
Fixed Point Theory, Volume 5, No. 2, 2004, 225-234

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.htm

AN EXISTENCE AND UNIQUENESS RESULT
FOR NONLINEAR INTEGRAL EQUATIONS

SILVIA OTILIA CORDUNEANU

Department of Mathematics

Gh. Asachi Technical University of Iaşi
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Abstract. Let X be a Banach space, {S(s) | s ≥ 0} a C0-semigroup of contractions on X

and ν a positive measure. We study the solvability of the nonlinear equation

u ∈ C([a, b]; X), F

�
t, u(t),

Z t

a

S(t− s)d(uν)(s)

�
= f(t), t ∈ [a, b].
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1. Introduction

Let (X, ‖ · ‖) be a Banach space and C([a, b];X) the Banach space of all
continuous vector-valued functions defined on [a, b] endowed with the supre-
mum norm ‖ · ‖C . Consider L(X) the Banach space of all continuous linear
operators on X and {S(s) | s ≥ 0} a C0-semigroup of contractions on X which
is continuous from (0,∞) to L(X) in the uniform operator topology. Denote
by M[a,b] the σ-algebra of the Lebesgue measurable sets which are contained
in [a, b]. Consider ν a positive measure which is defined on M[a,b]. Suppose
that ν is different from the null measure and also that ν({s}) = 0 for each
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s ∈ [a, b]. If u ∈ C([a, b];X) then uν is the measure defined by u as density
and by ν as base. We are looking for u ∈ C([a, b];X) such that

F

(
t, u(t),

∫ t

a
S(t− s)d(uν)(s)

)
= f(t), t ∈ [a, b]. (1)

We assume that F : [a, b] × X2 → X is a continuous nonlinear function and
also that f ∈ C([a, b];X). Consider t ∈ [a, b]. As we shall see in the next part,

the integral
∫ t

a
S(t− s)d(uν)(s) is a kind of the Riemann-Stieltjes integral on

[a, t]. In fact, making the notation gu(s) = uν([a, s]), s ∈ [a, b] we see that gu

is a vector-valued function of bounded variation and further, our integral is a
particular case of the Riemann-Stieltjes integral of an operator-valued function
with respect to a vector-valued function of bounded variation (see [6], p.206
and [7], p.3184). More precisely∫ t

a
S(t− s)d(uν)(s) =

∫ t

a
S(t− s)dgu(s),

where
∫ t

a
S(t− s)dgu(s) is the Riemann-Stieltjes integral on [a, t] of the

operator-valued function s ∈ [a, t] → S(t − s) ∈ L(X) with respect to the
function gu ∈ BV ([a, b];X) (see [6], p.206 and [7], p.3184). We denoted by
BV ([a, b];X) the set of all vector-valued functions of bounded variation on
[a, b].
The study of equation (1) has been suggested to us by the following Cauchy
problem which can be found in [6], p.269:

du = {Au}dt + dhu,

u(a) = ξ.

(2)

The above Cauchy problem is equivalent by the next equation

u(t) = S(t− a)ξ +
∫ t

a
S(t− s)dhu(s). (3)

In the context of (2) and (3), A : D(A) ⊂ X → X is the infinitesimal generator
of the C0-semigroup of contractions {S(s) | s ≥ 0}, ξ ∈ D(A) and hu = H(u)
where H : C([a, b];X) → BV ([a, b];X).
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We adapt some steps of the technique proposed by Adriana Buică in [2]. So,
using the theory of nearness between two operators and the Banach Fixed
Point Theorem we obtain an existence and uniqueness result for equation (1).

2. Preliminaries

Consider t ∈ (a, b] and u ∈ C([a, b];X). Let P[a, t] be the set of all partitions
of the interval [a, t]. Consider P ∈ P[a, t] and let us denote P : a = t0 < t1 <

· · · < tn = t. We also denote by λ(P) the norm of the partition P. We recall
that λ(P) = max{ti − ti−1 | i = 1, 2, . . . , n}. Consider τi ∈ [ti−1, ti], i =
1, 2, . . . , n. The measure defined by u as density and by ν as base is a measure
of bounded variation and its variation on [a, b] satisfies

Var(uν, [a, b]) = sup
P∈P[a,b]

n∑
i=1

‖uν([ti−1, ti])‖ =

= sup
P∈P[a,b]

n∑
i=1

‖
∫ ti

ti−1

u(s)dν(s)‖ ≤ ν([a, b])‖u‖C .

