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Babeş-Bolyai University, Cluj-Napoca
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1. Introduction

In [15] the author proved the following theorem

Theorem 1.1. Let (X, d) be a generalized metric space with d(x, y) ∈ Rp
+, and

(Y, ρ) a generalized complete metric space with ρ(x, y) ∈ Rm
+ . Let A : X×Y →

X × Y be a continuous operator. If we suppose that:

a) A(x, y) = (B(x), C(x, y)) for all x ∈ X and y ∈ Y ;
b) the operator B : X → X is a weakly Picard operator;
c) there exist a matrix Q ∈ Mm(R+) convergent to zero, such that the

operator C(x, ·) : Y → Y is a Q-contraction for all x ∈ X

then the operator A is a weakly Picard operator. Moreover, if B is Picard
operator, then the operator A is a Picard operator too.

In [20] the author proved the following theorem (Theorem 3.1.3):

Theorem 1.2. Let (Xk, dk) with k = 0, q and q ≥ 1 be some metric spaces
and Ak : X0 ×X1 × ...×Xk → Xk for k = 0, q be some operators such that:
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a) the spaces (Xk, dk) are complete metric spaces for k = 1, q;
b) the operator A0 is (weakly) Picard;
c) there exist αk ∈ (0, 1] such that the operators Ak(x0, ..., xk−1, ·) : Xk →

Xk is an αk-contraction ∀ (x0, x1, ..., xk−1) ∈ X0 ×X1 × ...×Xk and
k = 1, q;

d) the operators Ak are continuous with respect to (x0, x1, ..., xk−1) for all
xk ∈ Xk and k = 1, q;

then the operator Bp = (A0, A1, ..., Ap−1, Ap) is (weakly) Picard opera-
tor. Moreover if A0 is a Picard operator and FA0 = x∗0, FA1(x∗0,·) =
x∗1, ..., FAp(x∗0,x∗1,...,x∗p−1,·) = x∗p, then FBq = (x∗0, x

∗
1, ..., x

∗
q−1, x

∗
q).

We extend the definition of a convex contraction (see [7]) and [2]) to gener-
alized metric spaces:

Definition 1.1. Let (X, d) be a generalized metric space with d(x, y) ∈ Rn, ∀
x, y ∈ X. The operator T : X → X is called a convex contraction if it satisfies
the condition

d(T (p)(x1), T (p)(x2)) ≤
p−1∑
j=0

Λj · d(T (j)(x1), T (j)(x2)),

where p ∈ N∗, Λj ∈ Mn(R+) for j = 0, p− 1 and
p−1∑
j=0

||Λj ||m ≤ 1 (the symbol

|| · ||m denotes an arbitrary matrix norm on Mn(R+) subordinated to the vector
norm || · ||v : Rn → R+).

In [1] we proved that the convex contractions over a complete metric space
are Picard operators, this result was proved by V. Istrăţescu in [7] by com-
pletely different methods. In [2] we proved by the same technique that the
metric can be replaced by a generalized metric (which has values in Rn). In
this paper we prove that the contraction condition from theorem 1.1 and 1.2
can be replaced with their convex analogous.

2. Main result

In this section we prove the following theorem

Theorem 2.1. Let (Xk, dk) with k = 0, q and q ≥ 1 be some generalized metric
spaces and Ak : X0 × X1 × ... × Xk → Xk for k = 0, q be some continuous
operators such that:
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a) the spaces (Xk, dk) are generalized complete metric spaces, with dk :
Xk → Rnk

+ , nk ∈ N∗ for k = 1, q;
b) the operator A0 is (weakly) Picard;
c) there exist pk ∈ N∗ and Λ(j)

pk ∈ Mnk
(R+) for j = 0, pk − 1 with the

property
pk−1∑
j=0

||Λ(j)
pk ||mk

≤ 1 such that the operators

(Tk)(·) = Ak(x0, ..., xk−1, ·) : Xk → Xk

satisfy the following condition

dk(T
(pk)
k (xk1), T

(pk)
k (xk2)) ≤

pk−1∑
j=0

Λ(j)
pk
· dk(T

(j)
k (xk1), T

(j)
k (xk2)),

∀ (x0, x1, ..., xk−1) ∈ X0×X1× ...×Xk−1 and xk1, xk2 ∈ Xk, k = 1, q;
d) the operators Ak are continuous with respect to (x0, x1, ..., xk−1) for all

xk ∈ Xk and k = 1, q;

then the operator Bq = (A0, A1, ..., Aq−1, Aq) is (weakly) Picard opera-
tor. Moreover if A0 is a Picard operator and FA0 = x∗0, FA1(x∗0,·) =
x∗1, ..., FAp(x∗0,x∗1,...,x∗q−1,·) = x∗q, then FBq = (x∗0, x

∗
1, ..., x

∗
q−1, x

∗
q).

