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Abstract. A well known result due to Krasnoselskii ensures the existence of a fixed point to

an operator K = A+B which is defined on a closed convex and bounded subset of a Banach

space X, where A is a contraction operator and B is a compact operator. In the particular

case when X = C
�
J, IRN

�
, the condition B is compact can be replaced by a weaker one,

of Lipschitz type in an integral form. In the present Note, on a closed convex and bounded

subset of the space X = C
�
J, IRN

�
(J ⊂ IR being a compact or not compact interval) one

considers an operator K = A+B +C, where A and B fulfill the conditions mentioned above

and C is a compact operator. To this operator K, certain theorems of existence of at least

one fixed point are presented and some particular cases are distinguished.
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1. Introduction

Two main results of the fixed point theory are Schauder’s theorem and the
Banach Contraction Principle. Krasnoselskii combined them into the following
result (see [9]).

This paper was presented at International Conference on Nonlinear Operators, Differential

Equations and Applications held in Cluj-Napoca (Romania) from August 24 to August 27,

2004.
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Theorem 1.1. Let M be a closed convex and bounded subset of a Banach
space X. Suppose that A and C map M into X such that:

(1) A is α−contraction with α < 1;
(2) C is compact operator;
(3) Ax+ Cy ∈M , ∀x, y ∈M.

Then there exists y ∈M such that

y = Ay + Cy. (1.1)

(Remark that C is a compact operator if it is continuous and CM is a
compact subset of X, for every bounded set M.)

This result is captivating and it has many interesting applications. The
proof idea consists in the fact that hypothesis (1) ensures the existence and
the continuity to operator (I −A)−1 (where I denotes the identity opera-
tor). Then the solutions to (1.1) coincide with the fixed points to operator
(I −A)−1C; but the operator (I −A)−1C : M → M is a compact one and
so, due to Schauder’s theorem, the existence of a fixed point to this operator
is assured.

Krasnoselskii’s theorem has known different generalizations and improve-
ments (see, e.g., [5], [6], [15]). In [5], Burton proved the following improvement
of Theorem 1.1.

Theorem 1.2. Let M be a closed convex and bounded subset of a Banach
space X. Suppose that the following conditions are fulfilled:

(i) A : X → X is contraction with constant α < 1;
(ii) C : M → X is compact;
(iii) (x = Ax+ Cy, y ∈M) =⇒ (x ∈M) .
Then (1.1) has solutions.

In [6] another result of Krasnoselskii type is obtained through the following
theorem of Schaefer (see, e.g., [14]):

Theorem 1.3. Let E be a locally convex space and H : E → E compact
operator. Then either

(S1) the equation x = λHx has a solution for λ = 1,
or
(S2) the set {x ∈ E, x = λHx, λ ∈ (0, 1)} is unbounded.
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Using this result, Burton & Kirk (see [6]) proved the following theorem.

Theorem 1.4. Let X be a Banach space, A : X → X contraction with con-
stant α < 1, and C : X → X compact operator. Then either

the equation x = λA (x/λ) + λCx has a solution for λ = 1
or
the set {x ∈ X, x = λA (x/λ) + λCx, λ ∈ (0, 1)} is unbounded.

The proof is based on the fact that the operator x 7−→ λA (x/λ) is a con-
traction with constant α and therefore

(x = λA (x/λ) + λCx) ⇐⇒
(
x = λ (I −A)−1Cx

)
.

The method used by Burton & Kirk is used by Dhage ([7], [8]) in the case
when A is a nonlinear contraction or A is a compact operator having the pro-
perty that there exists a p ≥ 1 such that Ap is a contraction with constant
α < 1.

In our Note [1], we obtained results of Krasnoselskii type in the case when
X is a Fréchet space and in [2] we deduced results of Krasnoselskii type to
an operator of the form (x, y) 7−→ (A (x, y) , C (x, y)) , where A (·, y) is a con-
traction with α < 1 for every y and C (x, ·) is a compact operator for every
x.

Although the fixed point theorems are stated in Banach spaces (or Fréchet
spaces) X, the more frequent cases we can meet in applications are those
when X is a space of continuous functions or integrable functions (respective-
ly locally integrable in the case of the Fréchet spaces). In this particular case,
the hypotheses become often more general.