If gu(s) = uν([a, s]), s ∈ [a, b], we easily prove that gu ∈ BV ([a, b], X) ∩
C([a, b];X). Indeed the variation of gu on [a, b] is given by

Var(gu; [a, b]) = sup
P∈P[a,b]

n∑
i=1

‖gu(ti)− gu(ti−1)‖ =

= sup
P∈P[a,b]

n∑
i=1

‖uν([ti−1, ti])‖ = Var(uν, [a, b]).

The assumptions regarding the measure ν yield that gu ∈ C([a, b];X). Next,
using the properties of a C0-semigroup of contractions, the continuity of the
function s ∈ [a, t] → S(t− s)u(s) ∈ X follows.

The integral
∫ t

a
S(t− s)d(uν)(s) is a kind of Riemann-Stieltjes integral and

it is defined in the following way∫ t

a
S(t− s)d(uν)(s) = lim

λ(P) ↓ 0
P ∈ P[a, t]

n∑
i=1

S(t− τi)(uν([ti−1, ti])).
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The limit on the right-hand side exists in the norm topology of X because the
semigroup {S(s) | s ≥ 0} is continuous from (0,∞) to L(X) in the uniform
operator topology (see [6], p.208, Theorem 9.1.1 and [7], p.3186, Theorem 2.1).
We notice that

∫ t

a
S(t− s)d(uν)(s) =

∫ t

a
S(t− s)dgu(s).

Therefore, taking into account that gu ∈ C([a, b];X) and using Corollary 9.2.1
from [6], p.213 or Corollary 3.1 from [7], p.3190, it follows that the integral∫ t

a
S(t− s)d(uν)(s) defines a continuous function as function of t ∈ [a, b].

Proposition 2.1. The following equality holds

∫ t

a
S(t− s)d(uν)(s) =

∫ t

a
S(t− s)u(s)dν(s).

Proof. First let us remind that

∫ t

a
S(t− s)u(s)dν(s) = lim

λ(P) ↓ 0
P ∈ P[a, t]

n∑
i=1

ν[ti−1, ti]S(t− τi)(u(τi)). (4)

Consider P ∈ P[a, t], P : a = t0 < t1 < · · · < tn = t and τi ∈ [ti−1, ti], i =
1, 2, · · · , n. There are obvious the following equalities
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n∑
i=1

S(t− τi)(uν([ti−1, ti])) =
n∑

i=1

S(t− τi)

(∫ ti

ti−1

u(s)dν(s)

)
=

=
n∑

i=1

∫ ti

ti−1

S(t− τi)u(s)dν(s) =

=
n∑

i=1

∫ ti

ti−1

[S(t− τi)u(s)− S(t− s)u(s)]dν(s)+

+
n∑

i=1

∫ ti

ti−1

S(t− s)u(s)dν(s) =

=
n∑

i=1

∫ ti

ti−1

[S(t− τi)u(s)− S(t− s)u(s)]dν(s)+

+
∫ t

a
S(t− s)u(s)dν(s).

(5)

We shall prove that

lim
λ(P) ↓ 0
P ∈ P[a, t]

n∑
i=1

∫ ti

ti−1

[S(t− τi)u(s)− S(t− s)u(s)]dν(s) = 0.

Consider ε > 0. We easily obtain

‖S(t− τi)u(s)− S(t− s)u(s)‖ ≤ ‖S(t− τi)u(s)− S(t− τi)u(τi)‖+

+‖S(t− τi)u(τi)− S(t− s)u(s)‖ ≤

≤ ‖u(s)− u(τi)‖+ ‖S(t− τi)u(τi)− S(t− s)u(s)‖.

(6)

From the uniform continuity of the function s ∈ [a, t] → u(s) ∈ X we find
δ1 > 0 such that for P ∈ P[a, t] with λ(P) < δ1 and s ∈ [ti−1, ti] we get

‖u(s)− u(τi)‖ <
ε

2ν([a, b])
, i = 1, 2, . . . , n. (7)
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From the uniform continuity of the function s ∈ [a, t] → S(t− s)u(s) ∈ X we
find δ2 > 0 such that for P ∈ P[a, t] with λ(P) < δ2 and s ∈ [ti−1, ti] we get

‖S(t− τi)u(τi)− S(t− s)u(s)‖ <
ε

2ν([a, b])
, i = 1, 2, . . . , n. (8)

Let us denote δ = min{δ1, δ2}. Taking into account (6), (7) and (8) we can
see that for each P ∈ P[a, t] such that λ(P) < δ we get

‖
n∑

i=1

∫ ti

ti−1

[S(t− τi)u(s)− S(t− s)u(s)]dν(s)‖ ≤

≤
n∑

i=1

∫ ti

ti−1

‖S(t− τi)u(s)− S(t− s)u(s)‖dν(s) ≤ ε.