In order to prove this theorem we need the following lemma

Lemma 2.1. The matrices Λ(j)
ipk

∈ Mnk
(R+) with i = 1, pk and j = 0, pk − 1

satisfy the inequality
pk−1∑
j=0

||Λ(j)
ipk
||mk

< 1 for i = 1, pk. If the sequence

(xm)m≥0 ⊂
(
Rnk

+

)pk satisfies the inequality

xm+1 ≤ Ā · xm + ym,∀m ∈ N,

where (ym)m≥0 ⊂
(
Rnk

+

)pk , lim
m→∞

ym = 0 and Ā ∈ Mpk
(Mnk

(R+)) such that

Ā =


Λ(0)

1pk
Λ(1)

1pk
... Λ(pk−1)

1pk

Λ(0)
2pk

Λ(1)
2pk

... Λ(pk−1)
2pk

... ... ... ...

Λ(0)
pkpk Λ(1)

pkpk ... Λ(pk−1)
pkpk

, then the sequence (xm)m≥0 is conver-

gent to 0.

Proof of the lemma. Let || · ||nk
: Rnk

+ → R+ be a vector norm on Rnk
+

and || · ||mk
: Mnk

(R+) → R+ the subordinated matrix norm. We define



124 ANDRÁS SZILÁRD

|| · ||np :
(
Rnk

+

)pk → R+ by

||x||np = max
{
||xi||nk

∣∣x = (x1, x2, ..., xpk
), xi ∈ Rnk

+

}
and || · ||mm : Mpk

(Mnk
(R+)) → R+ by

||A||mm = max
i=1,pk

pk∑
j=1

||aij ||mk
,

where A = [aij ]1≤i,j≤pk
and aij ∈ Mnk

(R+) for 1 ≤ i, j ≤ pk. With these
notations we have the following properties:

(1) ||Ax||np ≤ ||A||mm · ||x||np, ∀ x ∈
(
Rnk

+

)pk and A ∈ Mpk
(Mnk

(R+));
(2) ||A ·B||mm ≤ ||A||mm · ||B||mm, ∀ A,B ∈ Mpk

(Mnk
(R+));

(3) If A ≤ B then ||A||mm ≤ ||B||mm.

From the given conditions we have ||Ā||mm = max
i=1,pk

pk−1∑
j=0

||Λ(j)
ipk
||mk

< 1, so the

sequence Xm =
m∑

j=1
Āj is convergent to a matrix A. This implies that there

exists M ∈ R+ such that ||
p−1∑
j=0

Āj ||mm < M, ∀ p ∈ N∗ and for every ε > 0

there exists p(ε) ∈ N∗ such that ||Ap||mm < ε
M1

, ∀ p ≥ p(ε) where M1 is a fixed
constant. From the condition lim

m→∞
ym = 0 we deduce that for every ε > 0

there exists m(ε) ∈ N∗ such that ||ym|| ≤ ε
2M , ∀ m ≥ m(ε). By the other hand

from the given inequality we deduce

Āk · xm+p−k ≤ Āk+1 · xm+p−k−1 + Āk · ym+p−k−1, k = 0, p− 1.

Adding these inequalities term by term we obtain

xm+p ≤ Āp · xm +
p−1∑
j=0

Āj · ym+p−1−j .

From this inequality we deduce

||xmε+p||np ≤ ||Āp||mm · ||xmε ||np +
ε

2M
·

p−1∑
j=0

||Āj ||mm ≤ ||Ā||pmm ·M1 +
ε

2
≤ ε,

if p ≥ p(ε). So there exists n(ε) = p(ε) + m(ε) ∈ N∗ such that

||xn||np ≤ ε, ∀n ≥ n(ε).
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This implies that lim
n→∞

xn = 0.