Recently, other results of Krasnoselskii type have been obtained in the par-
ticular case X = C

(
J, IRN

)
, where J is a compact or not compact interval.

In [15] one proves the existence of a unique solution to equation

x = Ax+Bx (1.2)

in the case when X = C
(
[0, T ] , IRN

)
, A, B : X → X satisfy the conditions

|(Ax) (t)− (Ay) (t)| ≤ α |x (t)− y (t)| , ∀t ∈ [0, T ] , x, y ∈ X, (1.3)

where α ∈ [0, 1),

|(Bx) (t)− (By) (t)| ≤ b

∫ t

0
|x (s)− y (s)| ds, ∀t ∈ [0, T ] , x, y ∈ X, (1.4)
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where b > 0, and |·| denotes a norm in IRN . Remark that in [15] the more
restrictive condition α ∈ [0, 1/e) is used, but it still holds for α < 1. The
operators A, B, of this type, arise in the study of mathematical models which
describe the contact between a deformable body and a foundation. The same
problem is independently considered in [10], [11], wherein condition (1.4) is
replaced by

|(Bx) (t)− (By) (t)| ≤ b

tβ

∫ t

0
|x (s)− y (s)| ds, ∀b > 0, t ∈ [0, T ] , (1.5)

where β ∈ [0, 1).
In [3] this result is extended to the case X = C

(
IR+, IRN

)
, where IR+ :=

[0,∞); in the same manner the result can be obtained in the case when X =
C

(
IR, IRN

)
.

The proof of the results mentioned is based on the fact that, in the condi-
tions stated above, the operator D = A + B is contraction in X, eventually
by using a norm convenient and equivalent to the classical norm.

In the present Note we shall research the existence of the fixed points in
X = C

(
J, IRN

)
, where J is a compact or not compact interval, to operators

of type
K = A+B + C, (1.6)

where A and B satisfy conditions of type (1.3), (1.5) , and C is a com-
pact operator. The first result is proved by using Schauder-Tychonoff the-
orem and the second by using Burton-Kirk theorem cited. Next we prove
a theorem of existence of the fixed points to a product mapping of type
(x, y) 7−→ (U (x, y) , V (x, y)). The last existence result is proved in the case
when K is a multi-valued operator.

Finally, in the last section, we present applications concerning the proof of
the existence of the solutions to integral equations with modified argument.

2. Main results

2.1. General hypotheses and notations. In the sequel, |·| denotes a norm
in IRN .

Let J ⊂ IR be an interval, where J = [0, T ] or J = IR+ (the case J = IR is
treated similarly). Set

X := C
(
J, IRN

)
=

{
x : J → IRN , x continuous

}
.
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If J = [0, T ] , then X is a Banach space equipped with the norm of the
uniform convergence on J,

‖x‖∞ := sup
t∈J

{|x (t)|} . (2.1)

A norm equivalent to ‖·‖∞ which will be used is

‖x‖ = ‖x‖γ + ‖x‖h , (2.2)

where

‖x‖γ = sup
0≤t≤γ

{|x (t)|} , ‖x‖h = sup
γ≤t≤T

{
e−h(t−γ) |x (t)|

}
,

γ ∈ (0, T ) and h > 0 is an arbitrary number.
If J = IR+, then X can be organized as a Fréchet space (i.e., a linear topo-

logical metrisable and complete space) endowed with the numerable family of
seminorms

|x|n := sup
t∈[0,n]

{|x (t)|} , n ∈ IN\{0}. (2.3)

The Banach Contraction Principle can be easily extended to an arbitrary
Fréchet space.

Definition 2.1. Let E be a Fréchet space and M ⊂ E an arbitrary subset.
The function D : M → E is said to be a contraction if there exists a family
of seminorms {‖x‖n}n∈IN\{0}, equivalent to the initial family (of E) and for
every n ∈ IN\{0} there exists αn < 1 such that

‖Dx−Dy‖n ≤ αn ‖x− y‖n , ∀x, y ∈M, n ∈ IN\{0}. (2.4)

Proposition 2.1. (Banach) Let E be a Fréchet space, M ⊂ E a closed subset,
and D : M → M a contraction. Then D admits a unique fixed point and the
operator I −D admits a continuous inverse.

