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1. Statement of problem

Let IR denote the real line and let IRn be an n-dimensional Euclidean space.
We define a norm | · | in IRn by

|x| = |x1|+ · · ·+ |xn|

for x = (x1, . . . , xn) ∈ IRn. Let I0 = [−r, 0] and I = [0, a] be two closed and
bounded intervals in IR. Let C = C(I0, IRn) denote the Banach space of all
continuous IRn-valued functions on I0 with the usual supremum norm ‖ · ‖C

given by

‖φ‖C = sup{|φ(θ)| : −r ≤ θ ≤ 0}.
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For any continuous function x defined on the interval J = [−r, a] = I0 ∪ I and
any t ∈ I we denote by xt the element of C defined by

xt(θ) = x(t+ θ), −r ≤ θ ≤ 0, 0 ≤ t ≤ a.

Given a function φ ∈ C, consider the neutral functional differential inclusion
(in short FDI)

d

dt
[x(t)− f(t, xt)] ∈ G(t, xt) a.e. t ∈ I,
x0 = φ,

 (1)

where f : I × C → IRn and G : I × C → Pf (IRn) and Pf (IRn) denotes the
class of all nonempty subsets of IRn.

Definition 1.1. A function x ∈ C(J, IRn) is said to be a solution of the neutral
FDI (1) if

(i) x(t) = φ(t) if t ∈ I0,
(ii) xt ∈ C for t ∈ I, and
(iii) the difference x(t) − f(t, xt) is absolutely continuous and satisfies (1)

on J ,

where C(J, IRn) is the space of all continuous IRn-valued functions on J .

In the special case of FDE (1), when G(t, xt) = {g(t, xt)}, we obtain a
neutral functional differential equation (FDE) of first order, viz.,

d

dt
[x(t)− f(t, xt)] = g(t, xt) a.e. t ∈ I,
x0 = φ.

 (2)

where f, g : I × C → IRn.

The neutral FDE (2) has been studied in Ntouyas et. al. [5] for the existence
theorems under some compactness conditions on both of the functions f and
g. Again when f ≡ 0 on I × C, the neutral FDI (1) reduces to

x′(t) ∈ G(t, xt) a.e. t ∈ I,
x0 = φ,

}
(3)

where G : I × C → Pf (IRn).
The FDI (3) has already been discussed in the literature via different meth-

ods. In this article we shall prove the existence results for Carathéodory neu-
tral FDI (1). The main tools used in the study are the fixed point theorems of
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Dhage [1, 2]. As the special cases to our main results, we obtain the existence
results for neutral FDE (2), and the neutral FDI (3). In the following section
we give some auxiliary results needed in the subsequent part of the paper.

2. Auxiliary results

Throughout this paper X will be a Banach space and let P(X) denote
the class of all subsets of X. Let Pf (X), Pbd,cl(X) and Pcp,cv(X) denote
respectively the classes of all nonempty, bounded-closed and compact-convex
subsets of X. For x ∈ X and Y, Z ∈ Pbd,cl(X) we denote by D(x, Y ) =
inf{‖x− y‖ | y ∈ Y }, and ρ(Y, Z) = sup

a∈Y
D(a, Z).

Define a function H : Pbd,cl(X)× Pbd,cl(X) → IR+ by

H(A,B) = max{ρ(A,B), ρ(B,A)}.

The functionH is called a Hausdorff metric onX. Note that ‖Y ‖ = H(Y, {0}).
A correspondence T : X → Pf (X) is called a multi-valued mapping onX. A

point x0 ∈ X is called a fixed point of the multi-valued operator T : X → Pf (X)
if x0 ∈ T (x0). The fixed points set of T will be denoted by Fix(T ).

Definition 2.1. Let T : X → Pbd,cl(X) be a multi-valued operator. Then T is
called a multi-valued contraction if there exists a constant k ∈ (0, 1) such that
for each x, y ∈ X we have

H(T (x), T (y)) ≤ k‖x− y‖.

The constant k is called a contraction constant of T .

