = 1,m. Obviously, the function ϕ : R+ → R+, ϕ(t) = sup

1≤i≤m
ϕi(t), is also

a right continuous comparison function for each function fi, i = 1,m, and one
can apply Theorem 5.2. �

Remark 5.3. The Corollary 5.4 holds for an Infinite IFS (IIFS) under an ad-
ditional assumption that all mappings of the IIFS admits a common right
continuous comparison function. Given a family of continuous compari-
son functions {ϕα : R+ → R+ |α ∈ A} the function ϕ : R+ → R+,
ϕ(t) = sup{ϕα(t) |α ∈ A} (t ≥ 0), need not necessarily be a continuous
comparison function.

Example 5.1. For any k ≥ 1 the function ϕk : R+ → R+,

ϕk(t) =


t/2, 0 ≤ t ≤ 1,

(k − 1)t/2 + (2− k)/2, 1 < t ≤ (k + 2)/(k + 1),

k/(k + 1), t > (k + 2)/(k + 1),

is a continuous comparison function. Moreover, for any t ≥ 0 we have ϕn
k(t) →

0 as n→∞ uniformly on k ≥ 1 . At the same time, the function ϕ : R+ → R+,

ϕ(t) = sup
k≥1

ϕk(t) =

{
t/2, 0 ≤ t ≤ 1,

1, t > 1,

is not yet a right continuous comparison function.

Remark 5.4. In [5] the Shadowing Property for contracting multifunctions
with bounded and closed values has been stated, using a Fixed Point Theorem
for contracting multifunctions with bounded and closed values. As for weakly
contracting multifunctions, at our knowledge, a Fixed Point Theorem has been
proved only in a compact valued case. So we give a direct proof.
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6. Periodic Shadowing in weak contractions

The equality (1.1) for IFS, i.e. denseness of periodic points in the attractors,
has been obtained in [18] as a consequence of the codification of the attractor.
The last means that the IFS restricted to the attractor is a factor of a symbolic
IFS. For the latter denseness of periodic points on the attractor is well known.
Such a method doesn’t work in the general case of contracting multifunctions.

In what follows we state the equality (1.1), using the property of periodic
Shadowing for weak contractions. The latter is proved by using a Fixed Point
Theorem for compact valued weakly contracting multifunctions (see e.g. [14]).

Theorem 6.1. Let (X, d) be a complete metric space and let f : X → Pcp(X)
be a compact valued weakly contracting relation. Then given ε > 0 there exists
δ > 0 such that for any periodic δ-chain {xn}n∈N there exists a periodic chain
{yn}n∈N such that d(xn, yn) ≤ ε for all n ∈ N.

Proof. Let ϕ : R+ → R+ be a comparison function with respect to which f is
a weak contraction. Fix ε > 0 and take δ = ε− ϕ(ε).

Let α = {xn}n∈N, xn+m = xn, be a m-periodic δ-chain. Define by X̂ := Xm

the space of all m-periodic sequences β = {zn}n∈N with the metric d̂,

d̂(β1, β2) := max
1≤j≤m

d(z′j , z
′′
j ) for all β1 = {z′n}n∈N, β2 = {z′′n}n∈N ∈ X̂.

Let B(α, ε) = {β ∈ X̂ | d̂(α, β) ≤ ε} be the closed ball of radius ε centered
at α. Define a compact valued function Φ : B(α, ε) → P(X̂) as follows:

[Φ(β)]j = f(zj−1) (j = 1, 2, . . . ,m),

where β = {zn}n∈N ∈ B(α, ε) and z0 = zm. Each value of this function is a
compact subset of X̂. We claim that, in fact, each value is a compact subset
of B(α, ε). To prove this, fix j ∈ {1, 2, . . . ,m}. Due to Lemma 2.3 for chosen
δ = ε− ϕ(ε) and for any β = {zn}n∈N ∈ B(α, ε) we have:

%(xj , f(zj−1)) ≤ %(xj , f(xj−1)) +H(f(xj−1), f(zj−1)) ≤

δ + ϕ(d(xj−1, zj−1)) ≤ δ + ϕ(d̂(α, β)) ≤ δ + ϕ(ε) = ε.

