FIBER PICARD OPERATORS AND CONVEX CONTRACTIONS

ANDRÁS SZILÁRD
Department of Applied Mathematics Babeş-Bolyai University, Cluj-Napoca M. Kogălniceanu, No. 1, Romania e-mail: andrasz@math.ubbcluj.ro

Abstract

In this paper we generalize a fiber Picard operator theorem by replacing the condition of uniform contractions on fibers with the uniform convex contraction condition on fibers.

2000 Mathematics Subject Classification: 47H10, 45G15.
Key Words and Phrases: Picard operator, fiber Picard operator, subconvex sequences.

1. Introduction

In [15] the author proved the following theorem
Theorem 1.1. Let (X, d) be a generalized metric space with $d(x, y) \in \mathbb{R}_{+}^{p}$, and (Y, ρ) a generalized complete metric space with $\rho(x, y) \in \mathbb{R}_{+}^{m}$. Let $A: X \times Y \rightarrow$ $X \times Y$ be a continuous operator. If we suppose that:
a) $A(x, y)=(B(x), C(x, y))$ for all $x \in X$ and $y \in Y$;
b) the operator $B: X \rightarrow X$ is a weakly Picard operator;
c) there exist a matrix $Q \in M_{m}\left(\mathbb{R}_{+}\right)$convergent to zero, such that the operator $C(x, \cdot): Y \rightarrow Y$ is a Q-contraction for all $x \in X$
then the operator A is a weakly Picard operator. Moreover, if B is Picard operator, then the operator A is a Picard operator too.

In [20] the author proved the following theorem (Theorem 3.1.3):
Theorem 1.2. Let $\left(X_{k}, d_{k}\right)$ with $k=\overline{0, q}$ and $q \geq 1$ be some metric spaces and $A_{k}: X_{0} \times X_{1} \times \ldots \times X_{k} \rightarrow X_{k}$ for $k=\overline{0, q}$ be some operators such that:
a) the spaces $\left(X_{k}, d_{k}\right)$ are complete metric spaces for $k=\overline{1, q}$;
b) the operator A_{0} is (weakly) Picard;
c) there exist $\alpha_{k} \in(0,1]$ such that the operators $A_{k}\left(x_{0}, \ldots, x_{k-1}, \cdot\right): X_{k} \rightarrow$ X_{k} is an α_{k}-contraction $\forall\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in X_{0} \times X_{1} \times \ldots \times X_{k}$ and $k=\overline{1, q}$;
d) the operators A_{k} are continuous with respect to $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$ for all $x_{k} \in X_{k}$ and $k=\overline{1, q}$;
then the operator $B_{p}=\left(A_{0}, A_{1}, \ldots, A_{p-1}, A_{p}\right)$ is (weakly) Picard operator. Moreover if A_{0} is a Picard operator and $F_{A_{0}}=x_{0}^{*}, F_{A_{1}\left(x_{0}^{*},\right)}=$ $x_{1}^{*}, \ldots, F_{A_{p}\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{p-1}^{*}, \cdot\right)}=x_{p}^{*}$, then $F_{B_{q}}=\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{q-1}^{*}, x_{q}^{*}\right)$.

We extend the definition of a convex contraction (see [7]) and [2]) to generalized metric spaces:

Definition 1.1. Let (X, d) be a generalized metric space with $d(x, y) \in \mathbb{R}^{n}, \forall$ $x, y \in X$. The operator $T: X \rightarrow X$ is called a convex contraction if it satisfies the condition

$$
d\left(T^{(p)}\left(x_{1}\right), T^{(p)}\left(x_{2}\right)\right) \leq \sum_{j=0}^{p-1} \Lambda_{j} \cdot d\left(T^{(j)}\left(x_{1}\right), T^{(j)}\left(x_{2}\right)\right),
$$

where $p \in \mathbb{N}^{*}, \Lambda_{j} \in M_{n}\left(\mathbb{R}_{+}\right)$for $j=\overline{0, p-1}$ and $\sum_{j=0}^{p-1}\left\|\Lambda_{j}\right\|_{m} \leq 1$ (the symbol $\|\cdot\|_{m}$ denotes an arbitrary matrix norm on $M_{n}\left(\mathbb{R}_{+}\right)$subordinated to the vector norm $\left.\|\cdot\|_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}\right)$.