A multi-valued mapping T : X → Pf (X) is called lower semi-continuous
(shortly l.s.c.) (resp. upper semi-continuous (shortly u.s.c.)) if B is any open
subset of X then {x ∈ X | Gx ∩ B 6= ∅}(resp.{x ∈ X | Gx ⊂ B}) is an
open subset of X. The multi-valued operator T is called compact if T (X) is
a compact subset of X. Again T is called totally bounded if for any bounded
subset S of X, T (S) is a totally bounded subset of X. A multi-valued operator
T : X → Pf (X) is called completely continuous if it is upper semi-continuous
and totally bounded on X, for each bounded A ∈ Pf (X). Every compact
multi-valued operator is totally bounded but the converse may not be true.
However the two notions are equivalent on a bounded subset of X.
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We apply the following form of the fixed point theorem of Dhage [1] in the
sequel.

Theorem 2.2. Let X be a Banach space, A : X → Pcl,cv,bd(X) and B : X →
Pcp,cv(X) two multi-valued operators satisfying

(a) A is contraction with a contraction constant k, and
(b) B is completely continuous.

Then either

(i) the operator inclusion λx ∈ Ax+Bx has a solution for λ = 1, or
(ii) the set E = {u ∈ X | λu ∈ Au+Bu, λ > 1} is unbounded.

In the following section we give our main results of this paper.

3. Existence theory

Let C(J, IRn), AC(J, IRn), BM(J, IRn),M(J, IRn) and B(J, IRn) denote re-
spectively the spaces of all continuous, absolutely continuous, bounded and
measurable, measurable and bounded IRn-valued functions on J . Then we
have

C(J, IRn) ⊂ AC(J, IRn) ⊂ BM(J, IRn) ⊂ B(J, IRn).

Define a norm ‖ · ‖ in C(J, IRn) by

‖x‖ = max
t∈J

|x(t)|. (4)

Clearly C(J, IRn) is a Banach space with respect to this maximum norm.

Now the neutral FDI (1) is equivalent to the integral inclusion

x(t) ∈ [φ(0)− f(0, φ)] + f(t, xt) +
∫ t

0
G(s, xs) ds, if t ∈ I,

x(t) = φ(t), if t ∈ I0.

 (5)

Define two operators A : C(J, IRn) → C(J, IRn) by

Ax(t) =

{
{−f(0, φ) + f(t, xt)}, if t ∈ I,
0, if t ∈ I0

(6)
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and the multi-valued operator B : C(J, IRn) → Pf (C(J, IRn)) by

Bx =



{
u ∈ C(I, IRn) : u(t) = φ(0) +

∫ t

0
v(s) ds, v ∈ S1

G(x)
}
,

if t ∈ I,

φ(t) if t ∈ I0

(7)

where
S1

G(x) = {v ∈ L1(I, IRn) : v(t) ∈ G(t, xt) a.e. t ∈ I}.
Then the neutral FDI (1) is equivalent to the operator inclusion

x(t) ∈ Ax(t) +Bx(t), t ∈ J. (8)

We shall discuss the operator inclusion (8) for the existence theorems under
some suitable conditions on the function and the multi-functions involved in
FDI (1).

We prove the existence theorem for the FDI (1) under the Carathéodory
condition on the multi-function G in it. We need the following definitions in
the sequel.

Definition 3.1. A multi-valued map map G : J → Pcp,cv(IRn) is said to be
measurable if for every y ∈ IRn, the function t → d(y,G(t)) = inf{‖y − x‖ :
x ∈ G(t)} is measurable.

Definition 3.2. A multi-valued map G : I × C → Pcl(IRn) is said to be
L1-Carathéodory if

(i) t 7→ G(t, x) is measurable for each x ∈ C,
(ii) x 7→ G(t, x) is upper semi-continuous for almost all t ∈ I, and
(iii) for each real number ρ > 0, there exists a function hρ ∈ L1(I, IR+)

such that

‖G(t, u)‖ = sup{|v| : v ∈ G(t, u)} ≤ hρ(t), a.e. t ∈ I

for all u ∈ C with ‖u‖C ≤ ρ.