(9)

This completes the proof. �

3. The Main Result

We prove the main result of the paper, Theorem 3.1, which is an existence
and uniqueness result for equation (1).
Consider

• T : C([a, b];X) → C([a, b];X), Tu(t) =
∫ t

a
S(t− s)u(s)dν(s);

• CT ([a, b];X) = {Tu | u ∈ C([a, b];X)}.

We prove that CT ([a, b];X) is a Banach space and that T is a continuous linear
operator and a bijective map between C([a, b];X) and CT ([a, b];X).

Proposition 3.1. The mapping T : C([a, b];X) → C([a, b];X)

Tu(t) =
∫ t

a
S(t− s)u(s)dν(s)

is an injective continuous linear operator.

Proof. Since ‖Tu‖C ≤ ν([a, b])‖u‖C for every u ∈ C([a, b];X) we conclude that
T is continuous. Consider u ∈ C([a, b];X) and suppose that Tu(t) = 0 for
every t ∈ [a, b]. This means∫ t

a
S(t− s)u(s)dν(s) = 0, t ∈ [a, b].
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We shall prove that u is the null function. To this aim, consider t ∈ (a, b] and
ε > 0 such that t− ε > a. We have

S(ε)
∫ t−ε

a
S(t− ε− s)u(s)dν(s) = 0,

hence ∫ t−ε

a
S(t− s)u(s)dν(s) = 0.

Now, consider the function h(s) = S(t − s)u(s), s ∈ [a, t]. It is easy to see
that ∫ t

t−ε
h(s)dν(s) = 0, for every ε > 0 such that t− ε > a.

Therefore, 0 ∈
⋂
ε>0

conv h([t− ε, t]), where conv h([t−ε, t]) is the closed convex

hull of the set h([t− ε, t]). We shall prove that⋂
ε>0

conv h([t− ε, t]) = {h(t)}.

It is clear that
h(t) ∈

⋂
ε>0

conv h([t− ε, t]).

Suppose that there exists y ∈ X, y 6= h(t) such that

y ∈
⋂
ε>0

conv h([t− ε, t]).

By setting ε0 = ‖h(t) − y‖ we obviously have that ε0 > 0. Using the fact
that h is a continuous function we can choose δ > 0 such that t − δ > a and
for s ∈ [a, t], | s − t |< δ it is true the inequality ‖h(s)− h(t)‖ <

ε0

4
. Since

y ∈ conv h([t − δ, t]), it follows that there exists a sequence (yn) such that
yn ∈ conv h[t−δ, t], n ∈ N and y = lim yn. Hence, there exists n0 ∈ N such that
for n ≥ n0 it is true the inequality ‖yn − y‖ <

ε0

4
. From yn0 ∈ conv h([t−δ, t])

it results that there exist the sets {yi
n0
| i = 1, 2, . . . , p} ⊂ h([t − δ, t]), {αi |

i = 1, 2, . . . , p} ⊂ [0, 1] such that α1 + α2 + · · ·+ αp = 1 and

yn0 = α1y
1
n0

+ α2y
2
n0

+ · · ·+ αpy
p
n0

.

Further, consider tin0
∈ [t − δ, t] such that yi

n0
= h(tin0

), i = 1, 2, . . . , p. This
means

yn0 = α1h(t1n0
) + α2h(t2n0

) + · · ·+ αph(tpn0
).
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From the continuity of h, the following inequalities hold

‖h(tin0
)− h(t)‖ <

ε0

4
, i = 1, 2, . . . , p.

We also see that

‖h(t)− yn0‖ =

= ‖α1(h(t)− h(t1n0
)) + α2(h(t)− h(t2n0

)) + · · ·+ αp(h(t)− h(tpn0
))‖ ≤

≤ α1‖h(t)− h(t1n0
)‖+ α2‖h(t)− h(t2n0

)‖+ · · ·+ αp‖h(t)− h(tpn0
)‖ <

ε0

4
.

Therefore

‖h(t)− y‖ ≤ ‖h(t)− yn0‖+ ‖yn0 − y‖ <
ε0

4
+

ε0

4
=

ε0

2
. (10)

But ‖h(t)− y‖ = ε0 and this contradicts (10). The consequence is h(t) = 0 so
S(t−t)u(t) = 0 and further u(t) = 0. Taking into account that t was arbitrary
it results that u(t) = 0 for every t ∈ (a, b] and from the continuity of u we
obtain u ≡ 0. �

Corollary 3.1. CT ([a, b];X) = {Tu | u ∈ C([a, b];X)} is a Banach space and
the mapping

T : C([a, b];X) → CT ([a, b];X), Tu(t) =
∫ t

a
S(t− s)u(s)dν(s)

is a bijective continuous linear operator.