The proof of Proposition 2.1 is classical and it uses the successive approxi-
mations scheme.

In addition recall that Schauder’s fixed point theorem works as well as in
Fréchet spaces; in this case it is known as the Schauder-Tychonoff theorem.

In what follows we consider the following functions with the specified pro-
perties:
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a : J → [0, c), c < 1,
b : J → IR+ bounded function,
ν, σ : J → J continuous functions with ν (t) ≤ t, σ (t) ≤ t, ∀t ∈ J.

Let M ⊂ X be an arbitrary subset. Consider that the operators A, B,
C : M → X fulfil the following hypotheses:

(A) |(Ax) (t)− (Ay) (t)| ≤ a (t) |x (ν (t))− y (ν (t))| , ∀t ∈ J, ∀x, y ∈M ;
(B) |(Bx) (t)− (By) (t)| ≤ b(t)

tβ

∫ t
0 |x (σ (s))− y (σ (s))| ds, ∀t ∈ J, ∀x, y ∈

M, where β ∈ [0, 1);
(C) C : M → X is compact operator.
In the case a (t) ≡ α, b (t) ≡ b, ν (t) = σ (t) = t, J = [0, T ] hypotheses (A),

(B) are identical to (1.3) , (1.5) .
Set K := A+B + C, D := A+B.

2.2. The first existence result. The first existence result is contained in
the following theorem.

Theorem 2.1. Suppose that:
i) M is a closed convex and bounded set;
ii) A, B, C fulfil hypotheses (A), (B), (C);
iii) for every x, y ∈M one has Dx+ Cy ∈M.

Then K admits at least one fixed point.

Proof. It is enough to prove Theorem 2.1 in the case J = [0, T ] , since in the
case J = IR+ the reason repeats on each compact [0, n] , n ∈ IN\{0}.

The key of the proof consists in showing that D is contraction; then,

(x = Kx) ⇐⇒
(
x = (I −D)−1Cx

)
and so the conclusion follows from an easy application of Schauder-Tychonoff
theorem to (I −D)−1C on M.

We shall apply the Banach Contraction Principle. To this aim, we show
that D is contraction, i.e. there exists δ ∈ [0, 1) such that for any x, y ∈M,

‖Dx−Dy‖ ≤ δ ‖x− y‖ .
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Let t ∈ [0, γ] be arbitrary. Then we have

|(Dx) (t)− (Dy) (t)| ≤ a (t) |x (ν (t))− y (ν (t))|

+
b (t)
tβ

∫ t

0
|x (σ (s))− y (σ (s))| ds

≤
(
a (t) + b (t) γ1−β

)
‖x− y‖γ

and hence
‖Dx−Dy‖γ ≤

(
c+ c1γ

1−β
)
‖x− y‖γ , (2.5)

where c1 := supt∈J {b (t)} .
Let t ∈ [γ, T ] be arbitrary. Then we get

|(Dx) (t)− (Dy) (t)| ≤ a (t) |x (ν (t))− y (ν (t))|

+
b (t)
tβ

(∫ γ

0
|x (σ (s))− y (σ (s))| ds

+
∫ t

γ
|x (σ (s))− y (σ (s))| e−h(σ(s)−γ)eh(σ(s)−γ)ds

)
.

After easy estimates, it follows that

|(Dx) (t)− (Dy) (t)| e−h(t−γ) < a (t) |x (ν (t))− y (ν (t))| e−h(t−γ)

+b (t) γ1−β ‖x− y‖γ +
b (t)
h
γ−β ‖x− y‖h

and therefore

‖Dx−Dy‖h ≤ c sup
t∈[γ,T ]

{
|x (ν (t))− y (ν (t))| e−h(t−γ)

}
+c1γ1−β ‖x− y‖γ +

c1
h
γ−β ‖x− y‖h

≤
(
c+

c1
h
γ−β

)
‖x− y‖h + c1γ

1−β ‖x− y‖γ . (2.6)

By (2.5) and (2.6) we obtain

‖Dx−Dy‖ ≤
(
c+ 2c1γ1−β

)
‖x− y‖γ +

(
c+

c1
h
γ−β

)
‖x− y‖h . (2.7)

Since c ∈ [0, 1), for γ ∈
(

0,
(

1−c
2c1

) 1
1−β

)
we deduce c+ 2c1γ1−β < 1 and for

h > c1
1−cγ

−β we deduce c+ c1
h γ

−β < 1. Let δ := max
{
c+ 2c1γ1−β , c+ c1

h γ
−β} .

