AN EXISTENCE AND UNIQUENESS RESULT FOR NONLINEAR INTEGRAL EQUATIONS

SILVIA OTILIA CORDUNEANU

Department of Mathematics
Gh. Asachi Technical University of Iaşi
11 Carol I Blvd.
Iaşi, Romania
E-mail: scord@mail.dntis.ro

Abstract

Let X be a Banach space, $\{S(s) \mid s \geq 0\}$ a C_{0}-semigroup of contractions on X and ν a positive measure. We study the solvability of the nonlinear equation $$
u \in \mathcal{C}([a, b] ; X), \quad F\left(t, u(t), \int_{a}^{t} S(t-s) d(u \nu)(s)\right)=f(t), \quad t \in[a, b] .
$$

Key Words and Phrases: Nonlinear integral equation, semigroup of contractions, Riemann-Stieltjes integral, existence and uniqueness result.

2000 Mathematics Subject Classification: 47D03, 47H10.

1. Introduction

Let $(X,\|\cdot\|)$ be a Banach space and $\mathcal{C}([a, b] ; X)$ the Banach space of all continuous vector-valued functions defined on $[a, b]$ endowed with the supremum norm $\|\cdot\|_{\mathcal{C}}$. Consider $\mathcal{L}(X)$ the Banach space of all continuous linear operators on X and $\{S(s) \mid s \geq 0\}$ a C_{0}-semigroup of contractions on X which is continuous from $(0, \infty)$ to $\mathcal{L}(X)$ in the uniform operator topology. Denote by $\mathcal{M}_{[a, b]}$ the σ-algebra of the Lebesgue measurable sets which are contained in $[a, b]$. Consider ν a positive measure which is defined on $\mathcal{M}_{[a, b]}$. Suppose that ν is different from the null measure and also that $\nu(\{s\})=0$ for each

[^0]$s \in[a, b]$. If $u \in \mathcal{C}([a, b] ; X)$ then $u \nu$ is the measure defined by u as density and by ν as base. We are looking for $u \in \mathcal{C}([a, b] ; X)$ such that
\[

$$
\begin{equation*}
F\left(t, u(t), \int_{a}^{t} S(t-s) d(u \nu)(s)\right)=f(t), \quad t \in[a, b] \tag{1}
\end{equation*}
$$

\]

We assume that $F:[a, b] \times X^{2} \rightarrow X$ is a continuous nonlinear function and also that $f \in \mathcal{C}([a, b] ; X)$. Consider $t \in[a, b]$. As we shall see in the next part, the integral $\int_{a}^{t} S(t-s) d(u \nu)(s)$ is a kind of the Riemann-Stieltjes integral on $[a, t]$. In fact, making the notation $g_{u}(s)=u \nu([a, s]), s \in[a, b]$ we see that g_{u} is a vector-valued function of bounded variation and further, our integral is a particular case of the Riemann-Stieltjes integral of an operator-valued function with respect to a vector-valued function of bounded variation (see [6], p. 206 and [7], p.3184). More precisely

$$
\int_{a}^{t} S(t-s) d(u \nu)(s)=\int_{a}^{t} S(t-s) d g_{u}(s)
$$

where $\int_{a}^{t} S(t-s) d g_{u}(s)$ is the Riemann-Stieltjes integral on $[a, t]$ of the operator-valued function $s \in[a, t] \rightarrow S(t-s) \in \mathcal{L}(X)$ with respect to the function $g_{u} \in B V([a, b] ; X)$ (see [6], p. 206 and [7], p.3184). We denoted by $B V([a, b] ; X)$ the set of all vector-valued functions of bounded variation on $[a, b]$.
The study of equation (1) has been suggested to us by the following Cauchy problem which can be found in [6], p.269:

$$
\left\{\begin{array}{l}
d u=\{A u\} d t+d h_{u} \tag{2}\\
u(a)=\xi
\end{array}\right.
$$

The above Cauchy problem is equivalent by the next equation

$$
\begin{equation*}
u(t)=S(t-a) \xi+\int_{a}^{t} S(t-s) d h_{u}(s) \tag{3}
\end{equation*}
$$

In the context of (2) and (3), $A: D(A) \subset X \rightarrow X$ is the infinitesimal generator of the C_{0}-semigroup of contractions $\{S(s) \mid s \geq 0\}, \xi \in D(A)$ and $h_{u}=H(u)$ where $H: \mathcal{C}([a, b] ; X) \rightarrow B V([a, b] ; X)$.

