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LIÉNARD EQUATIONS, DELAYS, AND HARMLESS
PERTURBATIONS

T. A. BURTON

Northwest Research Institute

732 Caroline St.

Port Angeles, WA 98362

E-mail: taburton@olypen.com

Abstract. In this paper we introduce certain expressions as harmless perturbations of

stable equations. Using these expressions we show how delays can be ignored, whether they

are pointwise, distributed, or infinite. The ideas are illustrated with three delayed Liénard

equations and two delayed equations with variable delays and variable coefficients.
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1. Introduction

In this paper we present a technique which allows us to remove the delay
in a functional differential equation and replace it with a stable term without
delay plus a harmless perturbation. We conjecture that this will be effective
in a wide class of problems and we illustrate it here on three delayed Liénard
equations, as well as two related equations.

There is a large literature concerning functional differential equations in
which each constant function is a solution and each solution approaches a
constant. Such equations frequently take the form of

x′(t) = g(x(t))− g(x(t− L)) =
d

dt

∫ t

t−L
g(x(u))du
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and distributed delays can also be included, both finite and infinite. These
problems were motivated by a study of Cooke and Yorke [10] more than thirty
years ago. We pointed out in a recent paper [8] that many such problems are
easily solved by means of contraction mappings.

Since the solutions are so nearly constant, it is natural to ask, then, if a
properly restricted term

g(x(t))− g(x(t− L))

is a harmless perturbation in a general stable equation. To fix ideas let us
look at the scalar equation

x′ = −a(t)x, a(t) ≥ 0.

The zero solution is stable and all solutions are bounded. Now, let g : R → R

and let L,K > 0 with

|g(x)− g(y)| ≤ K|x− y|, 2LK < 1,

and consider

x′ = −a(t)x + g(x)− g(x(t− L)) = −a(t)x +
d

dt

∫ t

t−L
g(x(s))ds.

It is easy to show using contraction mappings that the zero solution is stable.
Moreover, if

∫∞
0 a(s)ds = ∞, then all solutions tend to zero. Notice that L

is not particularly small and g has neither sign condition nor monotonicity
condition. These are conditions frequently found in the literature concerning
attempts to ignore the delay. As a concrete example, the weak term −x(t)

t+1 is
able to overpower the robust terms .4x(t)− .4x(t− 1) and bring all solutions
of

x′ = − x(t)
t + 1

+ .4x(t)− .4x(t− 1)

to zero.
Using this idea we may frequently be able to ignore the delay in an equation

for stability analysis. For example, we might be able to study

x′ = −g(x(t− L))

by studying

x′(t) = −g(x(t− L)) + g(x(t))− g(x(t)) = −g(x(t)) +
d

dt

∫ t

t−L
g(x(s))ds
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and ignore all except
x′(t) = −g(x(t)).

The idea for transforming the equation into a neutral equation seems to go back
at least to [5] and was used throughout [6]. But here we hope to actually ignore
the delay whenever the neutral term gives rise only to solutions approaching
constants.

Recently [9] we began testing this idea by studying eight classical scalar
equations using contraction mappings. In the present paper we focus on three
Liénard type equations with constant delays, distributed delays, and infinite
delays, as well as two problems with variable coefficients and variable delays.
In contrast to the aforementioned paper, this work is based on Liapunov’s
direct method.

The basic thesis here is that in all of the papers [1-3,8,10-16] following the
original problem of Cooke and Yorke there are functions which are parallel to
g(x)− g(x(t− L), and such expressions may very well be harmless perturba-
tions. This paper is a second demonstration of those ideas.

2. Liénard equations with delay

We consider three Liénard equations with delays and show that they can
be treated in a unified manner using the idea from the Cooke-Yorke work.
Consider the equations

x′′ + f(x)x′ + g(x(t− L)) = 0, (1)

x′′ + f(x)x′ +
∫ t

t−L
p(s− t)g(x(s))ds = 0, (2)

with ∫ 0

−L
p(s)ds = 1,

∫ 0

−L
|p(s)|ds =: K,

and

x′′ + f(x)x′ +
∫ t

−∞
q(s− t)g(x(s))ds = 0, (3)

with ∫ 0

−∞
q(s)ds = 1,

∫ 0

−∞

∫ v

−∞
|q(u)|dudv =: D

where L,K, D are all finite positive numbers. A change of variable will show
that each of these equations is an autonomous functional differential equation;
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hence, stability implies uniform stability and asymptotic stability implies uni-
form asymptotic stability. We generally think of f as being the damping and
g as being the restoring force. We ask that

f(x) ≥ 0, xg(x) > 0 if x 6= 0 (4)

and denote

G(x) =
∫ x

0
g(s)ds, F (x) =

∫ x

0
f(s)ds. (5)

Existence theory is found in Chapter 3 of [7]. The conditions given here are
adequate for existence for a given continuous initial function.

