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Abstract. The topological index for maps of infinite-dimensional Finsler manifolds, con-

densing with respect to internal Kuratowski or Hausdorff measure of noncompactness, is

constructed under the hypothesis that the manifold can be embedded into a certain Banach

linear space as a neighbourhood retract so that the Finsler norm in tangent spaces and the

restriction of the norm from enveloping space on the tangent spaces are equivalent. It is

shown that the index is an internal topological characteristic, i.e., it does not depend on

the choice of enveloping space, embedding, etc. The total index (Lefschetz number) is also

introduced.
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but cannot be proved directly since the topological theory of condensing maps
is essentially based on the notion of convex closure that is absolutely ill-posed
on nonlinear manifolds.

In a series of previous works (see, e.g., [3, 2, 5] and references there) such a
theory was constructed for the case of Finsler manifolds that can be embedded
isometrically into a certain Banach linear space as a neighbourhood retract.
It works perfectly on the manifold of continuous curves in a finite-dimensional
manifold but it turns out that the condition of isometric embedding fails for the
manifold of C1-curves where, say, the shift operator of neutral type functional
differential equation acts.

Here we modify the previous approach and construct the topological index
for condensing maps of Finsler manifolds that can be embedded into a linear
Banach space as a neighbourhood retract so that the Finsler norm in tangent
spaces and the restriction of the norm from the enveloping Banach space onto
those tangent spaces are equivalent. It is shown that the construction does
not depend on the choice of enveloping space, embedding and other details.
Thus the index is an internal topological characteristic in spite of the fact that
in its construction the enveloping space is involved.

Let M be a Finsler manifold and M be embedded (possibly not isometri-
cally) into a Banach space E with the norm ‖ · ‖ as a neighbourhood retract.
Denote by ‖ · ‖I the internal (Finsler) norm in tangent spaces TmM, and by
‖ · ‖E the restriction of the norm in E onto TmM . Below we suppose that
the norms ‖ · ‖I and ‖ · ‖E are equivalent, i.e., that there exist real functions
0 < c(m) ≤ C(m) continuously depending on m ∈ M such that for any
Y ∈ TmM the relation

c(m)‖Y ‖I ≤ ‖Y ‖E ≤ C(m)‖Y ‖I (1)

takes place.
Starting from the norms in tangent spaces to M, one can find the corre-

sponding lengths of piece-wise smooth curves in M as integrals of norms of
velocity (derivative) vectors and then define the distance functions onM as in-
fimums of the lengths of curves connecting the points (standard constructions
of Riemannian and Finsler geometry). Denote by ρI the distance generated
with ‖ · ‖I , and by ρE — the distance generated with ‖ · ‖E . Besides, the
distance can be measured directly in E , as the norm of difference of vectors in
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E . Note that the latter two distance functions are related by obvious estimate

ρE(m0,m1) ≥ ‖m0 −m1‖, (2)

for all couples m0 and m1 ∈ M since the lengths with respect to ‖ · ‖E and
‖ · ‖ coincide but ρE is the infimum of lengths of curves on M while ‖ · ‖ – in
E .

Recall (see details, e.g., in [1]) the notions of Kuratowski and Hausdorff
measures of noncompactness in a metric space E. Let Ω ⊂ E be a bounded
subset.

Definition 1. α(Ω) = inf{d > 0|Ω permits its partition in E into a
finite number of subsets with diameters less than d} is called the Kuratowski
measure of non-compactness of Ω.

Definition 2. χ(Ω) = inf{ε > 0|Ω has in E a finite ε-net} is called the
Hausdorff measure of non-compactness of Ω.

Below the words ”a measure of noncompactness ψ” will mean either α or
χ.

Having defined the distances in M, denote by ψI the measure of noncom-
pactness with respect to ρI , by ψE – the measure of noncompactness with
respect to ρE and by ψ‖·‖ — measure of noncompactness with respect to ‖ · ‖.