Then we have the following lemmas due to Lasota and Opial [4].

Lemma 3.3. If dim(X) < ∞ and F : J ×X → Pf (X) is L1-Carathéodory,
then S1

G(x) 6= ∅ for each x ∈ X.
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Lemma 3.4. Let X be a Banach space, G an L1-Carathéodory multi-valued
map with S1

G 6= ∅ and K : L1(J,X) → C(J,X) be a linear continuous mapping.
Then the operator

K ◦ S1
G : C(J,X) −→ Pcp,cv(C(J,X))

is a closed graph operator in C(J,X)× C(J,X).

We consider the following set of assumptions in the sequel.

(H1) There exists a function k ∈ B(I, IR+) such that

|f(t, x)− f(t, y)| ≤ k(t)‖x− y‖C a.e. t ∈ I,

for all x, y ∈ C and ‖k‖ < 1.
(H2) The multiG(t, x) has compact and convex values for each (t, x) ∈ I×C.
(H3) G is L1-Carathéodory.
(H4) There exists a function q ∈ L1(I, IR) with q(t) > 0 for a.e. t ∈ I and

a nondecreasing function ψ : IR+ → (0,∞) such that

‖G(t, x)‖ ≤ q(t)ψ(‖x‖C) a.e. t ∈ I,

for all x ∈ C.

Theorem 3.5. Assume that (H1)-(H4) hold. Suppose that∫ ∞

c1

ds

ψ(s)
> c2‖γ‖L1 (9)

where c1 = F
1−‖k‖ , c2 = 1

1−‖k‖ and F = ‖φ‖C + |φ(0)−f(0, φ)|+supt∈I |f(t, 0)|.
Then the FDI (1) has a solution on J.

Proof : Let X = C(J, IRn) and we study the operator inclusion (8) in the
space X of all continuous IRn-valued functions on J with a supremum norm
‖ · ‖. We shall show that the operators A and B satisfy all the conditions of
Theorem 2.2 on J .

Step I. Since Ax is singleton for each x ∈ X, A has closed, convex values
on X. Also A has bounded values for bounded sets in X. To show this, let S
be a bounded subset of X. Then, for any x ∈ S one has

‖Ax‖ ≤ ‖Ax−A0‖+ ‖A0‖

≤ ‖k‖‖x‖+ ‖A0‖

≤ ‖k‖ρ+ ‖A0‖.
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Hence A is bounded on bounded subsets of X.

Step II. Next we prove that Bx is a convex subset of X for each x ∈ X.

Let u1, u2 ∈ Bx. Then there exists v1 and v2 in S1
G(x) such that

uj(t) = φ(0) +
∫ t

0
vj(s) ds, j = 1, 2.

Since G(t, x) has convex values, one has for 0 ≤ µ ≤ 1,

[µv1 + (1− µ)v2](t) ∈ S1
G(x)(t), ∀t ∈ J.

As a result we have

[µu1 + (1− µ)u2](t) = φ(0) +
∫ t

0
[µv1(s) + (1− µ)v2(s)] ds.

Therefore [µu1 + (1 − µ)u2] ∈ Bx and consequently Bx has convex values in
X. Thus we have B : X → Pcv(X).

Step III. We show that A is a contraction on X. Let x, y ∈ X. By (H1),

|Ax(t)−Ay(t)| ≤ |f(t, xt)− f(t, yt)|

≤ k(t)‖xt − yt‖C

≤ ‖k‖‖x− y‖.

Taking supremum over t,

‖Ax−Ay‖ ≤ ‖k‖‖x− y‖.

This shows that A is a multi-valued contraction, since ‖k‖ < 1.

Step IV. Now we show that the multi-valued operator B is completely
continuous on X. First we show that B maps bounded sets into bounded sets
in X. To see this, let S be a bounded set in X. Then there exists a real number
ρ > 0 such that ‖x‖ ≤ ρ,∀x ∈ S.