The literature concerning (1) is massive when L = 0, while much work has
also been done when L > 0, particularly by Zhang [17-20]. Some of his results
are both necessary and sufficient for boundedness and stability.

It is assumed that f and g are continuous and in (3) it is convenient we ask
that g be just a bit more than continuous so as to satisfy the following two
conditions.

If G(x) is bounded for x ≥ 0, then g(x) is bounded for x ≥ 0.

(6)

If G(x) is bounded for x ≤ 0, then g(x) is bounded for x ≤ 0.

(7)
While these conditions are mild, they will prove to simplify analysis of (3) and
to be of interest in themselves. We had asked that (5) and (6) also hold for
(1) and (2), but Professor Bo Zhang privately communicated an idea which
made them unnecessary.

It is known that when (4) holds with f(0) > 0 and L = 0 then the zero
solution of (1) is globally asymptotically stable if and only if∫ ±∞

0
[f(x) + |g(x)|]dx = ±∞. (8)

That condition was derived in [4] and has played a central role in investigations
of all these equations.
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3. Setting up the problems

We begin with (1) and put it into the context discussed in the introduction.
Subtract and add g(x) to (1) so that we can write it as

x′′ + f(x)x′ − d

dt

∫ t

t−L
g(x(s))ds + g(x) = 0.

Then write it as the Liénard system

x′ = y − F (x) +
∫ t

t−L
g(x(s))ds

y′ = −g(x).

Next, write

x′ = y − F (x) + Lg(x)− Lg(x) +
∫ t

t−L
g(x(s))ds

y′ = −g(x).

We are now in a position to identify the terms discussed in the introduction.
Separate that system into two parts as follows. The first part consists of

x′ = y − F (x) + Lg(x)

y′ = −g(x).

Note that under (4) the zero solution is asymptotically stable in case there is
a δ > 0 such that

Lg2(x)− g(x)F (x) < 0 for 0 < |x| < δ, (9)

as may be argued without difficulty using the well-known Liapunov function

V (x, y) = y2 + 2G(x).

The second part consists of −Lg(x) +
∫ t
t−L g(x(s))ds which has the form of

a harmless perturbation, as discussed in the introduction since each constant
is a solution of

x′ = −Lg(x) +
∫ t

t−L
g(x(s))ds = − d

dt

∫ 0

−L

∫ t

t+s
g(x(u))duds

and we can use the fixed point techniques of [8] to derive conditions ensuring
that each solution approaches a constant.
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Our discussion in the introduction now tells us that (1) should be asymp-
totically stable when (4) and (9) hold. Moreover, the same type of preparation
should work for (2) and (3). The perturbation −Lg(x) +

∫ t
t−L g(x(s))ds can

be ignored. We had set up eight classical problems in the same way in [9] us-
ing fixed point theory. Here, we take advantage of extensive Liapunov theory
available.

The reader may compare our first result with work of Zhang [17, 19] concern-
ing (1). He obtained several results on boundedness and stability by asking
for an N > 1 with LNg2(x) − g(x)F (x) < 0 on certain intervals in order to
get stability and boundedness. As mentioned before, some of his results are
both necessary and sufficient. But our technique is sharper in that N = 1
suffices, while yielding the idea that (9) is the condition needed. Finally, this
presentation readily covers the more sophisticated problems (2) and (3), not
treated in [17-20].

Actually, (9) can be weakened further throughout the paper. We can change
(9) to Lg2(x) − g(x)F (x) ≤ 0 for 0 < |x| < δ and then argue that the limit
set of a solution does not intersect any value of x for which that expression is
negative. We avoid such arguments here because of the length.

4. Stability results

We begin with the result for (1).

Theorem 1. Let (4) hold for (1) and suppose there is a δ > 0 with

Lg2(x)− g(x)F (x) < 0 for 0 < |x| < δ. (9)

Then the zero solution of (1) is asymptotically stable. If (4), (8), and (9) hold
with δ = ∞, then the zero solution of (1) is asymptotically stable in the large.

Proof. As in the last section, subtract and add g(x) to (1) so that we can
write it as

x′′ + f(x)x′ − d

dt

∫ t

t−L
g(x(s))ds + g(x) = 0.

