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Abstract. Based on continuation principles for compact maps and contractions due to

A. Granas [Gra72, Gra94], we shall present two respective continuation principles for (multi-

valued) fractals considered as fixed-points of the induced Hutchinson-Barnsley (union) oper-

ators in hyperspaces. The one for topological fractals (based on [Gra72]) is recalled, for the

sake of completness, from [AFGL05], while the one for metric fractals (based on [Gra94]) is

newly developed here. Both principles are then randomized. We also briefly discuss possible

generalizations related to systems of weak contractions and nonexpansive maps.
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1. Introduction

In [AFGL05], we have proved the following existence result for (multivalued)
fractals.

Theorem 1. Let (X, d) be a complete metric space and let {ϕi : X ( X, i =
1, . . . , n} be a system of condensing (w.r.t. Kuratowski or Hausdorff measure
of noncompactness) maps such that ϕi(X) is bounded, for every i = 1, . . . , n.
Then there exists a minimal, nonempty, compact, invariant set A∗ ⊂ X under
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the Hutchinson-Barnsley map

F (x) :=
n⋃

i=1

ϕi(x), x ∈ X,

i.e. a minimal (multivalued) fractal A∗ ∈ K(X) := {A ⊂ X | A is nonempty
and compact } with F ∗(A∗) = A∗, where

F ∗(A) :=
⋃

x∈A

F (x), A ∈ K(X),

is the Hutchinson-Barnsley operator.

As, furthermore, observed in [AFGL05], as a consequence of Theorem 1, for
every system of compact maps or of (weak in the sense of [Rho01]) contractions
with compact values, in a complete metric space, there exists a multivalued
fractal in the above sense. We already arrived, in a different way, at the same
conclusion in [AF04]. For the case of metric multivalued fractals, cf. also
[And01, AG01, EP, Leś03, Pet01, Pet02, PR01, PR04].

If, for at least one i ∈ {1, . . . , n}, ϕi : X ( X is not condensing on the
whole X, but only on a subset S ⊂ X, where possibly ϕj(S) 6⊂ S, for some
j ∈ {1, . . . , n}, then Theorem 1 is no longer available. Therefore, similarly as
in the degree theory, Theorem 1 must be replaced by a suitable continuation
principle for (multivalued) fractals (whence the title). This aim will be sepa-
rately treated for systems of compact multivalued maps (in Section 2) and of
multivalued contractions (in Section 3). Then both continuation principles are
randomized in Section 4. Possible extensions to systems of weak multivalued
contractions and of nonexpansive multivalued maps are discussed in Section 5.

2. Continuation principle for topological fractals

Since the fundamental role will be played here by (metric) ANR-spaces (for
their definition and properties, see e.g. [AG03, GD03]), we shall start with an
important particular case in [Cur80].

Lemma 1 ([Cur80]). If (X, d) is a locally continuum connected (a connected
and locally continuum connected) metric space, then K(X) ∈ ANR (K(X) ∈
AR), where (K(X), dH) is the hyperspace of compact subsets of X endowed
with the Hausdorff metric dH .
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Remark 1. Let us note that every ANR-space is locally continuum connected,
but not vice versa (cf. [AG03, GD03]).

Hence, let (X, d) be a locally continuum connected metric space and let

Fλ(x) :=
n⋃

i=1

ϕi(λ, x), λ ∈ [0, 1], x ∈ X, (1)

be a one-parameter family of Hutchinson-Barnsley maps, where ϕi : [0, 1] ×
X ( X, i = 1, . . . , n, are compact Hausdorff-continuous (i.e., equivalently, up-
per and lower semicontinuous) maps. Then we have the induced Hutchinson-
Barnsley operators F ∗

λ : K(X) → K(X) (∈ ANR),

F ∗
λ (A) :=

⋃

x∈A

Fλ(x), λ ∈ [0, 1], A ∈ K(X), (2)

and F ∗
λ becomes a compact (continuous) homotopy (cf. [AF04]).