It follows that δ < 1 and, since (2.7),

‖Dx−Dy‖ ≤ δ
(
‖x− y‖γ + ‖x− y‖h

)
= δ ‖x− y‖ .
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Hence, D is contraction. �

Remark 2.1. If C ≡ 0 we get the results from [10], [11]. If B ≡ 0 the
Krasnoselskii’s theorem is deduced in this particular case C

(
J, IRN

)
.

2.3. The second existence result. In this subsection we consider the case
M = X.

Theorem 2.2. Admit that hypotheses (A), (B), (C) are fulfilled and that
(D) the set {x ∈ X, x = λD (x/λ) + λCx, λ ∈ (0, 1)} is bounded.
Then K admits at least one fixed point.

Proof. The proof is reduced to the remark that

(x = λD (x/λ) + λCx) ⇐⇒
(
x = λ (I −D)−1Cx

)
and to an application of Burton & Kirk Theorem 1.4. �

2.4. The third existence result. In this subsection we consider the problem
of the existence of the solutions to a system of type{

x = A1 (x, y) +B1 (x, y)
y = A2 (y) +B2 (x, y) ,

(2.8)

where A1, B1, B2 : M → X, A2 : M2 → X, X = C
(
J, IRN

)
, J = [0, T ] ,

M = M1 ×M2, M1 ⊂ X is a closed and bounded set, M2 ⊂ X is a closed
convex and bounded set. (The case X = C

(
IR+, IRN

)
is treated similarly.)

Consider the following hypotheses:
1) |A1 (x1, y) (t)−A1 (x2, y) (t)| ≤ α (y) |x1 (ν (t))− x2 (ν (t))| , ∀ (x1, y),

(x2, y) ∈ M , ∀t ∈ J, where α : M2 → [0, 1), and A1 (x, y) is continuous
with respect to y, for every x ∈M1;

2) |B1 (x1, y) (t)−B1 (x2, y) (t)| ≤ b(y)

tβ(y)

∫ t
0 |x1 (σ (s))− x2 (σ (s))| ds, ∀t ∈ J,

∀ (x1, y) , (x2, y) ∈ M, where b : M2 → (0,∞), β : M2 → [0, 1), and B1 (x, y)
is continuous with respect to y, for every x ∈M1;

3) ‖A2 (y1)−A2 (y2)‖ ≤ L ‖y1 − y2‖ , where L ∈ [0, 1) is constant;
4) B2 : M → X is a compact operator;
5) ∀ (x, y) ∈M, A1 (x, y) +B1 (x, y) ∈M1;
6) ∀y ∈M2, ∀ (x, v) ∈M, A2 (y) +B2 (x, v) ∈M2.

We can state and prove the following result.
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Theorem 2.3. Suppose that hypotheses 1)−6) are fulfilled. Then system (2.8)
admits solutions.

Proof. Let y ∈ M2 be arbitrary fixed. By hypotheses 1), 2), an argument
similar to the one from the proof of Theorem 2.1 leads us to conclude that the
operator

x 7−→ A1 (x, y) +B1 (x, y)

is a contraction. From hypothesis 5) we conclude that this operator maps M1

into M1. Therefore, by applying the Banach Contraction Principle, we deduce
that there exists g (y) ∈M1 such that

g (y) = A1 (g (y) , y) +B1 (g (y) , y) .