We adapt some steps of the technique proposed by Adriana Buică in [2]. So, using the theory of nearness between two operators and the Banach Fixed Point Theorem we obtain an existence and uniqueness result for equation (1).

2. Preliminaries

Consider $t \in(a, b]$ and $u \in \mathcal{C}([a, b] ; X)$. Let $\mathcal{P}[a, t]$ be the set of all partitions of the interval $[a, t]$. Consider $\mathcal{P} \in \mathcal{P}[a, t]$ and let us denote $\mathcal{P}: a=t_{0}<t_{1}<$ $\cdots<t_{n}=t$. We also denote by $\lambda(\mathcal{P})$ the norm of the partition \mathcal{P}. We recall that $\lambda(\mathcal{P})=\max \left\{t_{i}-t_{i-1} \mid i=1,2, \ldots, n\right\}$. Consider $\tau_{i} \in\left[t_{i-1}, t_{i}\right], i=$ $1,2, \ldots, n$. The measure defined by u as density and by ν as base is a measure of bounded variation and its variation on $[a, b]$ satisfies

$$
\begin{aligned}
& \operatorname{Var}(u \nu,[a, b])=\sup _{\mathcal{P} \in \mathcal{P}[a, b]} \sum_{i=1}^{n}\left\|u \nu\left(\left[t_{i-1}, t_{i}\right]\right)\right\|= \\
& =\sup _{\mathcal{P} \in \mathcal{P}[a, b]} \sum_{i=1}^{n}\left\|\int_{t_{i-1}}^{t_{i}} u(s) d \nu(s)\right\| \leq \nu([a, b])\|u\|_{\mathcal{C}} .
\end{aligned}
$$

If $g_{u}(s)=u \nu([a, s]), s \in[a, b]$, we easily prove that $g_{u} \in B V([a, b], X) \cap$ $\mathcal{C}([a, b] ; X)$. Indeed the variation of g_{u} on $[a, b]$ is given by

$$
\begin{aligned}
& \operatorname{Var}\left(g_{u} ;[a, b]\right)=\sup _{\mathcal{P} \in \mathcal{P}_{[a, b]}} \sum_{i=1}^{n}\left\|g_{u}\left(t_{i}\right)-g_{u}\left(t_{i-1}\right)\right\|= \\
& =\sup _{\mathcal{P} \in \mathcal{P}_{[a, b]}} \sum_{i=1}^{n}\left\|u \nu\left(\left[t_{i-1}, t_{i}\right]\right)\right\|=\operatorname{Var}(u \nu,[a, b]) .
\end{aligned}
$$

The assumptions regarding the measure ν yield that $g_{u} \in \mathcal{C}([a, b] ; X)$. Next, using the properties of a C_{0}-semigroup of contractions, the continuity of the function $s \in[a, t] \rightarrow S(t-s) u(s) \in X$ follows.
The integral $\int_{a}^{t} S(t-s) d(u \nu)(s)$ is a kind of Riemann-Stieltjes integral and it is defined in the following way

$$
\int_{a}^{t} S(t-s) d(u \nu)(s)=\lim _{\substack{\lambda(\mathcal{P}) \downarrow 0 \\ \mathcal{P} \in \mathcal{P}[a, t]}} \sum_{i=1}^{n} S\left(t-\tau_{i}\right)\left(u \nu\left(\left[t_{i-1}, t_{i}\right]\right)\right) .
$$

The limit on the right-hand side exists in the norm topology of X because the semigroup $\{S(s) \mid s \geq 0\}$ is continuous from $(0, \infty)$ to $\mathcal{L}(X)$ in the uniform operator topology (see [6], p.208, Theorem 9.1.1 and [7], p.3186, Theorem 2.1). We notice that

$$
\int_{a}^{t} S(t-s) d(u \nu)(s)=\int_{a}^{t} S(t-s) d g_{u}(s)
$$

Therefore, taking into account that $g_{u} \in \mathcal{C}([a, b] ; X)$ and using Corollary 9.2.1 from [6], p. 213 or Corollary 3.1 from [7], p.3190, it follows that the integral $\int_{a}^{t} S(t-s) d(u \nu)(s)$ defines a continuous function as function of $t \in[a, b]$.