Then write it as the Liénard system

x′ = y − F (x) +
∫ t

t−L
g(x(s))ds

y′ = −g(x).
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Define the Liapunov functional

V (t, x(·), y(t)) = (1/2)y2 + G(x) + (1/2)
∫ 0

−L

∫ t

t+v
g2(x(u))dudv

whose derivative along solutions of the system satisfies

V ′(t, x(·), y(t)) = g(x)y − g(x)F (x) + g(x)
∫ t

t−L
g(x(s))ds

+ (1/2)
∫ 0

−L
[g2(x(t))− g2(x(t + v))]dv − g(x)y

≤ −g(x)F (x) + (1/2)
∫ t

t−L
[g2(x(t)) + g2(x(s))]ds

+ (L/2)g2(x(t))− (1/2)
∫ t

t−L
g2(x(v))dv

= −g(x)F (x) + Lg2(x)

< 0 for 0 < |x| < δ

by (9). From V and V ′ it follows that the zero solution is stable.
Let (x(t), y(t)) be any fixed solution of the system remaining in a region in

which |x(t)| < δ. Clearly, y(t) is bounded. Let V (t) := V (t, x(·), y(t)) and
note that V ′(t) ≤ 0 so V (t) → c, where c is a non-negative constant. If c = 0
then the solution tends to (0, 0). If c > 0, then it follows readily that x(t) → 0
as t → ∞; thus, V (t) → y2(t)/2 → c. Assume that y(t) →

√
2c. Then for

large t we have x′(t) ≥
√

c, a contradiction to x(t) → 0. As V is positive
definite, we have shown that the zero solution is asymptotically stable.

Next, if δ = ∞ and if G(x) →∞ as |x| → ∞ then all solutions are bounded
and, hence, converge to zero. Now, if G(x) is bounded on the right and if x(t)
is any fixed solution, then it is clear from the Liapunov functional that y(t)
is bounded, say |y(t)| ≤ B1. By (8) we can conclude that F (x) → ∞ with x.
From y′ = −g(x) we obtain

|
∫ t

t−L
g(x(s))ds| ≤ |y(t)|+ |y(t− L)| ≤ 2B1.

Hence, we can find x1 so large that x′(t) < 0 if x(t) ≥ x1; therefore, the solution
is bounded on the right. A similar argument shows that x(t) is bounded on
the left. By the above argument, the solution tends to zero. This completes
the proof.
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Remark. The next result contains a very interesting assumption. We
require xg(x) > 0 but the weight p(t) can change sign, so long as it is positive
on average.

Theorem 2. Let (4) hold for (2) and suppose there is a δ > 0 such that

KLg2(x) < g(x)F (x) if 0 < |x| < δ. (10)

Then the zero solution of (2) is asymptotically stable. If, in addition, (8) holds
and δ = ∞ then the zero solution of (2) is asymptotically stable in the large.

Proof. Add and subtract g(x) to (2) so that it can be written as

x′′ + f(x)x′ − d

dt

∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds + g(x) = 0.

Then write it as a system

x′ = y − F (x) +
∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds

y′ = −g(x).

Define a Liapunov functional by

V (t, x(t), y(t)) = (1/2)y2 + G(x) + (K/2)
∫ 0

−L

∫ t

t+v
g2(x(u))dudv

so that if we denote the last term by Y , then the derivative along a solution
of the system satisfies

V ′ = yg(x)− g(x)F (x) + g(x)
∫ 0

−L
p(s)

∫ t

t+s
g(x(u))duds− yg(x) + Y ′

≤ −g(x)F (x) + |g(x)|
∫ 0

−L
|p(s)|ds

∫ t

t−L
|g(x(u))|du + Y ′

≤ −g(x)F (x) + (K/2)
∫ 0

−L
[g2(x(t))− g2(x(t + v))]dv

+ (K/2)
∫ t

t−L
(g2(x(t)) + g2(x(u)))du

≤ −g(x)F (x) + KLg2(x) < 0

if 0 < |x| < δ. The same arguments given in the proof of the last theorem now
complete the proof here.
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To prepare for (3) we notice that

d

dt

∫ t

−∞

∫ s−t

−∞
q(u)dug(x(s))ds

=
∫ 0

−∞
q(u)dug(x)−

∫ t

−∞
q(s− t)g(x(s))ds

= g(x(t))−
∫ t

−∞
q(s− t)g(x(s))ds.