Proof. Since T is continuous it results that T has closed graph, hence
CT ([a, b];X) is a closed subspace of C([a, b];X). Therefore, CT ([a, b];X) is a
Banach space. From a corollary of the Open Mapping Theorem we conclude
that T−1 ∈ L(CT ([a, b];X), C([a, b];X)), where L(CT ([a, b];X), C([a, b];X)) is
the Banach space of all continuous linear operators between CT ([a, b];X) and
C([a, b];X). �

Consider m > 0 such that m‖u‖C ≤ ‖Tu‖C for all u ∈ C([a, b];X).
For w ∈ C([a, b];X) we define the mapping

Aw : C([a, b];X) → C([a, b];X), Aw(u)(t) = F (t, w(t), Tu(t)), t ∈ [a, b].
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Theorem 3.1. Suppose that
(i) For every (w, u) ∈ C2([a, b];X) we have Aw(u) ∈ CT ([a, b];X);
(ii) There exist α > 0 and β ∈ (0, 1) such that for all u, v, w ∈ C([a, b];X) we
have

‖Tu− Tv − α(Awu−Awv)‖C ≤ β‖Tu− Tv‖C ;
(iii) For every w1, w2, u ∈ C([a, b];X)

‖Aw1u−Aw2u‖C ≤ ‖w1 − w2‖C .

If m >
α

1− β
then equation (1) has a unique solution.

Proof. Consider w ∈ C([a, b];X). We shall prove that the mapping

Aw : C([a, b];X) → CT ([a, b];X), Aw(u)(t) = F (t, w(t), Tu(t)), t ∈ [a, b],

is bijective. If u, v ∈ C([a, b];X) and Awu = Awv it results ‖Tu − Tv‖C ≤
β‖Tu−Tv‖C , so Tu = Tv and this means u = v. Let us denote B = T −αAw.
We have the inequality ‖Bu−Bv‖C ≤ β‖Tu−Tv‖C . From the hypothesis (ii),
the continuity of Aw follows. Consider g ∈ CT ([a, b];X). We shall see that the
equation Awu = g has a solution u ∈ C([a, b];X). Let u0 be in C([a, b];X). We
define the sequence (un), un ∈ C([a, b];X), n ∈ N as follows

Tun+1 = Tun − αAwun + αg, n ∈ N. (11)

For every n ∈ N∗ we obtain the following inequalities

‖Tun+1 − Tun‖C = ‖Bun −Bun−1‖C ≤

≤ β‖Tun − Tun−1‖C ≤ · · · ≤ βn‖Tu1 − Tu0‖C
and further, for p ∈ N∗ it follows

‖Tun+p − Tun‖C ≤ βn 1− βp

1− β
‖Tu1 − Tu0‖C < βn 1

1− β
‖Tu1 − Tu0‖C .

Hence (Tun) is a Cauchy sequence in the Banach space CT ([a, b];X). Therefore
there exists y ∈ CT ([a, b];X) such that Tun → y. But T is a bijective mapping,
so, there exists u ∈ C([a, b];X) such that Tu = y. Taking into account that
u = T−1y and that T−1 ∈ L(CT ([a, b];X), C([a, b];X)) it results that un → u.
Passing to the limit in (11) we obtain Aw(u) = g.
Now, consider the operator

U : C([a, b];X) → CT ([a, b];X), Uw = Tuw,
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where uw is the solution of the equation Aw(u) = f .
Consider also the operator

Q : C([a, b];X) → C([a, b];X), Q = T−1U.

We prove that Q has a unique fixed point. Indeed, if w1, w2 ∈ C([a, b];X) then

‖T−1Uw1 − T−1Uw2‖C ≤
1
m
‖Tuw1 − Tuw2‖C ≤

≤ 1
m

α

1− β
‖Aw1uw1 −Aw1uw2‖C =

=
1
m

α

1− β
‖Aw2uw2 −Aw1uw2‖C ≤ q‖w1 − w2‖C ,

where q =
α

m(1− β)
. Hence, there exists w0 ∈ C([a, b];X) such that w0 =

T−1U(w0). But this means that w0 = uw0 and further F (t, w0(t), Tw0(t)) =
f(t), t ∈ [a, b], and the proof is complete. �
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