Proposition 2.1. The following equality holds

$$
\int_{a}^{t} S(t-s) d(u \nu)(s)=\int_{a}^{t} S(t-s) u(s) d \nu(s)
$$

Proof. First let us remind that

$$
\begin{equation*}
\int_{a}^{t} S(t-s) u(s) d \nu(s)=\lim _{\substack{\lambda(\mathcal{P}) \downarrow 0 \\ \mathcal{P} \in \mathcal{P}[a, t]}} \sum_{i=1}^{n} \nu\left[t_{i-1}, t_{i}\right] S\left(t-\tau_{i}\right)\left(u\left(\tau_{i}\right)\right) \tag{4}
\end{equation*}
$$

Consider $\mathcal{P} \in \mathcal{P}[a, t], \mathcal{P}: a=t_{0}<t_{1}<\cdots<t_{n}=t$ and $\tau_{i} \in\left[t_{i-1}, t_{i}\right], i=$ $1,2, \cdots, n$. There are obvious the following equalities

$$
\begin{align*}
& \sum_{i=1}^{n} S\left(t-\tau_{i}\right)\left(u \nu\left(\left[t_{i-1}, t_{i}\right]\right)\right)=\sum_{i=1}^{n} S\left(t-\tau_{i}\right)\left(\int_{t_{i-1}}^{t_{i}} u(s) d \nu(s)\right)= \\
& =\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} S\left(t-\tau_{i}\right) u(s) d \nu(s)= \\
& =\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left[S\left(t-\tau_{i}\right) u(s)-S(t-s) u(s)\right] d \nu(s)+ \tag{5}\\
& +\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} S(t-s) u(s) d \nu(s)= \\
& =\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left[S\left(t-\tau_{i}\right) u(s)-S(t-s) u(s)\right] d \nu(s)+ \\
& +\int_{a}^{t} S(t-s) u(s) d \nu(s) .
\end{align*}
$$

We shall prove that

$$
\lim _{\substack{\lambda(\mathcal{P}) \downarrow \\ \mathcal{P} \in \mathcal{P}[a, t]}} \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left[S\left(t-\tau_{i}\right) u(s)-S(t-s) u(s)\right] d \nu(s)=0 .
$$

Consider $\varepsilon>0$. We easily obtain

$$
\begin{align*}
& \left\|S\left(t-\tau_{i}\right) u(s)-S(t-s) u(s)\right\| \leq\left\|S\left(t-\tau_{i}\right) u(s)-S\left(t-\tau_{i}\right) u\left(\tau_{i}\right)\right\|+ \\
& +\left\|S\left(t-\tau_{i}\right) u\left(\tau_{i}\right)-S(t-s) u(s)\right\| \leq \tag{6}\\
& \leq\left\|u(s)-u\left(\tau_{i}\right)\right\|+\left\|S\left(t-\tau_{i}\right) u\left(\tau_{i}\right)-S(t-s) u(s)\right\| .
\end{align*}
$$

From the uniform continuity of the function $s \in[a, t] \rightarrow u(s) \in X$ we find $\delta_{1}>0$ such that for $\mathcal{P} \in \mathcal{P}[a, t]$ with $\lambda(\mathcal{P})<\delta_{1}$ and $s \in\left[t_{i-1}, t_{i}\right]$ we get

$$
\begin{equation*}
\left\|u(s)-u\left(\tau_{i}\right)\right\|<\frac{\varepsilon}{2 \nu([a, b])}, \quad i=1,2, \ldots, n . \tag{7}
\end{equation*}
$$