First one shows that the mapping g : M2 → M1 is continuous. So, the
operator

y 7−→ B2 (g (y) , y)

is continuous. By hypothesis 4) we get that this operator is compact from
M2 to X. Therefore, using hypotheses 3), 6), and applying Krasnoselskii’s
Theorem 1.1, we conclude that the operator

y 7−→ A2 (y) +B2 (g (y) , y)

admits fixed points.
The proof of Theorem 2.3 is now complete. �

2.5. Multivalued operators. In the excellent book of A. Petruşel [12] the
author presents certain theorems of Krasnoselskii type in the case of the mul-
tivalued operators (see Theorems 2.8.4, 2.8.5, 2.8.6). Using these results in
the particular case of the space C

(
[0, T ] , IRN

)
, we can obtain a fixed point

theorem for the sum of three operators. It is necessarily first to make some
notations.

So, let X = C
(
[0, T ] , IRN

)
. Set

Pb,cl (X) : = {Y ⊂ X, Y 6= ∅, Y bounded and closed} ,

Pcp,cv (X) : = {Y ⊂ X, Y 6= ∅, Y compact and convex} ,

Pb,cl,cv (X) : = Pb,cl (X) ∩ Pcp,cv (X) .
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Let M ⊂ Pcp,cv (X) . Consider the operators

A, B : M → Pb,cl,cv (X) , C : M → Pcp,cv (X) .

Theorem 2.4. Suppose that the following hypotheses are fulfilled:
i) ∀xi ∈M, ∀yi ∈ A (xi) , i = 1, 2, the following inequality holds:

|y1 (t)− y2 (t)| ≤ a |x1 (t)− x2 (t)| , t ∈ [0, T ] , a ∈ [0, 1);

ii) ∀xi ∈M, ∀yi ∈ B (xi) , i = 1, 2, the following inequality holds:

|y1 (t)− y2 (t)| ≤ b

tβ

∫ t

0
|x1 (s)− x2 (s)| ds, b > 0, β ∈ [0, 1);

iii) C is l.s.c. and compact operator;
iv) A (x) +B (x) + C (y) ⊂M , ∀x ∈M, y ∈M.

Then, Fix (A+B + C) 6= ∅.

Proof. Consider on M the metric d (x, y) := ‖x− y‖γ + ‖x− y‖h.
As in the proof of Theorem 2.1 one can show that the operator D := A+B

is contraction with respect to the Hausdorff-Pompeiu metric H, generated by
d. By using Theorem 2.8.4 from [12], the conclusion follows. �

Remark 2.2. Hypothesis iv) can be replaced by the condition of Burton type:

if y ∈ D (y) + C (x) , x ∈M , then y ∈M.

Remark 2.3. If M ⊂ Pb,cl,cv (X) and A, B, C : M → Pcp,cv (X) , then C can
be u.s.c. and compact.

3. Applications

3.1. The first application. In this subsection we shall present an application
of Theorem 2.2 to establish the existence of solutions to an integral equation
with modified argument of type

x (t) = f (t) + F (t, x (ν (t))) +
∫ ρ(t)

0
G (t, s, x (σ (s))) ds

+
∫ ε(t)

0
Φ (t, s) Ψ (s, x (µ (s))) ds, (3.1)

admitting that the following hypotheses are fulfilled:

f ∈ C
(
J, IRN

)
; (3.2)
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F : J × IRN → IRN is a continuous and bounded function; (3.3)

|F (t, x)− F (t, y)| ≤ a (t) |x− y| , t ∈ J, x, y ∈ IRN , (3.4)

where a : J → [0, 1) ;

G : ∆× IRN → IRN is a continuous function, (3.5)

where ∆ := {(s, t) ∈ J × J, 0 ≤ s ≤ t} ;

|G (t, s, x)−G (t, s, y)| ≤ g (t, s) |x− y| , x, y ∈ IRN , (s, t) ∈ ∆; (3.6)

G (t, s, 0) ≡ 0; (3.7)

Φ : ∆ →MN (IR) is a continuous quadratic matrix; (3.8)

Ψ : J × IRN → IRN is a continuous function; (3.9)

|Ψ(t, x)| ≤ ϕ (t)ψ (|x|) , (3.10)

where ϕ : J → IR+ is continuous, ψ : IR+ → IR+ is continuous and increasing,
and ν, σ, µ : J → J are continuous functions such that ν (t) ≤ t, σ (t) ≤ t,
µ (t) ≤ t, ∀t ∈ J .