Now for each u ∈ Bx, there exists a v ∈ S1
G(x) such that

u(t) = φ(0) +
∫ t

0
v(s) ds.
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Then for each t ∈ I,

|u(t)| ≤ |φ(0)|+
∫ t

0
|v(s)| ds

≤ ‖φ‖C +
∫ t

0
hρ(s) ds

≤ ‖φ‖C + ‖hρ‖L1 .

This further implies that

‖u‖ ≤ ‖φ‖C + ‖hρ‖L1

for all u ∈ Bx ⊂
⋃
B(S). Hence

⋃
B(S) is bounded.

Next we show that B maps bounded sets into equi-continuous sets. Let S
be, as above, a bounded set and u ∈ Bx for some x ∈ S. Then there exists
v ∈ S1

G(x) such that

u(t) = φ(0) +
∫ t

0
v(s) ds.

Then for any t1, t2 ∈ I with t1 ≤ t2 we have

|u(t1)− u(t2)| ≤
∣∣∣∣∫ t1

0
v(s) ds−

∫ t2

0
v(s) ds

∣∣∣∣
≤

∫ t2

t1

|v(s)| ds

≤
∫ t2

t1

hρ(s)ds

≤ |p(t1)− p(t2)|

where p(t) =
∫ t

0
hρ(s)ds.

If t1, t2 ∈ I0 then |u(t1) − u(t2)| = |φ(t1) − φ(t2)|. For the case where
t1 ≤ 0 ≤ t2 we have that

|u(t1)− u(t2)| ≤
∣∣∣∣φ(t1)− φ(0)−

∫ t2

0
v(s) ds

∣∣∣∣
≤ |φ(t1)− φ(0)|+

∫ t2

0
|v(s)| ds

≤ |φ(t1)− φ(0)|+
∫ t2

0
hρ(s)ds

≤ |φ(t1)− φ(0)|+ |p(t2)− p(0)|.
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Hence, in all cases, we have

|u(t1)− u(t2)| → 0 as t1 → t2.

As a result
⋃
B(S) is an equicontinuous set in X. Now an application of

Arzelá-Ascoli theorem yields that the multi B is totally bounded on X.

Step V. Next we prove that B has a closed graph. Let {xn} ⊂ X be a
sequence such that xn → x∗ and let {yn} be a sequence defined by yn ∈ Bxn for
each n ∈ N such that yn → y∗. We will show that y∗ ∈ Bx∗. Since yn ∈ Bxn,

there exists a vn ∈ S1
G(xn) such that

yn(t) =

{
φ(0) +

∫ t
0 vn(s) ds, if t ∈ I,

φ(t), if t ∈ I0.

Consider the linear and continuous operator K : L1(X) → C(X) defined by

Kv(t) =
∫ t

0
vn(s) ds.

Now

|yn(t)− φ(0)− (y∗(t)− φ(0))| ≤ |yn(t)− y∗(t)|

≤ ‖yn − y∗‖ → 0 as n→∞.

From Lemma 3.4 it follows that (K ◦ S1
G) is a closed graph operator and from

the definition of K one has

yn(t)− φ(0) ∈ (K ◦ S1
F (xn)).

As xn → x∗ and yn → y∗, there is a v ∈ S1
G(x∗) such that

y∗(t) =

{
φ(0) +

∫ t
0 v∗(s) ds, t ∈ I,

φ(t), t ∈ I0.

Hence the multi B is an upper semi-continuous operator on X.