From the uniform continuity of the function $s \in[a, t] \rightarrow S(t-s) u(s) \in X$ we find $\delta_{2}>0$ such that for $\mathcal{P} \in \mathcal{P}[a, t]$ with $\lambda(\mathcal{P})<\delta_{2}$ and $s \in\left[t_{i-1}, t_{i}\right]$ we get

$$
\begin{equation*}
\left\|S\left(t-\tau_{i}\right) u\left(\tau_{i}\right)-S(t-s) u(s)\right\|<\frac{\varepsilon}{2 \nu([a, b])}, \quad i=1,2, \ldots, n \tag{8}
\end{equation*}
$$

Let us denote $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Taking into account (6), (7) and (8) we can see that for each $\mathcal{P} \in \mathcal{P}[a, t]$ such that $\lambda(\mathcal{P})<\delta$ we get

$$
\begin{align*}
& \left\|\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left[S\left(t-\tau_{i}\right) u(s)-S(t-s) u(s)\right] d \nu(s)\right\| \leq \\
& \leq \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left\|S\left(t-\tau_{i}\right) u(s)-S(t-s) u(s)\right\| d \nu(s) \leq \varepsilon \tag{9}
\end{align*}
$$

This completes the proof.

3. The Main Result

We prove the main result of the paper, Theorem 3.1, which is an existence and uniqueness result for equation (1).
Consider

- $T: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}([a, b] ; X), \quad T u(t)=\int_{a}^{t} S(t-s) u(s) d \nu(s) ;$
- $\mathcal{C}_{T}([a, b] ; X)=\{T u \mid u \in \mathcal{C}([a, b] ; X)\}$.

We prove that $\mathcal{C}_{T}([a, b] ; X)$ is a Banach space and that T is a continuous linear operator and a bijective map between $\mathcal{C}([a, b] ; X)$ and $\mathcal{C}_{T}([a, b] ; X)$.

Proposition 3.1. The mapping $T: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}([a, b] ; X)$

$$
T u(t)=\int_{a}^{t} S(t-s) u(s) d \nu(s)
$$

is an injective continuous linear operator.
Proof. Since $\|T u\|_{\mathcal{C}} \leq \nu([a, b])\|u\|_{\mathcal{C}}$ for every $u \in \mathcal{C}([a, b] ; X)$ we conclude that T is continuous. Consider $u \in \mathcal{C}([a, b] ; X)$ and suppose that $T u(t)=0$ for every $t \in[a, b]$. This means

$$
\int_{a}^{t} S(t-s) u(s) d \nu(s)=0, \quad t \in[a, b]
$$

We shall prove that u is the null function. To this aim, consider $t \in(a, b]$ and $\varepsilon>0$ such that $t-\varepsilon>a$. We have

$$
S(\varepsilon) \int_{a}^{t-\varepsilon} S(t-\varepsilon-s) u(s) d \nu(s)=0
$$

hence

$$
\int_{a}^{t-\varepsilon} S(t-s) u(s) d \nu(s)=0
$$

Now, consider the function $h(s)=S(t-s) u(s), s \in[a, t]$. It is easy to see that

$$
\int_{t-\varepsilon}^{t} h(s) d \nu(s)=0, \quad \text { for every } \varepsilon>0 \text { such that } t-\varepsilon>a
$$

Therefore, $0 \in \bigcap_{\varepsilon>0} \overline{\operatorname{conv}} h([t-\varepsilon, t])$, where $\overline{\operatorname{conv}} h([t-\varepsilon, t])$ is the closed convex hull of the set $h([t-\varepsilon, t])$. We shall prove that

$$
\bigcap_{\varepsilon>0} \overline{\operatorname{conv}} h([t-\varepsilon, t])=\{h(t)\} .
$$

It is clear that

$$
h(t) \in \bigcap_{\varepsilon>0} \overline{\operatorname{conv}} h([t-\varepsilon, t]) .
$$

Suppose that there exists $y \in X, y \neq h(t)$ such that

$$
y \in \bigcap_{\varepsilon>0} \overline{\operatorname{conv}} h([t-\varepsilon, t]) .
$$