Definition 3. A continuous operator F : M → M is called condensing
with respect to ψ with constant q < 1 if for any bounded set Ω ⊂ M the
inequality

ψ(FΩ) < qψ(Ω) (3)

holds.
Definition 4. A continuous operator F : M → M is called locally

condensing with respect to ψ, if any point x ∈ M has a neighbourhood Ux

such that for any bounded set Ω ⊂ Ux the inequality

ψ(FΩ) < qψ(Ω), q < 1. (4)

is satisfied.
Let the operator F be condensing with respect to ψI with a constant q < 1

and let Ω ⊂ M be a bounded domain with boundary Ω̇. Consider the set

F∞Ω =
∞⋂

k=1

F kΩ, where F k is the k-th iteration of F . Sometimes we shall

introduce the additional assumption that F sends the entire M into a domain
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having finite diameter with respect to the distance ρI . In this case we can

consider the set F∞M =
∞⋂

k=1

F kM.

Lemma 5. The set F∞Ω is compact. If F sends the entire M into a
domain having finite diameter with respect to the distance ρI , the set F∞M
is compact.

The proof can be found, e.g., in [3], [5]. Notice that the set F∞M contains
all fixed points of F from M and F∞Ω contains all fixed points of F from Ω.

Since the functions C(m) and c(m) from (1) are continuous and the sets
F∞Ω and F∞M from Lemma 6 are compact, there exist constants C > c > 0
and a neighbourhood A of F∞Ω or of F∞M such that for any m ∈ A,
Y ∈ TmM

c‖Y ‖I ≤ ‖Y ‖E ≤ C‖Y ‖I . (5)

Let V ⊂ A be bounded. Then from (5) and (3) we obtain the following
sequence of inequalities:

ψI(F (V )) ≤ qψI(V ) ≤ CqψE(V ). (6)

But on the other hand, from (1) and (3) it follows that

ψI(F (V )) ≥ cψE(F (V )). (7)

Then from (4), (6) and (7) we get

ψE(F (V )) ≤ C

c
qψE(V ). (8)

Thus form (8) it follows that with respect to ψE the operator F is condensing
with another constant C

c q that may be greater than 1.
Denote by R : Ū →M a smooth retraction of a certain tubular neighbour-

hood Ū ⊂ E of M and by TR : T Ū → TM its tangent map. Recall that the
tangent map sends the vector X ∈ TxU into TRX = dxRX ∈ TRxM, where
the linear operator dxR : TxŪ → TRxM is the Frechet derivative of R at the
point x ∈ Ū .

Theorem 6. For any m ∈M ⊂ Ū and Q > 1 there exists a neighbourhood
V Q

m of m in Ū such that for any x ∈ V Q
m the inequality

Q > ‖dxR‖ >
1
Q
, (9)

holds, where ‖dxR‖ is the norm of operator dxR.



A CONSTRUCTION OF TOPOLOGICAL INDEX 201

The proof follows from continuity of dxR in x and from the fact that for
x ∈M the derivative dxR is obviously the unit operator, see details in [5].

Specify a point m ∈ M and a number Q > 1. Since V Q
m is an open set, it

contains a ball Bm ⊂ V Q
m of E , centered at m with a certain radius ρ.

Theorem 7. The retraction R is Lipschitz continuous on Bm:

ρE(R(u0), R(u1)) ≤ Q‖u0 − u1‖, (10)

where u0 u1 ∈ Bm.
The proof can be found in [5].
Introduce F̄ : Ū →M⊂ Ū , by the formula F̄ = F ◦R. From (2) it follows

that for any u0, u1 ∈ Bm

‖F̄ (u0)− F̄ (u1)‖ = ‖FR(u0)− FR(u1)‖ ≤ ρE(FR(u0), FR(u1)).

From this and from (1), (3), (7), (9) and (10) we get that for a bounded set
V ⊂ Bm

ψ‖·‖(F̄ (V )) ≤ ψE(FR(V )) ≤ C

c
qψE(R(V )) ≤ Q

C

c
qψ‖·‖(V ).

Consider a bounded domain Ω ⊂ M such that F has no fixed points on
its boundary Ω̇, or the entire M under the assumption that FM is bounded
(see above). For any x∗ ∈ F∞Ω (x∗ ∈ F∞M, respectively) take the ball
Bx∗ ⊂ Ū as above. Cover the set F∞Ω

⋂
Ω (F∞M, respectively) with the

balls Bx∗ . This is an open covering of the compact set F∞Ω
⋂

Ω (F∞M,
respectively) and so there exists its finite subcovering Bxi . Let VB =

⋃
i
Bxi .