While (6) and (7) are not essential, they are mild and greatly simplify the
proof of the next result.

Theorem 3. Let (4) hold for (3) and suppose there is a δ > 0 such that

−g(x)F (x) + Dg2(x) < 0 for 0 < |x| < δ. (11)

Then the zero solution of (3) is asymptotically stable. If, in addition, (6)-(8)
hold and δ = ∞, then the zero solution of (3) is globally asymptotically stable.

Proof. Write (3) as

x′′ + f(x)x′ − d

dt

∫ t

−∞

∫ s−t

−∞
q(u)dug(x(s))ds + g(x) = 0

and then as the system

x′ = y − F (x) +
∫ t

−∞

∫ s−t

−∞
q(u)dug(x(s))ds

y′ = −g(x).

Define

V (t, x, y) = (1/2)y2 + G(x) + (1/2)
∫ t

−∞

∫ ∞

t−s

∫ −v

−∞
|q(u)|dudvg2(x(s))ds
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and call the last term Y . Then the derivative of V along the system satisfies

V ′ = yg(x)− g(x)F (x) + g(x)
∫ t

−∞

∫ s−t

−∞
q(u)dug(x(s))ds− yg(x) + Y ′

≤ −g(x)F (x) + (1/2)
∫ t

−∞

∫ s−t

−∞
|q(u)|du(g2(x(t)) + g2(x(s)))ds + Y ′

= −g(x)F (x) + (1/2)g2(x)
∫ t

−∞

∫ s−t

−∞
|q(u)|duds

+ (1/2)
∫ t

−∞

∫ s−t

−∞
|q(u)|dug2(x(s))ds

+ (1/2)
∫ ∞

0

∫ −v

−∞
|q(u)|dudvg2(x(t))− (1/2)

∫ t

−∞

∫ s−t

−∞
|q(u)|dug2(x(s))ds

= −g(x)F (x) + (1/2)(
∫ ∞

0

∫ −v

−∞
|q(u)|dudv +

∫ t

−∞

∫ s−t

−∞
|q(u)|duds)g2(x(t))

= −g(x)F (x) + Dg2(x) < 0

for 0 < |x| < δ.
The remainder of the proof is just as that of Theorem 1 until we reach the

last paragraph. We proceed as follows.
If δ = ∞ and if G(x) → ∞ as |x| → ∞ then all solutions are bounded

and, hence, converge to zero. If G(x) is bounded on the right and if x(t) is
any fixed solution, then it is clear from the Liapunov functional that y(t) is
bounded and by (6) g(x(t)) is bounded. By (8) we can then find x1 so large
that x′(t) < 0 if x(t) ≥ x1; hence the solution is bounded on the right. A
similar argument shows that x(t) is bounded on the left. By the argument
given in the proof of Theorem 1, the solution tends to zero. This completes
the proof.

5. Variable delay

We look now at problems which are parallel to Liénard equations to see if
our results can be extended to similar problems in which we can not locate a
harmless perturbation quite so simply. Consider the scalar equation

x′′ + f(x)x′ + a(t)g(x(q(t))) = 0 (11)
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where f : R → [0,∞) is continuous, q : [0,∞) → R is continuous, strictly
increasing, and q(t) < t. Let h(t) be the inverse of q and let a : [0,∞) → (0,∞)
be bounded and continuous. Assume that g : R → R is continuous,

xg(x) > 0 (12)

for x 6= 0,
(a(h(t))h′(t))′ > 0, (13)

there is an r > 0 with
q(t) ≥ t− r, (14)

and for F (x) =
∫ x
0 f(s)ds we suppose that there is a δ > 0 for which

−g(x)F (x) + (1/2) sup
t≥0

[a(h(t))h′(t)r +
∫ h(t)

t
a(s)ds]g2(x) < 0 (15)

if 0 < |x| < δ. Note that (15) will require that a(h(t))h′(t) be bounded above.
A calculation will show that if q(t) = t− L and if a(t) = 1 then (15) and (9)
are the same.

Theorem 4. Let (12)-(15) hold. Then the zero solution of (11) is asymp-
totically stable. If (8) holds and if (15) holds for δ = ∞, then the zero solution
is globally asymptotically stable.

Proof. We can rewrite (11) as

x′′ + f(x)x′ + a(h(t))h′(t)g(x) +
d

dt

∫ t

h(t)
a(s)g(x(q(s)))ds = 0. (16)

Then write it as the system

x′ = y − F (x)−
∫ t

h(t)
a(s)g(x(q(s)))ds

y′ = −a(h(t))h′(t)g(x).