Thus, in view of Lemma 1, we can associate with F ∗
λ the generalized Lef-

schetz number Λ(F ∗
λ ) ∈ Z as well as the fixed-point index ind(F ∗

λ , U) ∈ Z, for
every open set U ⊂ K(X) such that Fix(F ∗

λ ) ∩ ∂U = ∅ (for more details, see
[Gra72, GD03]). If Λ(F ∗

λ ) 6= 0, for some λ ∈ [0, 1], then the Granas fixed-
point theorem applies (see [Gra72, GD03]), and so we get a fixed-point A∗

of F ∗
λ (i.e. F ∗

λ (A∗) = A∗), for such a λ ∈ [0, 1]. Using the fixed-point index
and the Nielsen equivalence relation in Fix(F ∗

λ ) (see e.g. [AG03, GD03]), we
can distinguish between (homotopically) essential and inessential classes of
fixed-points of F ∗

λ ; i.e. the class C ⊂ Fix(F ∗
λ ) (which can be verified to be

isolated and compact) is (homotopically) essential if ind(F ∗
λ , U) 6= 0, for an

open U ⊂ K(X) with U ∩ Fix(F ∗
λ ) = C. Let us note that if Λ(F ∗

λ ) 6= 0, then
at least one of the Nielsen classes is (homotopically) essential.

Definition 1. We call a (topological) fractal A∗ (i.e. a fixed-point of F ∗
λ ) of

the multivalued system {ϕi(λ, x); i = 1, . . . , n}, for a given λ ∈ [0, 1], homo-
topically essential if A∗ belongs to some essential Nielsen class for F ∗

λ .

Because of the invariance under homotopy of the generalized Lefschetz num-
ber Λ(F∗λ) (cf. [Gra72, GD03]), we can formulate the first continuation prin-
ciple for topological fractals.

Proposition 1. Let (X, d) be a locally continuum connected metric space and
{ϕi : [0, 1] × X ( X; i = 1, . . . , n} be a system of Hausdorff-continuous
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compact maps. Then a (homotopically) essential fractal exists for the system
{ϕi(0, ·) : X ( X; i = 1, . . . , n} iff the same is true for {ϕi(1, ·) : X ( X; i =
1, . . . , n}.

Remark 2. Because of K(X) ∈ ANR, the well-defined Λ(F ∗
λ ), and the fixed-

point set Fix(F ∗
λ ) being compact, we can even associate with F ∗

λ , for every
λ ∈ [0, 1], another invariant under homotopy, namely the Nielsen number
N(F ∗

λ ), allowing us to make a lower estimate of the number of fractals for
the system {ϕi : [0, 1] ×X ( X; i = 1, . . . , n}. On the other hand, if (X, d)
is a (not necessarily locally continuum connected) complete metric space and
ϕi, i = 1, . . . , n, are compact maps, then the sole existence can be already
deduced (even under less restrictions) from Theorem 1. That is why we stated
the first continuation principle only in the form of proposition.

To compute the fixed-point index on open subsets of K(X) ∈ ANR (in order
to avoid the handicap mentioned in Remark 2) is a delicate problem. Some
possibilities are indicated in [RdPS01] (cf. also [And04]). It will be therefore
useful to recall some notions which are typical in the Conley index theory (cf.
[KM95, RdPS01, And04]).

Hence, defining the (semi)invariant parts of N ⊂ U , where U is locally
compact, w.r.t. F : X ⊃ U ( X as (cf. [KM95])

Inv+(N, Fλ) := {x ∈ N | σ(i + 1) ∈ Fλ(σ(i)), for all i ∈ N ∪ {0},
where σ : N ∪ {0} → N is a single-valued map
with σ(0) = x},

Inv−(N, Fλ) := {x ∈ N | σ(i + 1) ∈ Fλ(σ(i)), for all i ∈ Z \ N,

where σ : Z \ N→ N is a single-valued map
with σ(0) = x},

Inv(N,Fλ) := Inv+(N, Fλ) ∩ Inv−(N,Fλ),

we say that a compact invariant set K ⊂ U (i.e. Fλ(K) = K) is isolated w.r.t.
Fλ if there exists a compact neighbourhood N of K such that

Odiam(N,Fλ)(Inv(N, Fλ)) ⊂ intK,

where diam(N,Fλ) := supx∈N{diamFλ(x)} and O∆(A) := {x ∈ U | d(x,A) <

∆}, or equivalently,

dist(Inv(N,Fλ), ∂N) > diam(N, Fλ),
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where ∂N stands for the boundary of N . The neighbourhood N is then called
an isolating neighbourhood of K.

As already pointed out, we have proved in [AF04] that Fλ : X ⊃ U ( X

induces, for every λ ∈ [0, 1], the compact (continuous) single-valued map F ∗
λ in

the hyperspace (K(X), dH), i.e. F ∗
λ |K(U): K(U) → K(U). Hence, let K ⊂ U

be a compact isolated invariant set and N be its isolating neighbourhood.
Considering an open set W such that K ⊂ W ⊂ N , we have defined a locally
compact (continuous) single-valued map F ∗

λ |K(W ): K(W ) → K(X). Since
Fix(F ∗

λ |K(W )) ⊂ K(K), for each λ ∈ [0, 1], the set of fixed-points of F ∗
λ |K(W )

is a compact subset of K(K). Moreover, if X is locally connected, then K(W )
is obviously an open subset of the ANR-space K(X), and so the fixed-point
index

ind(F ∗
λ |K(W ),K(W )) ∈ Z

of F ∗
λ |K(W ): K(W ) → K(X) in K(W ) is well-defined (see e.g. [Gra72, GD03]).