By setting $\varepsilon_{0}=\|h(t)-y\|$ we obviously have that $\varepsilon_{0}>0$. Using the fact that h is a continuous function we can choose $\delta>0$ such that $t-\delta>a$ and for $s \in[a, t],|s-t|<\delta$ it is true the inequality $\|h(s)-h(t)\|<\frac{\varepsilon_{0}}{4}$. Since $y \in \overline{c o n v} h([t-\delta, t])$, it follows that there exists a sequence $\left(y_{n}\right)$ such that $y_{n} \in \operatorname{conv} h[t-\delta, t], n \in \mathbb{N}$ and $y=\lim y_{n}$. Hence, there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$ it is true the inequality $\left\|y_{n}-y\right\|<\frac{\varepsilon_{0}}{4}$. From $y_{n_{0}} \in \operatorname{conv} h([t-\delta, t])$ it results that there exist the sets $\left\{y_{n_{0}}^{i} \mid i=1,2, \ldots, p\right\} \subset h([t-\delta, t]),\left\{\alpha_{i} \mid\right.$ $i=1,2, \ldots, p\} \subset[0,1]$ such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{p}=1$ and

$$
y_{n_{0}}=\alpha_{1} y_{n_{0}}^{1}+\alpha_{2} y_{n_{0}}^{2}+\cdots+\alpha_{p} y_{n_{0}}^{p}
$$

Further, consider $t_{n_{0}}^{i} \in[t-\delta, t]$ such that $y_{n_{0}}^{i}=h\left(t_{n_{0}}^{i}\right), i=1,2, \ldots, p$. This means

$$
y_{n_{0}}=\alpha_{1} h\left(t_{n_{0}}^{1}\right)+\alpha_{2} h\left(t_{n_{0}}^{2}\right)+\cdots+\alpha_{p} h\left(t_{n_{0}}^{p}\right)
$$

From the continuity of h, the following inequalities hold

$$
\left\|h\left(t_{n_{0}}^{i}\right)-h(t)\right\|<\frac{\varepsilon_{0}}{4}, \quad i=1,2, \ldots, p
$$

We also see that

$$
\begin{aligned}
& \left\|h(t)-y_{n_{0}}\right\|= \\
& =\left\|\alpha_{1}\left(h(t)-h\left(t_{n_{0}}^{1}\right)\right)+\alpha_{2}\left(h(t)-h\left(t_{n_{0}}^{2}\right)\right)+\cdots+\alpha_{p}\left(h(t)-h\left(t_{n_{0}}^{p}\right)\right)\right\| \leq \\
& \leq \alpha_{1}\left\|h(t)-h\left(t_{n_{0}}^{1}\right)\right\|+\alpha_{2}\left\|h(t)-h\left(t_{n_{0}}^{2}\right)\right\|+\cdots+\alpha_{p}\left\|h(t)-h\left(t_{n_{0}}^{p}\right)\right\|<\frac{\varepsilon_{0}}{4} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|h(t)-y\| \leq\left\|h(t)-y_{n_{0}}\right\|+\left\|y_{n_{0}}-y\right\|<\frac{\varepsilon_{0}}{4}+\frac{\varepsilon_{0}}{4}=\frac{\varepsilon_{0}}{2} . \tag{10}
\end{equation*}
$$

But $\|h(t)-y\|=\varepsilon_{0}$ and this contradicts (10). The consequence is $h(t)=0$ so $S(t-t) u(t)=0$ and further $u(t)=0$. Taking into account that t was arbitrary it results that $u(t)=0$ for every $t \in(a, b]$ and from the continuity of u we obtain $u \equiv 0$.

Corollary 3.1. $\mathcal{C}_{T}([a, b] ; X)=\{T u \mid u \in \mathcal{C}([a, b] ; X)\}$ is a Banach space and the mapping

$$
T: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}_{T}([a, b] ; X), \quad T u(t)=\int_{a}^{t} S(t-s) u(s) d \nu(s)
$$

is a bijective continuous linear operator.