In [1] we proved that the convex contractions over a complete metric space are Picard operators, this result was proved by V. Istrăţescu in [7] by completely different methods. In [2] we proved by the same technique that the metric can be replaced by a generalized metric (which has values in \mathbb{R}^{n}). In this paper we prove that the contraction condition from theorem 1.1 and 1.2 can be replaced with their convex analogous.

2. Main result

In this section we prove the following theorem
Theorem 2.1. Let $\left(X_{k}, d_{k}\right)$ with $k=\overline{0, q}$ and $q \geq 1$ be some generalized metric spaces and $A_{k}: X_{0} \times X_{1} \times \ldots \times X_{k} \rightarrow X_{k}$ for $k=\overline{0, q}$ be some continuous operators such that:
a) the spaces $\left(X_{k}, d_{k}\right)$ are generalized complete metric spaces, with d_{k} : $X_{k} \rightarrow \mathbb{R}_{+}^{n_{k}}, n_{k} \in \mathbb{N}^{*}$ for $k=\overline{1, q} ;$
b) the operator A_{0} is (weakly) Picard;
c) there exist $p_{k} \in \mathbb{N}^{*}$ and $\Lambda_{p_{k}}^{(j)} \in M_{n_{k}}\left(\mathbb{R}_{+}\right)$for $j=\overline{0, p_{k}-1}$ with the property $\sum_{j=0}^{p_{k}-1}\left\|\Lambda_{p_{k}}^{(j)}\right\|_{m_{k}} \leq 1$ such that the operators

$$
\left(T_{k}\right)(\cdot)=A_{k}\left(x_{0}, \ldots, x_{k-1}, \cdot\right): X_{k} \rightarrow X_{k}
$$

satisfy the following condition

$$
\begin{aligned}
& d_{k}\left(T_{k}^{\left(p_{k}\right)}\left(x_{k 1}\right), T_{k}^{\left(p_{k}\right)}\left(x_{k 2}\right)\right) \leq \sum_{j=0}^{p_{k}-1} \Lambda_{p_{k}}^{(j)} \cdot d_{k}\left(T_{k}^{(j)}\left(x_{k 1}\right), T_{k}^{(j)}\left(x_{k 2}\right)\right), \\
& \forall\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in X_{0} \times X_{1} \times \ldots \times X_{k-1} \text { and } x_{k 1}, x_{k 2} \in X_{k}, k=\overline{1, q}
\end{aligned}
$$

d) the operators A_{k} are continuous with respect to $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$ for all $x_{k} \in X_{k}$ and $k=\overline{1, q} ;$
then the operator $B_{q}=\left(A_{0}, A_{1}, \ldots, A_{q-1}, A_{q}\right)$ is (weakly) Picard operator. Moreover if A_{0} is a Picard operator and $F_{A_{0}}=x_{0}^{*}, F_{A_{1}\left(x_{0}^{*}, \cdot\right)}=$ $x_{1}^{*}, \ldots, F_{A_{p}\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{q-1}^{*}, \cdot\right)}=x_{q}^{*}$, then $F_{B_{q}}=\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{q-1}^{*}, x_{q}^{*}\right)$.

In order to prove this theorem we need the following lemma
Lemma 2.1. The matrices $\Lambda_{i p_{k}}^{(j)} \in M_{n_{k}}\left(\mathbb{R}_{+}\right)$with $i=\overline{1, p_{k}}$ and $j=\overline{0, p_{k}-1}$ satisfy the inequality $\sum_{j=0}^{p_{k}-1}\left\|\Lambda_{i p_{k}}^{(j)}\right\|_{m_{k}}<1$ for $i=\overline{1, p_{k}}$. If the sequence $\left(x_{m}\right)_{m \geq 0} \subset\left(\mathbb{R}_{+}^{n_{k}}\right)^{p_{k}}$ satisfies the inequality