Following [RdPS01], we can also define the Conley-type (integer-valued)
index IX(K, Fλ) of the pair (K, Fλ) just by identifying

IX(K, Fλ) := ind(F ∗
λ |K(W ),K(W )).

Because of the definition, this index has all usual properties as a standard fixed-
point index. The only a bit exceptional property is the additivity property
which reads as follows:

IX(K,Fλ) = IX(K1, Fλ) + IX(K2, Fλ) + IX(K1, Fλ) · IX(K2, Fλ),

where K is a compact isolated invariant set which is a disjoint union of two
compact isolated invariant sets K1 and K2, i.e. K = K1 ∪K2, K1 ∩K2 = ∅.
Moreover, it follows from the excision property of the related fixed-point index
that IX(K,Fλ) depends neither on the choice of the isolating neighbourhood
N of K, nor on the open set W .

Proposition 1 can be therefore improved in terms of the Conley-type indices
as follows.

Theorem 2. Let (X, d) be a locally continuum connected metric space, U ⊂ X

be its locally compact subset and {ϕi : [0, 1]×X ⊃ [0, 1]×U ( X; i = 1, . . . , n}
be a system of Hausdorff-continuous compact maps. Assume that N ⊂ U is
an isolating neighbourhood which is common for all the Hutchinson-Barnsley
maps Fλ defined in (1). Then a (homotopically) essential fractal K0 ⊂ N (i.e.



170 JAN ANDRES

IX(K0, F0) 6= 0) exists for the system {ϕi(0, ·) : X ⊃ U ( X, i = 1, . . . , n}
iff a (homotopically) essential fractal K1 ⊂ N (i.e. IX(K1, F1) 6= 0) exists for
{ϕi(1, ·) : X ⊃ U ( X}. Moreover, IX(K0, F0) = IX(K1, F1).

3. Continuation principle for metric fractals

At first, we recall a continuation principle for contractions, including the
appropriate notions of homotopy and (topological) essenciality, in [Gra94] (cf.
[GD03]).

Let (X, d) be a complete metric space and U ⊂ X its subset. Denoting by
C(U) the set of all contractions f : U → X and, by {ht : U → X} in C(U), a
one-parameter family of (L,M)-Lipschitz maps, where L ∈ [0, 1) and M > 0,
whenever

(i) d(ht(x), ht(y)) ≤ Ld(x, y), for all t ∈ [0, 1] and x, y ∈ U , and
(ii) d(ht(x), hs(x)) ≤ M |t− s|, for some M > 0, all x ∈ U and t, s ∈ [0, 1].

Remark 3. Obviously, as pointed out in [Gra94], if {ht} is a family of (L,M)-
Lipschitz maps, then the map h : [0, 1] × U → X given by h(t, x) = ht(x) is
continuous.

Consider still the set

C0(U) := {f ∈ C(U) | Fix f ∩ ∂U = ∅} ,

where Fix f :=
{
x ∈ U | x = f(x)

}
.

Definition 2. By a homotopy in C0(U), it is meant a family of (L,M)-
Lipschitz maps (see (i), (ii)) {ht : U → X}, where L ∈ [0, 1), such that
ht ∈ C0(U). Two maps f, g ∈ C0(U) are homotopic (written, f ∼ g) if there is
a homotopy {ht} in C0(U) such that h0 = f and h1 = g. Obviously, “∼” is an
equivalence relation in C0(U) and, under this relation, C0(U) decomposes into
disjoint homotopy classes of contractions.

Definition 3. A map f ∈ C0(U) is said to be topologically essential if f has
a fixed-point. Otherwise, it is called topologically inessential.

The following (topological essentiality) result was proved in [Gra94].