Proof. Since T is continuous it results that T has closed graph, hence $\mathcal{C}_{T}([a, b] ; X)$ is a closed subspace of $\mathcal{C}([a, b] ; X)$. Therefore, $\mathcal{C}_{T}([a, b] ; X)$ is a Banach space. From a corollary of the Open Mapping Theorem we conclude that $T^{-1} \in \mathcal{L}\left(\mathcal{C}_{T}([a, b] ; X), \mathcal{C}([a, b] ; X)\right)$, where $\mathcal{L}\left(\mathcal{C}_{T}([a, b] ; X), \mathcal{C}([a, b] ; X)\right)$ is the Banach space of all continuous linear operators between $\mathcal{C}_{T}([a, b] ; X)$ and $\mathcal{C}([a, b] ; X)$.

Consider $m>0$ such that $m\|u\|_{\mathcal{C}} \leq\|T u\|_{\mathcal{C}}$ for all $u \in \mathcal{C}([a, b] ; X)$.
For $w \in \mathcal{C}([a, b] ; X)$ we define the mapping

$$
A_{w}: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}([a, b] ; X), \quad A_{w}(u)(t)=F(t, w(t), T u(t)), \quad t \in[a, b]
$$

Theorem 3.1. Suppose that
(i) For every $(w, u) \in \mathcal{C}^{2}([a, b] ; X)$ we have $A_{w}(u) \in \mathcal{C}_{T}([a, b] ; X)$;
(ii) There exist $\alpha>0$ and $\beta \in(0,1)$ such that for all $u, v, w \in \mathcal{C}([a, b] ; X)$ we have

$$
\left\|T u-T v-\alpha\left(A_{w} u-A_{w} v\right)\right\|_{\mathcal{C}} \leq \beta\|T u-T v\|_{\mathcal{C}} ;
$$

(iii) For every $w_{1}, w_{2}, u \in \mathcal{C}([a, b] ; X)$

$$
\left\|A_{w_{1}} u-A_{w_{2}} u\right\|_{\mathcal{C}} \leq\left\|w_{1}-w_{2}\right\|_{\mathcal{C}}
$$

If $m>\frac{\alpha}{1-\beta}$ then equation (1) has a unique solution.
Proof. Consider $w \in \mathcal{C}([a, b] ; X)$. We shall prove that the mapping

$$
A_{w}: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}_{T}([a, b] ; X), \quad A_{w}(u)(t)=F(t, w(t), T u(t)), \quad t \in[a, b],
$$

is bijective. If $u, v \in \mathcal{C}([a, b] ; X)$ and $A_{w} u=A_{w} v$ it results $\|T u-T v\|_{\mathcal{C}} \leq$ $\beta\|T u-T v\|_{\mathcal{C}}$, so $T u=T v$ and this means $u=v$. Let us denote $B=T-\alpha A_{w}$. We have the inequality $\|B u-B v\|_{\mathcal{C}} \leq \beta\|T u-T v\|_{\mathcal{C}}$. From the hypothesis (ii), the continuity of A_{w} follows. Consider $g \in \mathcal{C}_{T}([a, b] ; X)$. We shall see that the equation $A_{w} u=g$ has a solution $u \in \mathcal{C}([a, b] ; X)$. Let u_{0} be in $\mathcal{C}([a, b] ; X)$. We define the sequence $\left(u_{n}\right), u_{n} \in \mathcal{C}([a, b] ; X), n \in \mathbb{N}$ as follows

$$
\begin{equation*}
T u_{n+1}=T u_{n}-\alpha A_{w} u_{n}+\alpha g, \quad n \in \mathbb{N} . \tag{11}
\end{equation*}
$$

For every $n \in \mathbb{N}^{*}$ we obtain the following inequalities

$$
\begin{aligned}
& \left\|T u_{n+1}-T u_{n}\right\|_{\mathcal{C}}=\left\|B u_{n}-B u_{n-1}\right\|_{\mathcal{C}} \leq \\
& \leq \beta\left\|T u_{n}-T u_{n-1}\right\|_{\mathcal{C}} \leq \cdots \leq \beta^{n}\left\|T u_{1}-T u_{0}\right\|_{\mathcal{C}}
\end{aligned}
$$

and further, for $p \in \mathbb{N}^{*}$ it follows

$$
\left\|T u_{n+p}-T u_{n}\right\|_{\mathcal{C}} \leq \beta^{n} \frac{1-\beta^{p}}{1-\beta}\left\|T u_{1}-T u_{0}\right\|_{\mathcal{C}}<\beta^{n} \frac{1}{1-\beta}\left\|T u_{1}-T u_{0}\right\|_{\mathcal{C}}
$$