Step VI. Finally we show that the set

E = {u ∈ X : λu ∈ Au+Bu for some λ > 1}

is bounded.
Let u ∈ E be any element. Then there exists v ∈ S1

G(u) such that

u(t) = λ−1[φ(0)− f(0, φ)] + λ−1f(t, ut) + λ−1

∫ t

0
v(s) ds.
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Then

|u(t)| ≤ ‖φ‖C + |φ(0)− f(0, φ)|+ |f(t, ut)|+
∫ t

0
|v(s)| ds

≤ ‖φ‖C + |φ(0)− f(0, φ)|+ |f(t, ut)− f(t, 0)|+ |f(t, 0)|

+
∫ t

0
q(s)ψ(‖us‖C) ds

≤ ‖φ‖C + |φ(0)− f(0, φ)|+ |f(t, 0)|+ k(t)‖ut‖C +
∫ t

0
q(s)ψ(‖us‖C) ds

≤ ‖φ‖C + |φ(0)− f(0, φ)|+ sup
t∈I

|f(t, 0)|+ ‖k‖‖ut‖C +
∫ t

0
q(s)ψ(‖us‖C) ds

≤ F + ‖k‖‖ut‖C +
∫ t

0
q(s)ψ(‖us‖C) ds.

Put w(t) = max{|u(s)| : −r ≤ s ≤ t}, t ∈ I. Then ‖ut‖C ≤ w(t) for all
t ∈ I and there is a point t∗ ∈ [−r, t] such that w(t) = u(t∗). Hence we have

w(t) = |u(t∗)|

≤ F + ‖k‖‖ut‖C +
∫ t

0
q(s)ψ(‖us‖C) ds

≤ F + ‖k‖w(t) +
∫ t

0
q(s)ψ(w(s)) ds,

or

(1− ‖k‖)w(t) ≤ F +
∫ t

0
q(s)ψ(w(s)) ds

and

w(t) ≤ c1 + c2

∫ t

0
q(s)ψ(w(s)) ds, t ∈ I.

Let

m(t) = c1 + c2

∫ t

0
q(s)ψ(w(s)) ds, t ∈ I.

Then we have w(t) ≤ m(t) for all t ∈ I. Differentiating w.r.t. to t, we obtain

m′(t) = c2q(t)ψ(w(t)), a.e. t ∈ I, m(0) = c1.

This further implies that

m′(t) ≤ c2q(t)ψ(m(t)), a.e. t ∈ I, m(0) = c1,
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that is,
m′(t)
ψ(m(t))

≤ c2q(t) a.e. t ∈ J, m(0) = c1.

Integrating from 0 to t we get∫ t

0

m′(s)
ψ(m(t))

ds ≤ c2

∫ t

0
q(s)ds.

By the change of variable,∫ m(t)

c1

ds

ψ(s)
≤ c2‖q‖L1 <

∫ ∞

c1

ds

ψ(s)
.

Hence there exists a constant M such that

w(t) ≤ m(t) ≤M for all t ∈ I.

Now from the definition of w it follows that

‖u‖ = sup
t∈[−r,a]

|u(t)| = w(a) ≤ m(a) ≤M,

for all u ∈ E . This shows that the set E is bounded in X. As a result the
conclusion (ii) of Theorem 2.2 does not hold. Hence the conclusion (i) holds
and consequently (5) or equivalently FDI (1) has a solution x on J. This
completes the proof. �

4. Existence of extremal solutions

In this section we shall prove the existence of maximal and minimal solutions
of the FDI (1) under suitable monotonicity conditions on the multi-functions
involved in it. We define the usual co-ordinate-wise order relation “ ≤ ” in
IRn as follows. Let x = (x1, . . . , xn) ∈ IRn and y = (y1, . . . , yn) ∈ IRn be
any two elements. Then by “ x ≤ y ” we mean xi ≤ yi for all ∀i, i = 1, · · · , n.
We equip the space C(J, IRn) with the order relation ≤ defined by the cone
K in C(J, IRn), that is,

K =
{
x ∈ C(J, IRn) | x(t) ≥ 0, ∀ t ∈ J

}
. (10)

It is known that the cone K is normal in C(J, IRn). The details of cones
and their properties may be found in Heikkila and Lakshmikantham [3]. Let
a, b ∈ C(J, IRn) be such that a ≤ b. Then by an order interval [a, b] we mean
a set of points in C(J, IRn) given by

[a, b] = {x ∈ C(J, IRn) | a ≤ x ≤ b}. (11)
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Let D,Q ∈ Pcl(C(J, IRn)). Then by D ≤ Q we mean a ≤ b for all a ∈ D and
b ∈ Q. Thus a ≤ D implies that a ≤ b for all b ∈ Q in particular, if D ≤ D,
then it follows that D is a singleton set.