Proposition 2. Let {ht} be a homotopy in C0(U). If h0 is (topologically)
essential, then so is ht, for every t ∈ [0, 1].
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Now, Proposition 2 will be applied for obtaining metric fractals regarded
again as compact invariant subsets of S ⊂ X under the Hutchinson-Barnsley
maps (cf. (1))

Fλ(x) :=
n⋃

i=1

ϕi(λ, x), λ ∈ [0, 1], x ∈ S, (3)

or, equivalently, as fixed-points in the hyperspace (K(S), dH), where K(S) :=
{A ⊂ S | A 6= ∅ is compact} and dH stands for the Hausdorff metric, of the
Hutchinson-Barnsley operators (cf. (2))

F ∗
λ (A) :=

⋃

x∈A

Fλ(x), λ ∈ [0, 1], A ∈ K(S). (4)

Hence, considering the family {ϕi : [0, 1] × S ( X; i = 1, . . . , n} of mul-
tivalued (Li, Mi)-Lipschitz maps with compact values (cf. (i), (ii)), where
Li ∈ [0, 1), Mi > 0 and S ⊂ X is a subset of a complete metric space (X, d),
i.e. (i = 1, . . . , n)

dH(ϕi(λ, x), ϕi(λ, y)) ≤ Lid(x, y), for all λ ∈ [0, 1] and x, y ∈ S, (5)

and

dH(ϕi(λ1, x), ϕi(λ2, x)) ≤ Mi|λ1 − λ2|, (6)

for some Mi > 0, all x ∈ S and λ1, λ2 ∈ [0, 1], Fλ becomes a family of multival-
ued (L,M)-Lipschitz maps with compact values, where L = maxi=1,...,n{Li},
M = maxi=1,...,n{Mi}, and subsequently F ∗

λ : K(S) → K(X), for all λ ∈ [0, 1].
Moreover, K(S) ⊂ K(X) are complete metric spaces, and F ∗ : [0, 1]×K(S) →
K(X), given by F ∗(λ,A) = F ∗

λ (A), can be proved (cf. Remark 3) to be an
(L,M)-Lipschitz map, too. More precisely, F ∗(λ, ·) : K(S) → K(X) can
be proved as in [AF04] to be an L-contraction, for every λ ∈ [0, 1], and
F ∗(·, A) : [0, 1] → K(X) to be an M -Lipschitz, for every A ∈ K(S), namely

dH(F ∗(λ1, A), F ∗(λ2, A)) = dH(
⋃

x∈A

F (λ1, x),
⋃

x∈A

F (λ2, x)) ≤

≤ sup
x∈A

dH(F (λ1, x), F (λ2, x)) := ∆ ≤ M |λ1 − λ2|,

because

∀x ∈ A : O∆(F (λ1, x)) ⊃ F (λ2, x) and O∆(F (λ2, x)) ⊃ F (λ1, x),
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and subsequently
⋃

x∈A

O∆(F (λ1, x)) ⊃
⋃

x∈A

F (λ2, x) and
⋃

x∈A

O∆(F (λ2, x)) ⊃
⋃

x∈A

F (λ1, x),

by which

O∆(
⋃

x∈A

F (λ1, x)) ⊃ F (λ2, A) and O∆(
⋃

x∈A

F (λ2, x)) ⊃ F (λ1, A),

i.e.

O∆(F (λ1, A)) ⊃ F (λ2, A) and O∆(F (λ2, A)) ⊃ F (λ1, A),

where O∆(B) := {x ∈ X | d(x,B) < ∆}. In other words,

dH(F ∗(λ1, A), F ∗(λ2, A)) ≤ ∆,

as claimed.
Taking, therefore, U ⊂ K(S), the family of (L,M)-Lipschitz maps {F ∗

λ |U
U → K(X)} in C(U) should still satisfy Fix(F ∗

λ ) ∩ ∂U = ∅, for all λ ∈ [0, 1],
i.e. we require that F ∗

λ ∈ C0(U) (see Definition 2). Applying Proposition 2,
we can give immediately

Proposition 3. Let {ϕi : [0, 1] × S ( X; i = 1, . . . , n} be a family of multi-
valued (Li,Mi)-Lipschitz maps with compact values satisfying (5), (6), where
Li ∈ [0, 1), Mi ∈ (0,∞), for i = 1, . . . , n, and S ⊂ X is a subset of a com-
plete metric space (X, d). Assume there is U ⊂ K(S) such that F ∗

λ ∈ C0(U),
λ ∈ [0, 1]. Then if F0 has a compact invariant set (a metric fractal), say
K0 ∈ U , i.e. F0(K0) = K0, then F1 also has a compact invariant set (a metric
fractal), say K1 ∈ U , i.e. F1(K1) = K1.