�

Proof of the theorem. First we prove the theorem for q = 1 and then we pro-
ceed by induction on q. For q = 1 let’s consider the sequences (x0

n)n≥0 ⊂ X0

and (x1
n)n≥0 ⊂ X1 defined by the relations

x0
n+1 = A0(x0

n),∀n ≥ 0 and x1
n+1 = A1(x0

n, x1
n),∀n ≥ 0. (2.1)

The sequence (x0
n)n≥0 is convergent to an element x∗0 ∈ X0 because the op-

erator A0 is a weakly Picard operator. Due to the main result from [2] the
operator A1(x∗0, ·) : X1 → X1 is a Picard operator, so there exists an unique
x∗1 ∈ X1 such that A1(x∗0, x

∗
1) = x∗1. We prove that the sequence (x1

n)n≥0 is
convergent to x∗0.

d1(x1
n+p1

, x∗1) = d1(A1(x0
n+p1−1, x

1
n+p1−1), A1(x∗0, x

∗
1)) ≤

≤
p1∑

j=1

d1(A
j−1
1 (A1(x0

n+p1−j , x
1
n+p1−j)), A

j
1(x

1
n+p1−j)) + d1(A

p1
1 (x1

n), Ap1
1 (x∗1)) ≤

≤
p1∑

j=1

d1(A
j−1
1 (A1(x0

n+p1−j , x
1
n+p1−j)), A

j
1(x

1
n+p1−j))+

+
p1−1∑
j=0

Λ(j)
p1
· d1(A

j
1(x

1
n), Aj

1(x
∗
1)),

where

Aj
1 : X1 → X1, Aj

1(x) = A1(x∗0, A1(x∗0, ..., A1︸ ︷︷ ︸
j

(x∗0, x)...))

for j = 1, p1 and A0
1(x) = x, ∀x ∈ X1. By the same technique we obtain

d1(A
j
1(x

1
n+p1

), Aj
1(x

∗
1))≤

p1∑
l=1

d1(A
j+l−1
1 (A1(x0

n+p1−l, x
1
n+p1−l)), A

j+l
1 (x1

n+p1−l))+

+
p1−1∑
l=0

Λ(l)
p1
· d1(A

j+l
1 (x1

n), Aj+l
1 (x∗1)),

for j = 1, p1 − 1. By the other hand we can construct inductively the matrices
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Λ(j)
ip1

∈ Mnk
((R)+) such that

p1−1∑
l=0

Λ(l)
p1
· d1(A

j+l
1 (x1

n), Aj+l
1 (x∗1)) ≤

p1−1∑
l=0

Λ(l)
ip1

· d1(Al
1(x

1
n), Al

1(x
∗
1)) i = 1, p1

and with this construction we have

p1−1∑
j=0

||Λ(j)
ip1
||m1 < 1, i = 1, p1.

With these constructions we consider Ā = [Λ(j)
ip1]i=1,p1,j=0,p1−1,

xm =


(d1(x1

p·m, x∗1)
d1(A1

1(x
1
p·m), x∗1)

d1(A2
1(x

1
p·m), x∗1)
...

d1(A
p1−1
1 (x1

p·m), x∗1)

 ,∀m ∈ N. (2.2)

and

ym =



p1∑
l=1

d1(Al−1
1 (A1(x0

n+p1−l, x
1
n+p1−l)), A

l
1(x

1
n+p1−l))

p1∑
l=1

d1(A1+l−1
1 (A1(x0

n+p1−l, x
1
n+p1−l)), A

1+l
1 (x1

n+p1−l))
p1∑
l=1

d1(A2+l−1
1 (A1(x0

n+p1−l, x
1
n+p1−l)), A

2+l
1 (x1

n+p1−l))

...
p1∑
l=1

d1(A
p1+l−2
1 (A1(x0

n+p1−l, x
1
n+p1−l)), A

p1+l−1
1 (x1

n+p1−l))


,∀m ∈ N.

(2.3)
From the previous inequalities, the properties of A0 and the continuity of A1

follows that the sequences (xm)m≥0, (ym)m≥0 ∈ (Rn1
+ )p1 satisfy the conditions

of lemma 2.1, so lim
m→∞

d1(x1
p·m, x∗1) = 0. From the continuity of A1 we deduce

lim
m→∞

x1
m = x∗1.

If the theorem is proved for q we can prove it for q + 1 by applying the case
we have just proved (with A0 → (A0, A1, ..., Aq) and A1 → Aq+1). �
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3. Application

We give an example where theorem 1.1 or theorem 1.2 can not be applied
without changing the norms. We mention that due to the theorem of
Bessaga (which asserts that if (X, d) is a metric space and A : X → X is a
Picard operator, than we can construct a metric ρ : X × X → R such that
A : (X, ρ) → (X, ρ) became a contraction) whenever we can guarantee that
lim

n→∞
An = 0 with A ∈ Mn(R), we can change the norm to have ||A|| < 1. By

the other hand if lim
n→∞

An = 0, we can choose p ∈ N and α1, ..., αp ∈ (0, 1) to

have ||Ap|| ≤
p−1∑
j=0

||Aj ||, so we do not need to change the norm.