For any V ⊂ VB there exists a finite number of sets Vi = V
⋂
Bxi such that F̄

is condensing with the constant C
c qQ with respect to ψ‖·‖ on every Vi. Then

ψ‖·‖(F (V )) = max
i
ψ‖·‖(F (Vi)) ≤ max

i

C

c
qQψ‖·‖(Vi) =

C

c
qQψ‖·‖(V ).

By the construction, on the boundary of VB there are no fixed points of F̄ . In
spite of the fact that F̄ is condensing on VB with the constant C

c qQ that is
greater than 1 we can show that the topological index of condensing operator
type is well-posed for F̄ on the boundary of VB.

Lemma 8. There exists an integer k such that F̄ k is condensing with
respect to ψ‖·‖ with a constant q̄ < 1.
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Proof. Since F is condensing with the constant q < 1, F k is obviously
condensing with the constant qk. Notice that from the properties of a retrac-
tion it follows that F̄ k = (F ◦ R)k = F k ◦ R. Then with the same scheme of
arguments as above we can show that F̄ k is condensing with respect to ψ‖·‖
with the constant q̄ = C

c q
kQ. Since q < 1, for k large enough qk < 1

C
c

Q
. For

such k we get q̄ < 1. �

Recall the following
Definition 9. A set S ⊂ E is called fundamental for an operator F : Ū →

E, if:
(i) S 6=∅ is convex and compact;
(ii) F (Ū ∩ S) ⊂ S;
(iii) if x0 ∈ Ū \ S, then x0 6∈ c̄o[{F (x0)} ∪ S].

In the standard theory of topological index for condensing maps in Banach
spaces (see, e.g., [1]) the index is defined as that for the contraction of the
operator to a certain fundamental set, containing the set of fixed points of
this operator. The key fact here is that for an operator, condensing with a
constant less than 1, such a fundamental set exists. We shall show that for
the above-mentioned operator F̄ a fundamental set, containing fixed points of
F̄ , does exist in spite of the fact that F̄ is condensing with a constant greater
than 1.

Lemma 10. There exists a fundamental set for operator F̄ , constructed
above, that contains all fixed points of F̄ in Ω (in M, respectively).

Proof. We shall deal here with the bounded domain Ω, the case of M with
F (M) bounded is absolutely analogous. Choose k from Lemma 8. Denote by ℵ
the collection of all closed sets containing F∞(Ω) and satisfying all conditions
from the definition of fundamental set for F̄ and F̄ k together except maybe
compactness.

The collection ℵ is not empty since at least the set T0 = c̄o[F∞(Ω)∪F (Ω)] =
c̄o(F (Ω)) belongs to ℵ. Indeed, since T0 = c̄o(F (Ω)), F (T0 ∩ Ω) ⊂ F (Ω) ⊂ T0

and analogously F k(T0 ∩ Ω) ⊂ F (Ω) ⊂ T0. Let x0 ∈ Ω \ T0, then, since
F (x0) ∈ F (Ω) ⊂ T0 and F k(x0) ∈ F (Ω) ⊂ T0, x0 6∈ c̄o[F (x0) ∪ T0] means that
x0 6∈ T0, and x0 6∈ c̄o[F k(x0) ∪ T0] also means that x0 6∈ T0. But these two
conditions are satisfied by the hypothesis x0 ∈ Ω \ T0.
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Let a set T ∈ ℵ. This means that F∞(Ω) ⊂ T , if x0 ∈ Ω ∩ T , then F (x0)
and F k(x0) belongs to the set T and that if x0 ∈ Ω\T , then x0 6∈ c̄o[F (x0)∪T ]
and x0 6∈ c̄o[F k(x0) ∪ T ].

Consider the set T1 = c̄o[F∞(Ω)∪F (Ω∩T )]. By the construction T ⊃ T1 =
c̄o[F (Ω∩T )] ⊃ c̄o[F k(Ω∩T )]. Hence F (Ω∩T1) ⊂ F (Ω∩T ) ⊂ c̄o[F (Ω∩T )] = T1,
and consequently F k(Ω ∩ T1) ⊂ T1.