The requirement F ∗
λ ∈ C0(U), λ ∈ [0, 1], can be satisfied if a locally compact

S contains an isolating neighbourhood N ⊂ S w.r.t. Fλ, as already employed
in the foregoing section. Hence, let Fλ : S ( X be a family of (L,M)-Lipschitz
maps with compact values, K0 ⊂ S be a compact isolated invariant set, for
λ = 0, and N be an isolating neighbourhood, for all λ ∈ [0, 1]. We have
defined a family of (L,M)-Lipschitz maps F ∗

λ |K(N): K(N) → K(X), where
U := K(N) and the boundary ∂U = ∂K(N) is fixed-point free w.r.t. F ∗

λ , for
all λ ∈ [0, 1], i.e. F ∗

λ ∈ C0(U), as required.
We are in position to apply Proposition 2, (or more precisely, Proposition 3)

for formulating a continuation principle for metric fractals.
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Theorem 3. Let {ϕi : [0, 1]×S ( X; i = 1, . . . , n} be a family of multivalued
(Li,Mi)-Lipschitz maps with compact values satisfying (5), (6), where Li ∈
[0, 1), Mi ∈ (0,∞), for i = 1, . . . , n, and S ⊂ X is a locally compact subset of
a complete metric space (X, d). Assume there exists an isolating neighbourhood
N ⊂ S which is common for all the Hutchinson-Barnsley maps Fλ : S ( X,
λ ∈ [0, 1], defined by (3). If F0 has a compact invariant set (a metric fractal),
say K0 ⊂ N , i.e. F0(K0) = K0, then F1 also has a compact invariant set (a
metric fractal), say K1 ⊂ N , i.e. F1(K1) = K1.

4. Continuation principle for random fractals

Now, both continuation principles from foregoing sections will be random-
ized. For this, we need to recall the related definitions and an important
transformation to the deterministic case (cf. [AFGL05, AG03]).

Definition 4. We say that a multivalued mapping ϕ : Ω×X ( Y , where X, Y

are metric spaces and Ω is a complete probabilistic space, is a random mapping
if ϕ(·, x) is measurable, for every x ∈ X, and ϕ(ω, ·) is Hausdorff-continuous
(e.g. Lipschitz), for every ω ∈ Ω ( =⇒ ϕ is product-measurable).

Definition 5. A measurable map x̂ : Ω → X ∩ Y , where Ω is a complete
probabilistic space, is called a random fixed-point of a random mapping ϕ :
Ω × X ( Y if x̂(ω) ∈ ϕ(ω, x̂(ω)), for a.a. ω ∈ Ω. A measurable map
Â : Ω ( X∩Y is similarly called a random invariant set of a random operator
ϕ : Ω×X ( Y if Â(ω) = ϕ(ω, Â(ω)), for a.a. ω ∈ Ω.

The following Proposition 4, which is due to F. S. DeBlasi, L. Górniewicz
and G. Pianigiani (cf. Proposition 4.20 in Chapter III.4 [AG03]), will allow us
to transform random problems into the deterministic setting.

Proposition 4. Let ϕ : Ω×X0 ( X, where X0 is a closed subset of X and
Ω is a complete probabilistic space, be a random mapping with compact values
such that, for every ω ∈ Ω, the set of fixed-points of ϕ(ω, ·) is nonempty. Then
ϕ has a random fixed-point.

Hence, let X0 be a closed subset of X and Ω be a complete probabilistic
space and consider the one-parameter family of systems {ϕi : [0, 1]×Ω×X0 (
X} of random maps with compact values such that, for each i ∈ {1, . . . , n}:
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(i) ϕi(·, ω, ·) : [0, 1] × X0 ( X is a Hausdorff-continuous compact map,
for every ω ∈ Ω,

(ii) ϕi(λ, ·, A) : Ω → K(X) is a measurable map, for every λ ∈ [0, 1] and
A ∈ K(X0),

or (i’), (i”), (ii) hold, where

(i’) ϕi(λ, ω, ·) : X0 ( X is a contraction with compact values, for every
λ ∈ [0, 1] and ω ∈ Ω,

(i”) dH(ϕi(λ1, ω, x), ϕi(λ2, ω, x)) ≤ Mi|λ1−λ2|, for all λ1, λ2 ∈ [0, 1], ω ∈ Ω
and x ∈ X0, where Mi > 0 is a constant.

Remark 4. It is a question whether or not condition (ii) can be replaced by
(see below)

ϕi(λ, ·, x) : Ω → K(X) is a measurable map, for every λ ∈ [0, 1] and x ∈ X0.