In what follows we denote

d((x1, x2), (y1, y2)) =

[
|x1 − y1|
|x2 − y2|

]
∀x1, x2, y1, y2 ∈ R

and

||A|| = max{|a11|+ |a12|, |a21|+ |a22|} ifA =

[
a11 a12

a21 a22

]
.

For the matrix A =

[
5
6

1
4

1
16

5
6

]
we have ||A|| = 13

12 , ||A2|| = 649
576 , ||A3|| = 465

407 ,

||A4|| = 507
445 ..., ||A9|| = 4211

4210 > 1 and ||A10|| = 1211
1256 < 1 so we have

0.99 · ||A10||+
9∑

j=1

0.001 · ||Aj || = 762
947

< 1. (3.4)

Due to this property we can apply 2.1 in studying the following system:{
x1(λ) = sin

(
5
6x1(λ) + 1

4x2(λ) + λ
)

x2(λ) = cos
(

1
16x1(λ) + 5

6x2(λ) + λ2
) (3.5)

We have A0 : R2 → R2,

A0(x1, x2) =
(

sin

(
5
6
x1(λ) +

1
4
x2(λ) + λ

)
, cos

(
1
16

x1(λ) +
5
6
x2(λ) + λ2

))
and A1 : R2 × R2 → R2, A1(x1, x2, u1, u2) = (v1, v2), where

v1 =
5
6
sin

(
5
6
x1(λ) +

1
4
x2(λ) + λ

)
· u1+
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+
1
4
sin

(
5
6
x1(λ) +

1
4
x2(λ) + λ

)
· u2 + 1,

v2 =
1
16

cos

(
1
16

x1(λ) +
5
6
x2(λ) + λ2

)
· u1+

+
5
6
cos

(
1
16

x1(λ) +
5
6
x2(λ) + λ2

)
· u2 + 2λ.

With these notations A0 is a Picard operator because

d(A0(x1, x2), A0(y1, y2)) ≤ A · d((x1, x2), (y1, y2))

and 3.4 (see [2]). By the other hand we have

d(A1(x1, x2, u1, u2), A1(x1, x2, v1, v2)) ≤ A · d((u1, u2), (v1, v2)).

This implies

d(A(11)
1 (u1, u2), A

(11)
1 (v1, v2)) ≤ Aj · d(A(11−j)

1 (u1, u2), A
(11−j)
1 (v1, v2)),

j = 1, 10, where Aj+1
1 (u1, u2) = A

(j)
1 (x1, x2, u1, u2) ∀u1, u2 ∈ R with fixed

x1, x2 ∈ R. So we have

d(A(11)
1 (u1, u2), A

(11)
1 (v1, v2)) ≤ 0.99 ·A10 · d(A(1)

1 (u1, u2), A
(1)
1 (v1, v2))+

+0.001 ·
9∑

j=1

Aj · (A(11−j)
1 (u1, u2), A

(11−j)
1 (v1, v2)).

This inequality with 3.4 and theorem 2.1 guarantee the convergence of the
sequences

(x(n+1)
1 , x

(n+1)
2 ) = A0(x

(n)
1 , x

(n)
2 )

and

(u(n+1)
1 , u

(n+1)
2 ) = A1(x

(n)
1 , x

(n)
2 , u

(n)
1 , u

(n)
2 ).

By choosing x1, x2 ∈ C1[λ1, λ2], u1 = ∂x1
∂λ and u2 = ∂x2

∂λ , we have u
(n)
1 =

∂x
(n)
1

∂λ and u
(n)
2 = ∂x

(n)
2

∂λ , so from Weierstrass’s theorem we obtain the continuous
differentiability of the solution of 3.5 with respect to the parameter λ. Thus
we have the following theorem:

Theorem 3.1. The system 3.5 has an unique solution in R2 for every
λ ∈ [λ1, λ2] and the functions λ → x1(λ) and λ → x2(λ) are continuously
differentiable with respect to λ.



FIBER PICARD OPERATORS AND CONVEX CONTRACTIONS 129

References

[1] Sz. András, Subconvex sequences and the Banach contraction principle, Revue

D’Analyse Numerique et de Theorie de l’Approximation, (to appear).

[2] Sz. András, A note on Perov’s fixed point theorem, Fixed Point Theory, 4(2003), Nr. 1,

109-115.

[3] Sz. András, Fiber ϕ -contractions on generalized metric spaces and application, Mathe-

matica (to appear).
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