Let x0 ∈ Ω \ T1. Consider two cases:
1) x0 6∈ T , then x0 6∈ c̄o[F (x0) ∪ T ], and so x0 6∈ c̄o[F (x0) ∪ T1] and from

x0 6∈ c̄o[F k(x0) ∪ T ], it follow that x0 6∈ c̄o[F k(x0) ∪ T1];
2) x0 6∈ T1 and x0 ∈ T , hence x0 ∈ Ω∩T . Thus F (x0) ∈ T and F k(x0) ∈ T .

From this it follows that F (x0) ∈ F (Ω∩T ) ⊂ c̄o[F (Ω∩T )] ⊂ T1 and F k(x0) ∈
F k(Ω ∩ T ) ⊂ c̄o[F k(Ω ∩ T )] ⊂ T1. Then since x0 6∈ T1 and F (x0) ∈ T1,
we get x0 6∈ c̄o[F (x0) ∪ T1] since c̄o[F (x0) ∪ T1] ⊂ T1. Analogously x0 6∈
c̄o[F k(x0) ∪ T1] ⊂ T1.

Thus conditions (ii) and (iii) of Definition 9 are fulfilled both for F̄ and F̄ k,
i.e., T1 ∈ ℵ.

Determine the set S as S =
⋂

T∈ℵ
T that belongs to ℵ. Hence, as it is proved

above, the set S1 = c̄o[F∞(Ω) ∪ F k(Ω ∩ S)] also belongs to ℵ. Show that
S is fundamental for F . Conditions (i) and (ii) of the definition are fulfilled
both for the F and for F k by the construction. The set S ∈ ℵ is minimal
in ℵ. Hence S1 = c̄o[F∞(Ω) ∪ F k(Ω ∩ S)] coincides with S. Then since by
Lemma 8 F̄ k is condensing with a constant less than 1, from the equality
S = c̄o[F∞(Ω) ∪ F k(Ω ∩ S)] it follows that S is compact. �

Thus the index of vector field I − F̄ on the boundary of VB is well-posed.
Definition 11. For the case of entire M with F (M) bounded we call the

index of I − F̄ on the boundary of VB the Lefschetz number ΛF of F on M.
For the case of bounded Ω ⊂ M we call the same index the index indF (Ω̇)

of F on Ω̇.
Notice that the index of an isolated fixed point is also well-posed.
Our definition of Lefschetz number is compatible with the usual terminology

since in the finite-dimensional case the Lefschetz number (in the sense of usual
homological definition) is equal to the total index of fixed points. Suppose
that F has only isolated fixed points and denote by ji the index of F in a
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neighbourhood of the fixed point xi. One can easily see that ΛF is equal to
the sum of indices, i.e., ΛF =

∑
i
ji.

Notice that we have reduced a condensing map of the manifold to a com-
pletely continuous map from a certain domain into a Banach space. The same
construction is also applicable to homotopies of condensing maps in the man-
ifold that are reduced to completely continuous homotopies in the Banach
space. All this allow us to prove the following statements in complete analogy
with [5].

Lemma 12. Λf does not depend on the choice of Ū , R, E and embedding.
Lemma 13. Let Mi be a submanifold in M, such that F : M → Mi.

Then ΛF = ΛF|Mi
, where F|Mi

is the restriction of F on Mi.
The next statements follow from the construction, the above arguments

and routine facts of the topological fixed point theory for condensing maps in
Banach linear spaces.

Theorem 14. The Lefschetz number is constant under homotopies in the
class of condensing maps.

Theorem 15. If ΛF 6= 0, F has a fixed point in M.
Analogues of Lemmas 12 and 13 and of Theorems 14 and 15 are evidently

true also for indF (Ω̇) (cf. [5]) (of course in analogue of Theorem 14 we suppose
that the homotopy has no fixed points of F on Ω̇).

It should be pointed out that the construction of index and Lefschetz num-
ber, described above, can be obviously generalized for locally condensing maps
F of Finsler manifolds of the same sort under the assumption that for a certain
integer l, 0 < l ≤ ∞, the iteration F l sends a bounded domain Ω or the entire
M, respectively, into a compact set.

Consider a basic example of the situation, described above: the manifold
of C1-curves on a compact Riemannian manifold. This manifold is a natural
phase space for functional-differential equations of neutral type (see this theory
in linear spaces, e.g., in [6]).