Denote
(Ax) (t) := f (t) + F (t, x (ν (t))) ,
(Bx) (t) :=

∫ ρ(t)
0 G (t, s, x (σ (s))) ds,

(Cx) (t) :=
∫ ε(t)
0 Φ (t, s) Ψ (s, x (µ (s))) ds.

It is easily seen that conditions (A), (B), (C) from subsection 2.1 are fulfilled
with β = 0. In order to apply Theorem 2.2 it will be sufficient to check
condition (D) from subsection 2.3. To this purpose, it is enough to check
it in the case J = [0, T ]; for the case J = IR+ the reason will repeat on each
interval [0, n] , n ∈ IN\{0}.

So, let λ ∈ (0, 1) and x ∈ C
(
J, IRN

)
, such that

x (t) = λf (t) + λF

(
t,

1
λ
x (ν (t))

)
+ λ

∫ ρ(t)

0
G

(
t, s,

1
λ
x (σ (s))

)
ds+

+λ
∫ ε(t)

0
Φ (t, s) Ψ (s, x (µ (s))) ds. (3.11)

First, from (3.2) and (3.3) there exists a C1 > 0, such that∣∣∣∣λf (t) + λF

(
t,

1
λ
x (ν (t))

)∣∣∣∣ ≤ C1, ∀t ∈ [0, T ] .



192 CEZAR AVRAMESCU AND CRISTIAN VLADIMIRESCU

Next, since

|G (t, s, x)| = |G (t, s, x)−G (t, s, 0)| ≤ g (t, s) |x| ,

we get ∣∣∣∣∣λ
∫ ρ(t)

0
G

(
t, s,

1
λ
x (σ (s))

)
ds

∣∣∣∣∣ ≤
∫ ρ(t)

0
g (t, s) |x (σ (s))| ds

≤ C2

∫ t

0
|x (σ (s))| ds,

where C2 := sup0≤s≤t≤T {g (t, s)};

λ

∣∣∣∣∣
∫ ε(t)

0
Φ (t, s) Ψ (s, x (µ (s))) ds

∣∣∣∣∣ ≤
∫ t

0
|Φ (t, s)|ϕ (t)ψ (|x (µ (s))|) ds

≤ C3

∫ t

0
ψ (|x (µ (s))|) ds,

where C3 := sup0≤s≤t≤T {|Φ (t, s)|ϕ (t)}.
In conclusion, we obtain from (3.11)

|x (t)| ≤ C1 + C0

∫ t

0
|x (σ (s))| ds+ C3

∫ t

0
ψ (|x (µ (s))|) ds, (3.12)

where C0 := max {C2, C3}.
We set w (t) := sup0≤s≤t≤T {|x (s)|}.
Obviously, w is an increasing function and |x (t)| ≤ w (t) , ∀t ∈ [0, T ] ,

|x (σ (s))| ≤ w (s) , |x (µ (s))| ≤ w (s) ,

and therefore

ψ (|x (µ (s))|) ≤ ψ (w (s)) . (3.13)

Definitively we deduce by (3.12) and (3.13)

w (t) ≤ C1 + C0

∫ t

0
[w (s) + ψ (w (s))] ds. (3.14)

We denote u (t) := C1 + C0

∫ t
0 [w (s) + ψ (w (s))] ds .

By relation (3.14) it follows that w (t) ≤ u (t), hence |x (t)| ≤ u (t).
But

u̇ (t) = C0 [w (t) + ψ (w (t))] ≤ C0 [u (t) + ψ (u (t))] ,
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and, since u (0) = C1, we obtain∫ u(t)

C1

ds

s+ ψ (s)
≤ C0, t ∈ [0, T ] . (3.15)

Taking into account relation (3.15) we easily deduce the following corollary.

Corollary 3.1. Suppose that hypotheses (3.2) − (3.10) are fulfilled. Then, if∫∞
(·)

ds
s+ψ(s) = ∞, equation (3.1) has at least one solution.