We will define a Liapunov functional in two steps. First, let

V1(t, x, y) =
y2

2a(h(t))h′(t)
+ G(x) (17)

so that the derivative of V along a solution of the system satisfies

V ′ = g(x)y−g(x)F (x)−g(x)
∫ t

h(t)
a(s)g(x(q(s)))ds−g(x)y− (a(h(t))h′(t))′y2

2(a(h(t))h′(t))2
.

(18)
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We will make a change of variable. Let w = q(s) so that s = h(w), ds =
h′(w)dw, and s = h(t) implies w = q(h(t)) = t, while s = t implies that
w = q(t). Thus,∫ t

h(t)
a(s)g(x(q(s)))ds =

∫ q(t)

t
a(h(w))g(x(w))h′(w)dw.

Since q(t) ≥ t− r we have∫ t

t−r
a(h(w))h′(w)g2(x(w))dw ≥

∫ h(t)

t
a(s)g2(x(q(s)))ds.

Next, define the second part of the Liapunov functional by

2V2(t, x(·)) =
∫ 0

−r

∫ t

t+s
a(h(w))h′(w)g2(x(w))dwds (19)

so that the derivative of V2 along a solution of the system is

2V ′
2 =

∫ 0

−r
[a(h(t))h′(t)g2(x(t))− a(h(t + s))h′(t + s)g2(x(t + s))]ds

= a(h(t))h′(t)rg2(x)−
∫ t

t−r
a(h(s))h′(s)g2(x(s))ds. (20)

Hence,

(V1 + V2)′ ≤ −g(x)F (x) + (1/2)
∫ h(t)

t
a(s)[g2(x(t)) + g2(x(q(s)))]ds

+(1/2)a(h(t))h′(t)rg2(x)− (1/2)
∫ t

t−r
a(h(s))h′(s)g2(x(s))ds

≤ −g(x)F (x) + (1/2)[a(h(t))h′(t)r +
∫ h(t)

t
a(s)ds]g2(x). (21)

By assumption (15), that is a negative definite function of x on 0 < |x| < δ.
The remainder of the proof is just as before.

6. Another classical problem

There is a very interesting classical problem concerning the equation

x′′ + a(t)x(t) = 0

in which a(t) is positive and increases monotonically. It is readily shown that
each solution is bounded; there is then the problem of showing that solutions
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tend to zero. We show that the ideas here will work on considerable more
general problems.

Our interest centers on the scalar equation

x′′ + a(t)g(x(q(t))) = 0 (22)

in which a : [0,∞) → (0,∞) is differentiable, q(t) = t−r(t) where r : [0,∞) →
(0,∞) is continuous and q is strictly increasing with inverse function h(t). We
suppose that

(a(h(t))h′(t))′ ≥ 0 (23)

and that for

α(t) :=
∫ h(t)

t
a(s)ds (24)

then ∫ ∞

0
α(s)ds = β. (25)

It is also supposed that xg(x) > 0 for x 6= 0, that g is odd and increasing, and
sometimes that ∫ x

0
g(s)ds/βg2(x) →∞ as |x| → ∞. (26)

Theorem 5. Let (23) - (26) hold. Then every solution of (22) is bounded.
If g(x) = x, then (26) can be replaced by β < 1/2.

Proof. The proof is of Razumikhin type. Write (22) as

x′′ +
d

dt

∫ t

h(t)
a(s)g(x(q(s)))ds + a(h(t))h′(t)g(x(t)) = 0

and then as the system

x′ = y −
∫ t

h(t)
a(s)g(x(q(s)))ds

y′ = −a(h(t))h′(t)g(x).

Define a Razumikhin function

V (t, x, y) =
∫ x

0
g(s)ds +

y2

2a(h(t))h′(t)
(27)

with derivative along a solution of the system satisfying

V ′ = −g(x)
∫ t

h(t)
a(s)g(x(q(s)))ds− (a(h(t))h′(t))′y2

2(a(h(t))h′(t))2
. (28)
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For a given solution (x(t), y(t)) suppose that t is any value with |x(t)| ≥ |x(s)|
for 0 ≤ s ≤ t. Integrate V ′, use the monotonicity and oddness of g, and obtain∫ x(t)

0
g(s)ds ≤ V (t) ≤ V (0) + g2(x(t))β.

By (29) this shows that x(t) is bounded.
Acknowledgment. We thank Professor Bo Zhang for reading the manu-

script and making a number of helpful suggestions and corrections.
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