Defining the random Hutchinson-Barnsley map Fλ,ω as

F (λ, ω, x) :=
n⋃

i=1

ϕi(λ, ω, x), (λ, ω, x) ∈ [0, 1]× Ω×X0, (7)

and the induced random Hutchinson-Barnsley operator F ∗
λ,ω as

F ∗(λ, ω, A) :=
⋃

x∈A

F (λ, ω, x), A ∈ K(X0), (8)

one can check that F (·, ω, ·) : [0, 1]×X0 ( X is also a Hausdorff-continuous
compact map (cf. (i)), for every ω ∈ Ω, resp. F (λ, ω, ·) : X0 ( X is a
contraction with compact values (cf. (i’)), for every λ ∈ [0, 1], ω ∈ Ω, and (cf.
(i”)) dH(F (λ1, ω, x), F (λ2, ω, x)) ≤ M |λ1−λ2|, for all λ1, λ2 ∈ [0, 1], ω ∈ Ω and
x ∈ X0, where M = maxi=1,...,n{Mi}. Furthermore, F ∗

ω : [0, 1]×Ω×K(X0) →
K(X) can be verified (cf. [AFGL05]) to be (product-) measurable.

One can also prove, exactly in the same way as in [AF04] (cf. Section 2),
that F ∗

ω : [0, 1]×K(X0) → K(X) is a compact (continuous) mapping, for every
ω ∈ Ω, i.e. that F ∗([0, 1], ω,K(X0)) is, for every ω ∈ Ω, a compact set in K(X),
resp. that (cf. Section 3) F ∗

λ,ω : K(X0) → K(X) is a contraction with compact
values, for every λ ∈ [0, 1] and ω ∈ Ω, and dH(F ∗(λ1, ω, A), F ∗(λ2, ω, A)) ≤
M |λ1 − λ2|, for all λ1, λ2 ∈ [0, 1], ω ∈ Ω and A ∈ K(X0). Propositions 1 and
3 can be, therefore, randomized, on the basis of Proposition 4 as follows.
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Proposition 5. Let (X, d) be a locally continuum connected metric space and
Ω be a complete probabilistic space. Let {ϕi : [0, 1]×Ω×X ( X; i = 1, . . . , n}
be a system of random maps with compact values, satisfying conditions (i), (ii),
for X0 := X. Then a (homotopically) essential fractal exists, for each ω ∈ Ω,
to the system {ϕi(0, ω, ·) : X ( X; i = 1, . . . , n}, and subsequently a random
fractal, say A∗0 : Ω → K(X), exists to the system {ϕi(0, ·, ·) : Ω×X ( X; i =
1, . . . , n}, i.e. A∗0(ω) = F ∗(0, ω, A∗0(ω)), for a.a. ω ∈ Ω, iff a (homotopically)
essential fractal exists, for each ω ∈ Ω, to the system {ϕi(1, ω, ·) : X ( X; i =
1, . . . , n}, and subsequently a random fractal, say A∗1 : Ω → K(X), exists to the
system {ϕi(1, ·, ·) : Ω ×X ( X; i = 1, . . . , n}, i.e. A∗1(ω) = F ∗(1, ω, A∗1(ω)),
for a.a. ω ∈ Ω.

Proposition 6. Let (X, d) be a complete metric space and X0 ⊂ X its closed
subset. Let {ϕi : [0, 1]×Ω×X0 ( X; i = 1, . . . , n} be a family of random maps
with compact values, satisfying conditions (i’), (i”) and (ii). Assume there is
U ⊂ K(X0) such that (cf. (8)) F ∗

λ,ω ∈ C0(U), λ ∈ [0, 1], ω ∈ Ω. Then if F0,ω

(cf. (7)) has a (metric) fractal, for each ω ∈ Ω, and subsequently if F (0, ·, ·)
has a random fractal, say A∗0 : Ω → K(X), i.e. A∗0(ω) = F ∗(0, ω, A∗0(ω)), for
a.a. ω ∈ Ω, then so has F1,ω (cf. (7)), and subsequently F (1, ·, ·) has a random
fractal, say A∗1 : Ω → K(X), i.e. A∗1(ω) = F ∗(1, ω, A∗1(ω)), for a.a. ω ∈ Ω.

Using the property of an isolating neighbourhood (cf. Section 2), Proposi-
tions 5 and 6 can be still respectively improved as follows.