Hence $\left(T u_{n}\right)$ is a Cauchy sequence in the Banach space $\mathcal{C}_{T}([a, b] ; X)$. Therefore there exists $y \in \mathcal{C}_{T}([a, b] ; X)$ such that $T u_{n} \rightarrow y$. But T is a bijective mapping, so, there exists $u \in \mathcal{C}([a, b] ; X)$ such that $T u=y$. Taking into account that $u=T^{-1} y$ and that $T^{-1} \in \mathcal{L}\left(\mathcal{C}_{T}([a, b] ; X), \mathcal{C}([a, b] ; X)\right)$ it results that $u_{n} \rightarrow u$. Passing to the limit in (11) we obtain $A_{w}(u)=g$.
Now, consider the operator

$$
U: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}_{T}([a, b] ; X), \quad U w=T u_{w},
$$

where u_{w} is the solution of the equation $A_{w}(u)=f$.
Consider also the operator

$$
Q: \mathcal{C}([a, b] ; X) \rightarrow \mathcal{C}([a, b] ; X), \quad Q=T^{-1} U
$$

We prove that Q has a unique fixed point. Indeed, if $w_{1}, w_{2} \in \mathcal{C}([a, b] ; X)$ then

$$
\begin{aligned}
& \left\|T^{-1} U w_{1}-T^{-1} U w_{2}\right\|_{\mathcal{C}} \leq \frac{1}{m}\left\|T u_{w_{1}}-T u_{w_{2}}\right\|_{\mathcal{C}} \leq \\
& \leq \frac{1}{m} \frac{\alpha}{1-\beta}\left\|A_{w_{1}} u_{w_{1}}-A_{w_{1}} u_{w_{2}}\right\|_{\mathcal{C}}= \\
& =\frac{1}{m} \frac{\alpha}{1-\beta}\left\|A_{w_{2}} u_{w_{2}}-A_{w_{1}} u_{w_{2}}\right\|_{\mathcal{C}} \leq q\left\|w_{1}-w_{2}\right\|_{\mathcal{C}}
\end{aligned}
$$

where $q=\frac{\alpha}{m(1-\beta)}$. Hence, there exists $w_{0} \in \mathcal{C}([a, b] ; X)$ such that $w_{0}=$ $T^{-1} U\left(w_{0}\right)$. But this means that $w_{0}=u_{w_{0}}$ and further $F\left(t, w_{0}(t), T w_{0}(t)\right)=$ $f(t), t \in[a, b]$, and the proof is complete.

References

[1] R. G. Bartle, The Elements of Real Analysis, John Wiley \& Sons, Second Edition, New York, London, Sydney, Toronto, 1975.
[2] A. Buică, Existence of strong solutions of fully nonlinear elliptic equations, Analysis and optimization of differential systems, V. Barbu, I. Lasiecka, D. Tiba, C. Varsan (eds.), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003, pp. 69-76.
[3] N. Dinculeanu, Vector Measures, Veb Deutscher Verlag Der Wissenschaften, Berlin, 1966.
[4] N. Dinculeanu, Integrarea pe Spaţii Local Compacte, Editura Academiei R.P.R., Bucureşti, 1965.
[5] L. C. Florescu, Analiză Matematică, Editura Universităţii "Al. I. Cuza", Iaşi, 1999.
[6] I. I. Vrabie, C_{0} - Semigroups and Applications, North - Holland Mathematics Studies 191, North-Holland/Elsevier, 2003.
[7] I. I. Vrabie, Compactness of the solution operator for a linear evolution equation with distributed measures, Transactions A.M.S., 354(2002), 3181-3205.
[8] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1965.

[^0]: This paper was presented at International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from August 24 to August 27, 2004