Remark 3.1. It is clear that the condition
∫∞
(·)

ds
s+ψ(s) = ∞ can be replaced by∫∞

C1

ds
s+ψ(s) > C0.

3.2. The second application. In this subsection we shall present an appli-
cation of Theorem 2.3 in order to establish the existence of solutions to an
integral system with modified argument of type{
x (t) =

∫ t
0 K (t, s, y (µ1 (s)))x (ν1 (t)) ds+

∫ t
0 F (t, s, x (σ1 (s)) , y (θ1 (s))) ds

y (t) =
∫ T
0 G (t, s, y (µ2 (s))) ds+

∫ T
0 H (t, s, x (σ2 (s)) , y (θ2 (s))) ds,

(3.16)
where K : ∆× IRN →MN (IR) is continuous and bounded quadratic matrix,
F : ∆ × IRN × IRN → IRN , G, H : J × J × IRN → IRN are continuous and
bounded functions, such that:

|F (t, s, u1, v)−F (t, s, u2, v)| ≤ L1 |u1 − u2| , (3.17)

∀ (t, s, u1, v) , (t, s, u2, v) ∈ ∆× IRN × IRN ,

|G (t, s, v1)− G (t, s, v2)| ≤ L2 |v1 − v2| , (3.18)

∀ (t, s, v1) , (t, s, v2) ∈ J × J × IRN ,

|H (t, s, u, v1)−H (t, s, u, v2)| ≤ L3 |v1 − v2| , (3.19)

∀ (t, s, u, v1) , (t, s, u, v2) ∈ J×J× IRN × IRN , ν1, σ1, µ1, θ1, σ2, µ2, θ2 : J → J

are continuous functions such that ν1 (t) ≤ t, σ1 (t) ≤ t, µ1 (t) ≤ t, θ1 (t) ≤ t,

σ2 (t) ≤ t, µ2 (t) ≤ t, θ2 (t) ≤ t, ∀t ∈ J, and L1, L2, L3 ∈ [0, 1) are constant.
Consider X = C

(
[0, T ] , IRN

)
, J = [0, T ] , M = Bρ × Bρ, M1 = M2 = Bρ,

where

Bρ := {z ∈ X, ‖z‖ ≤ ρ} , ρ > 0,
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and denote

a : = sup
(t,s,v)∈∆×IRN

{|K (t, s, v)|} ,

b : = sup
(t,s,u,v)∈∆×IRN×IRN

{|F (t, s, u, v)|} ,

c : = sup
(t,s,v)∈J×J×IRN

{|G (t, s, v)|} ,

d : = sup
(t,s,u,v)∈J×J×IRN×IRN

{|H (t, s, u, v)|} .

Let us define the operators A1, B1, B2 : M → X, A2 : M2 → X, through

A1 (x, y) (t) : =
∫ t

0
K (t, s, y (µ1 (s)))x (ν1 (t)) ds,

B1 (x, y) (t) : =
∫ t

0
F (t, s, x (σ1 (s)) , y (θ1 (s))) ds,

A2 (y) (t) : =
∫ T

0
G (t, s, y (µ2 (s))) ds,

B2 (x, y) (t) : =
∫ T

0
H (t, s, x (σ2 (s)) , y (θ2 (s))) ds,

∀ (x, y) ∈M, ∀t ∈ J.
In order to apply Theorem 2.3 it will be sufficient to check hypotheses 1)-6)

from subsection 2.4. We shall check them in the case J = [0, T ] ; for the case
J = IR+ the reason will repeat on each interval [0, n] , n ∈ IN\{0}.

Indeed, taking into account relations (3.17) − (3.19) , hypotheses 1)-6) are
fulfilled with α (y) ≡ aT, b (y) ≡ L1, β (y) ≡ 0, L = cL2T, for a < 1/T ,
c < min {1/ (L2T ) , ρ/T} , b < ρ (1− aT ) /T, and d < ρ/T − c.

Then, we deduce the following result.

Corollary 3.2. Suppose that hypotheses (3.17) − (3.19) are fulfilled. Then,
if a < 1/T , c < min{1/ (L2T ), ρ/T}, b < ρ (1− aT ) /T , and d < ρ/T − c,
system (3.16) admits solutions.
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