Definition 4.1. Let X be an ordered Banach space. A mapping T : X →
Pcl(X) is called isotone increasing if x, y ∈ X with x < y, then we have that
Tx ≤ Ty.

We use the following fixed point theorem in the proof of main existence
result of this section.

Theorem 4.2. (Dhage [2]). Let [a, b] be an order interval in a Banach space
and let A,B : [a, b] → Pcl(X) be two multi-valued operators satisfying

(a) A is multi-valued contraction,
(b) B is completely continuous,
(c) A and B are isotone increasing, and
(d) Ax+Bx ⊂ [a, b], ∀ x ∈ [a, b].

Further if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx
has a least fixed point x∗ and a greatest fixed point x∗ in [a, b]. Moreover
x∗ = lim

n
xn and x∗ = lim

n
yn, where {xn} and {yn} are the sequences in [a, b]

defined by

xn+1 ∈ Axn +Bxn, x0 = a and yn+1 ∈ Ayn +Byn, y0 = b.

We need the following definitions in the sequel.

Definition 4.3. A function a ∈ C(J, IRn) is called a lower solution of the FDI

(1) if
d

dt
[a(t) − f(t, at)] ≤ v(t) a.e. t ∈ I, a0 ≤ φ, for all v ∈ L1(I, IRn)

such that v(t) ∈ G(t, at) almost everywhere t ∈ I. Similarly an upper solution
b of the FDI (1) is defined.

Definition 4.4. A solution xM of the FDI (1) is said to be maximal if x is
any other solution of FDI (1) on J, then we have x(t) ≤ xM (t) for all t ∈ J .
Similarly a minimal solution of the FDI (1) is defined.

We consider the following assumptions in the sequel.

(H5) The function f(t, x) and the multi-function G(t, x) are nondecreasing
in x almost everywhere for t ∈ I.
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(H6) The FDI (1) has a lower solution a and an upper solution b with a ≤ b.

Theorem 4.5. Assume that the hypotheses (H1)-(H6) hold. Then the FDI
(1) has minimal and maximal solutions on J.

Proof : Let X = C(J, IRn) and consider the order interval [a, b] in X which
is well defined in view of hypothesis (H7). Define two operators A,B by (6)
and (7) respectively. It can be shown, as in the proof of Theorem 3.5, that A
and B define the operators A : [a, b] → X and B : [a, b] → Pcp,cv(X). It is
also similarly shown that A and B are respectively contraction and completely
continuous on [a, b]. We shall show that A and B are isotone increasing on
[a, b]. Let x ∈ [a, b] be such that x ≤ y, x 6= y. Then by (H5), we have

Ax(t) = −f(0, φ) + f(t, xt)

≤ −f(0, φ)] + f(t, yt)

= Ay(t),

for all t ∈ I and Ax(t) = 0 = Ay(t) for all t ∈ I0. Hence Ax ≤ Ay. Similarly
by (H5), we have

Bx(t) =
{
u(t) : u(t) = φ(0) +

∫ t

0
v(s) ds, v ∈ S1

G(x)
}

≤
{
u(t) : u(t) = φ(0) +

∫ t

0
v(s) ds, v ∈ S1

G(y)
}

= By(t),

for all t ∈ I and Bx(t) = φ(t) = By(t) for all t ∈ I0. Hence Bx ≤ By. Thus A
and B are monotone increasing on [a, b]. Finally let x ∈ [a, b] be any element.
Then by (H6),

a ≤ Aa+Ba ≤ Ax+Bx ≤ Ab+Bb ≤ b,

which shows that Ax + Bx ∈ [a, b] for all x ∈ [a, b]. Thus the multi-valued
operator A and B satisfy all the conditions of Theorem 4.2 to yield that the
operator inclusion and consequently the FDI (1) has maximal and minimal
solutions on J . This completes the proof. �
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