Theorem 4. Let (X, d) be a locally continuum connected metric space, X0 ⊂
X its closed, locally compact subset, and Ω be a complete probabilistic space.
Let {ϕi : [0, 1] × Ω × X0 ( X; i = 1, . . . , n} be a system of random maps
with compact values, satisfying conditions (i), (ii). Assume that N ⊂ X0 is
an isolating neighbourhood which is common for all the random Hutchinson-
Barnsley maps Fλ,ω defined in (7). Then a (homotopically) essential fractal
A0,ω ⊂ N exists (i.e. IX(A0,ω, F0,ω) 6= 0), for each ω ∈ Ω, to the system
{ϕi(0, ω, ·) : X0 ( X; i = 1, . . . , n}, and subsequently a random fractal, say
A∗0 : Ω → K(X), exists to the system {ϕi(0, ·, ·) : Ω×X0 ( X; i = 1, . . . , n}, iff
a (homotopically) essential fractal A1,ω ⊂ N exists (i.e. IX(A1,ω, F1,ω) 6= 0),
for each ω ∈ Ω, to the system {ϕi(1, ω, ·) : X0 ( X; i = 1, . . . , n}, and
subsequently a random fractal, say A∗1 : Ω → K(X), exists to the system
{ϕi(1, ·, ·) : Ω×X0 ( X; i = 1, . . . , n}.
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Theorem 5. Let (X, d) be a complete metric space and X0 ⊂ X its closed,
locally compact subset. Let {ϕi : [0, 1] × Ω × X0 ( X; i = 1, . . . , n} be a
family of random maps with compact values, satisfying conditions (i’), (i”)
and (ii). Assume there exists an isolating neighbourhood N ⊂ X0 which is
common for all the random Hutchinson-Barnsley maps Fλ,ω defined in (7).
If F0,ω (cf. (7)) has a (metric) fractal, for each ω ∈ Ω, and subsequently a
random fractal, say A∗0 : Ω → K(X), i.e. A∗0(ω) = F ∗(0, ω, A∗0(ω)), for a.a.
ω ∈ Ω, then so has F1,ω (cf. (7)), and subsequently F (1, ·, ·) has a random
fractal, say A∗1 : Ω → K(X), i.e. A∗1(ω) = F ∗(1, ω, A∗1(ω)), for a.a. ω ∈ Ω.

Remark 5. Propositions 5 resp. 6 and Theorems 4 resp. 5 can be (formally,
but more effectively) expressed directly in terms of homotopically resp. topo-
logically essential random fractals, when defining the random fixed-point index
resp. when formulating the random continuation principle for contractions, on
the basis of Proposition 4.

5. Some further possibilities

As pointed out in Introduction, Theorem 1 applies in particular to systems
of weak contractions with compact values in the sense of the following (cf.
[Rho01])

Definition 6. Assume that (X, d) is a complete metric space and let h be a
function such that

(i) h : [0,∞) → [0,∞) is continuous and nondecreasing,
(ii) h(t) = 0 ⇐⇒ t = 0 (i.e. h(t) > 0, for t ∈ (0,∞)),
(iii) limt→∞ h(t) = ∞.

A mapping ϕ : X ( X with compact values is said to be a weak contraction
(in the sense of [Rho01]) if, for any x, y ∈ X,

dH(ϕ(x), ϕ(y)) ≤ d(x, y)− h(d(x, y)). (9)

We proved in [AF04] (cf. [AG03]) that if {ϕi : X ( X; i = 1, . . . , n} is a
system of weak contractions in the sense of Definition 6, then the Hutchinson-
Barnsley operator F ∗ : K(X) → K(X), where

F ∗(A) :=
⋃

x∈A

F (x), A ∈ K(X),
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is also a weak contraction in the sense of Definition 6, where (9) is replaced
by

dH(F ∗(A), F ∗(B)) ≤ dH(A,B)− h(dH(A,B)), for all A,B ∈ K(X). (10)

A natural question arises, whether Proposition 3 can be generalized for sys-
tems {ϕi : [0, 1]× S ( X; i = 1, . . . , n}, where ϕi(λ, ·) : S ( X, i = 1, . . . , n,
are weak contractions in the sense of Definition 6 and ϕi(·, x) : [0, 1] ( X,
i = 1, . . . , n, satisfy condition (6). For this, we would need an appropriate
analogy of Proposition 2.