Let M be a compact Riemannian manifold. By Nash’s theorem it can be
isometrically embedded into a Euclidean space RN , where N is large enough,
as a neighbourhood retract. Denote by i : M → RN this embedding and
by Ti its tangent map. Notice that all tangent spaces to RN are canonically
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isomorfic to RN itself and that is why we consider Ti as a map sending TM
into RN .

Denote by C1([−h, 0],M) the Banach manifold of C1-curves in M , given on
the interval [−h, 0]. For a curve x(·) from C1([−h, 0],M) the tangent space
Tx(·)C

1([−h, 0],M) is the set of C1 vector fields along x(·).
Define the internal Finsler metric on C1([−h, 0],M) by constructing the

norm in Tx(·)C
1([−h, 0],M) of the form:

‖Y (·)‖C1

I = sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

‖D
dt
Y (t)‖, (11)

where D
dtY (t) is the covariant derivative of Levi-Civitá connection (see, e.g.,

[4]) on M of the vector field Y (t) along x(·) (emphasize that norm (11) is given
in intrinsic terms);

The map i generates the embedding of the manifold C1([−h, 0],M) into
the Banach space C1([−h, 0], RN ) as a neighbourhood retract. Introduce the
following norm in Tx(·)C

1([−h, 0],M):

‖Y (·)‖C1

E = sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

‖(TiY (t))′‖, (12)

where (TiY (t))′ is the derivative of curve TiY (t) in RN .
Introduce the norm, analogous to (12) in C1([−h, 0], RN ). Then (12) is its

restriction onto tangent spaces to C1([−h, 0],M).
By standard procedure (see above) construct the distance functions in

C1([−h, 0],M), corresponding to norms (11) and (12) and denote them by
ρI and ρE , respectively.

Denote by P the orthogonal projection of RN onto TmM . It is well-known
that D

dtY (t) = P (TiY (t))′, thus

‖Y (·)‖C1

I ≤ ‖Y (·)‖C1

E .

One can easily see that

(TiY (t))′ =
D

dt
Y (t) + (I − P )(T 2i(

d

dt
y(t), Y (t))),

where T 2i is the bilinear operator of second derivative of embedding i.
For x(·) ∈ C1([−h, 0],M) its velocity vector field x′(t) is continuous and

so its norm ‖x′(t)‖ is bounded of the compact interval [−h, 0] by a certain
constant kx(·) > 0. The operator norm of (I − P )T 2i on M is bounded as
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a continuous function on the compact manifold M , i.e., ‖(I − P )Ti2‖ ≤ Ξ
for some Ξ > 0. Hence, using the above estimates and the obvious fact that
supt∈[−h,0] ‖Y (t)‖ ≤ ‖Y (t)‖C1

I , we see that

‖Y (·)‖C1

E = sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

‖D
dt
Y (t) + ((I − P )Ti2(

d

dt
x(t), Y (t)))‖ ≤

≤ sup
t∈[−h,0]

‖Y (t)‖+ sup
t∈[−h,0]

‖D
dt
Y (t)‖+ Ξ sup

t∈[−h,0]
(‖ d
dt
x(t)‖, ‖Y (t)‖) ≤

≤ ‖Y (t)‖C1

I (1 + Ξkx(·)).

So, we obtain the following estimate for the norms:

‖Y (·)‖C1

I ≤ ‖Y (·)‖C1

E ≤ ‖Y (·)‖C1

I (1 + Ξkx(·)). (13)

Inequality (13) means that the norms ‖ · ‖C1

I and ‖ · ‖C1

E are equivalent.
Evidently (13) can be transformed to the form (1). In particular, consider a
set Ω̄ ∈ C1([−h, 0],M) having finite diameter with respect to ρI . Then for
all curves x(·) ∈ Ω̄ the velocity vector filed is bounded: ‖x′(t)‖ ≤ k for some
k ≥ 0 independent of x(·). Hence from (13) we obtain on Ω̄

‖Y (·)‖C1

I ≤ ‖Y (·)‖C1

E ≤ ‖Y (·)‖C1

I (1 + Ξk). (14)

Thus we can apply the construction of index to condensing maps of
C1([−h, 0],M). For example, the shift operator along the trajectories of
neutral type equations is condensing with respect to Kuratowski measure
of noncompactness of some modification of the above-mentioned metrics on
C1([−h, 0],M). See this statement for equations in linear spaces in [7].

References
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