Thus, the function Φ : B(α, ε) → Pcp(B(α, ε)) is well defined. Moreover, Φ
is a ϕ-contraction. For, let β1 = {z′n}n∈N, β2 = {z′′n}n∈N ∈ B(α, ε). One has
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the following inequalities:

H(f(z′j), f(z′′j )) ≤ ϕ(d(z′j , z
′′
j )) (j = 1, 2, . . . ,m).

Therefore,

H(Φ(β1),Φ(β2)) ≤ ϕ(d̂(β1, β2)) (j = 1, 2, . . . ,m).

By virtue of the Fixed Point Theorem for compact valued weak contractions
(see [14]), there exists θ ∈ B(α, ε) such that θ ∈ Φ(θ), or, in other words,
θ = {yn}n∈N, yj+m = yj (j = 1, 2, . . . ,m), is a m-periodic chain for f . �

Theorem 6.2. For any compact valued weakly contracting relation f : X →
Pcp(X) with respect to a right continuous comparison function the periodic
points form a dense subset of the attractor.

Proof. For any ε > 0 and any x ∈ A, where A denotes the attractor, we have
to find a periodic point y ∈ A such that d(x, y) < ε. Assume that x itself is not
a periodic point (otherwise it is nothing to prove). This means that x /∈ fn(x)
for any n = 1, 2, . . .. Due to the compactness of A and to Theorem 4.6, for
any δ > 0 there exists p such that %(x, fp(x)) ≤ δ.

For δ < (ε − ϕ(ε))/2 take a finite chain x0 = x, x1, . . . , xp ∈ fp(x) such
that d(x, xp) ≤ δ and extend it up to a periodic δ-chain {x0, x1, . . . , xp, xp+1 =
x0, . . .}. By virtue of Theorem 6.1 for this periodic δ-chain {xn}n∈N there
exists a periodic chain {yn}n∈N such that d(xn, yn) ≤ ε/2 < ε for any n ∈ N.
Thus, y = y0 is the desired periodic point. �

7. Appendix

Recently, C.Ursescu has communicated us that he stated and studied some
property for metric spaces, which is equivalent to γ-convexity. With his kind
permission we bring some results from an unpublished yet his paper [17].

Definition. [17] The metric space Y is said to resemble normed spaces if for
every y ∈ Y , for every δ > 0, and for every δ′ > 0 there is satisfied the equality

B(B(y, δ), δ′) = B(y, δ + δ′).

Proposition 7.1. [17] The metric space Y resembles normed spaces if and
only if B(y, δ) ∩B(y′, δ′) 6= ∅ whenever δ + δ′ > d(y, y′).
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This means that the property of metric space to resemble normed spaces is
equivalent to γ-convexity.

Theorem 7.2. [17] Let Y be a metric space. The following three conditions
are equivalent to each other:

(1) the metric space Y resembles normed spaces;
(2) for every y ∈ Y , for every y′ ∈ Y , for every µ > 0, and for every

λ > d(y, y′) there exists a finite sequence χ = {χ0, χ1, . . . , χn} of points
of Y such that

length(χ) := d(χ0, χ1) + · · ·+ d(χn−1, χn) ≤ λ,

mesh(χ) := max {d(χ0, χ1), . . . , d(χn−1, χn)} ≤ µ,

as well as χ0 = y and χn = y′;
(3) for every y ∈ Y , for every y′ ∈ Y , and for every λ > d(y, y′) there

exists a λ-lipschitzean function ψ : D → Y , where D =
{
i/2n |n ∈

{0, 1, . . .}, i ∈ {0, 1, . . . , 2n}
}

stands for the set of all diadic numbers,
such that ψ(0) = y, ψ(1) = y′ and d(ψ(t), ψ(s)) ≤ λ|t − s| for any
t, s ∈ D.
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