Such an analogy was established in [Fri01], but the notion of a weak con-
traction is understood in a (bit different) sense of [DG78] (cf. [Fri01]):

Definition 7. Assume that (X, d) is a complete metric space and U ⊂ X its
closed subset. A mapping f : U → X is said to be a weak contraction (in
the sense of [DG78]; cf. [Fri01]) if there exists a compactly positive mapping
ψ : X ×X → (0,∞), i.e.

inf{ψ(x, y) | a ≤ d(x, y) ≤ b} := θ(a, b) > 0, for every 0 < a ≤ b, (11)

such that

d(f(x), f(y)) ≤ d(x, y)− ψ(x, y), for any x, y ∈ U. (12)

The mentioned extension of Proposition 2 in [Fri01] takes the following form:

Proposition 7. Let f, g : U → X be two homotopic weak contractions in the
sense of Definition 7, i.e. there exists h : [0, 1]×U → X such that h(0, ·) = f ,
h(1, ·) = g; h(t, x) 6= x, for every x ∈ ∂U , and t ∈ [0, 1]; h(t, ·) satisfies (12),
for every t ∈ [0, 1], and h(·, x) satisfies (cf. (6))

d(h(t, x), h(s, x)) ≤ |r(t)− r(s)|, for all x ∈ U and t, s ∈ [0, 1],

where r : [0, 1] → R is a continuous function.
If a positively compact function ψ associated to h (cf. (12)) still satisfies

(cf. (11))

inf{θ(a, b) | b ≥ a} > 0, for all a > 0, (13)

then f has a fixed-point iff so has g.
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Defining h̃ : (0,∞) → (0,∞) as h̃(a) := θ(a, a), i.e. for (0 <)a = b = d(x, y),
we obtain the composed function h̃(a) = h̃(d(x, y)). Thus, if ψ(x, y) ≤ d(x, y),
for all x, y ∈ U(⊂ X), x 6= y, then under (11), (12):

d(f(x), f(y)) ≤ d(x, y)− ψ(x, y) ≤ d(x, y)− θ(a, b) ≤
≤ d(x, y)− inf{θ(a, b) | b ≥ a} = d(x, y)− θ(a, a) =
= d(x, y)− h̃(a) = d(x, y)− h̃(d(x, y)),

for all x, y ∈ U, x 6= y.

It follows that, for a continuous ψ, conditions (11), (12) seem to be, for the
first glance, more restrictive than (9), for single-valued maps, with a continuous
h satisfying h(t) > 0, for t ∈ (0,∞) (cf. (ii) in Definition 6), i.e. than those
for weak contractivity in the sense of [KS69]. However, this type of weak
contractivity was shown in [Jac97] to be equivalent with the one in the sense
of Definition 7. Thus, because of additional requirements in (i) and (iii), it is
Definition 6 which is more restrictive than Definition 7. Although there are
(unlike in Definition 6) practically no regularity restrictions imposed on ψ in
Definition 7, Proposition 7 need not apply, in view of (13), to single-valued
weak contractions in the sense of Definition 6.

So, in order to obtain a generalization of Proposition 3, for a suitable notion
of weak contractions, we should either develop the analogy of Proposition 7 for
single-valued weak contractions in the sense of Definition 6, or to show as in
[AF04] that the respective analogy of (10) (cf. (12)) holds for the Hutchinson-
Barnsley operator F ∗ : K(U) → K(X) related to (multivalued) contractions
with compact values in the sense of an appropriately modified Definition 7,
where ψ resp. θ satisfies (13). For the first case, it would be enough to find
an additional condition imposed on h which is equivalent to (13). Condition
(6) can be used without any change as well.

Let us add that the notion of a weak contraction in Definition 6 can be
significantly weaken (see Remark 1 in [AFGL05] and the references therein).
For further continuation theorems for (weak) contractions, see e.g. [Che01,
FG94, Pre02].

As concerns the systems of nonexpansive maps, the situation is even more
delicate, because a possible direct analogy of Proposition 2 fails, as observed
in [Fri01]. On the other hand, if a system of nonexpansive self-maps on a
complete ANR-space satisfies a certain version of the Palais-Smale condition,
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then, as observed in [AFGL05], an Rδ-set of fractals can exist. Another ques-
tion so arises, whether under additional assumptions, including the mentioned
Palais-Smale condition for a system of nonexpansive maps and X being a com-
plete ANR-space, the desired analogy of Proposition 2 holds. If so, then the
analogy of Proposition 3 holds as well.

One can also ask whether the Conley index theory can be developed for
discrete multivalued dynamical systems, which would directly apply to the
Hutchinson-Barnsley maps, for obtaining compact invariant sets (i.e. mul-
tivalued fractals). A promisible step in this direction was done for upper
semicontinuous maps with compact values in locally compact metric spaces
in [KM95]. Unfortunately, these maps are assumed to be determined by a
givem morphism, i.e. in particular that the set of values is connected, which
excludes the application of the Conley index in [KM95] to the Hutchinson-
Barnsley maps whose sets of values are disconnected.
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tons and Fractals 24 (2005), no. 3, 665–700.
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