$$
x_{m+1} \leq \bar{A} \cdot x_{m}+y_{m}, \forall m \in \mathbb{N}
$$

where $\left(y_{m}\right)_{m \geq 0} \subset\left(\mathbb{R}_{+}^{n_{k}}\right)^{p_{k}}, \lim _{m \rightarrow \infty} y_{m}=0$ and $\bar{A} \in M_{p_{k}}\left(M_{n_{k}}\left(\mathbb{R}_{+}\right)\right)$such that

$$
\bar{A}=\left[\begin{array}{cccc}
\Lambda_{1 p_{k}}^{(0)} & \Lambda_{1 p_{k}}^{(1)} & \ldots & \Lambda_{\left.1 p_{k}-1\right)}^{\left(p_{k}-1\right)} \\
\Lambda_{2 p_{k}}^{(0)} & \Lambda_{2 p_{k}}^{(1)} & \ldots & \Lambda_{\left.2 p_{k}-1\right)}^{\left(p_{k}\right.} \\
\ldots & \ldots & \ldots & \ldots \\
\Lambda_{p_{k} p_{k}}^{(0)} & \Lambda_{p_{k} p_{k}}^{(1)} & \ldots & \Lambda_{p_{k} p_{k}}^{\left(p_{k}-1\right)}
\end{array}\right] \text {, then the sequence }\left(x_{m}\right)_{m \geq 0} \text { is conver- }
$$ gent to 0 .

Proof of the lemma. Let $\|\cdot\|_{n_{k}}: \mathbb{R}_{+}^{n_{k}} \rightarrow \mathbb{R}_{+}$be a vector norm on $\mathbb{R}_{+}^{n_{k}}$ and $\|\cdot\|_{m_{k}}: M_{n_{k}}\left(\mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$the subordinated matrix norm. We define

$$
\begin{aligned}
& \|\cdot\|_{n p}:\left(\mathbb{R}_{+}^{n_{k}}\right)^{p_{k}} \rightarrow \mathbb{R}_{+} \text {by } \\
& \|x\|_{n p}=\max \left\{\left\|x_{i}\right\|_{n_{k}} \mid x=\left(x_{1}, x_{2}, \ldots, x_{p_{k}}\right), x_{i} \in \mathbb{R}_{+}^{n_{k}}\right\}
\end{aligned}
$$

and $\|\cdot\|_{m m}: M_{p_{k}}\left(M_{n_{k}}\left(\mathbb{R}_{+}\right)\right) \rightarrow \mathbb{R}_{+}$by

$$
\|A\|_{m m}=\max _{i=\overline{1, p_{k}}} \sum_{j=1}^{p_{k}}\left\|a_{i j}\right\|_{m_{k}},
$$

where $A=\left[a_{i j}\right]_{1 \leq i, j \leq p_{k}}$ and $a_{i j} \in M_{n_{k}}\left(\mathbb{R}_{+}\right)$for $1 \leq i, j \leq p_{k}$. With these notations we have the following properties:
(1) $\|A x\|_{n p} \leq\|A\|_{m m} \cdot\|x\|_{n p}, \forall x \in\left(\mathbb{R}_{+}^{n_{k}}\right)^{p_{k}}$ and $A \in M_{p_{k}}\left(M_{n_{k}}\left(\mathbb{R}_{+}\right)\right)$;
(2) $\|A \cdot B\|_{m m} \leq\|A\|_{m m} \cdot\|B\|_{m m}, \forall A, B \in M_{p_{k}}\left(M_{n_{k}}\left(\mathbb{R}_{+}\right)\right)$;
(3) If $A \leq B$ then $\|A\| m m \leq\|B\|_{m m}$.

From the given conditions we have $\|\bar{A}\|_{m m}=\max _{i=1, p_{k}} \sum_{j=0}^{p_{k}-1}\left\|\Lambda_{i p_{k}}^{(j)}\right\|_{m_{k}}<1$, so the sequence $X_{m}=\sum_{j=1}^{m} \bar{A}^{j}$ is convergent to a matrix \underline{A}. This implies that there exists $M \in \mathbb{R}_{+}$such that $\left\|\sum_{j=0}^{p-1} \bar{A}^{j}\right\|_{m m}<M, \forall p \in \mathbb{N}^{*}$ and for every $\epsilon>0$ there exists $p(\epsilon) \in \mathbb{N}^{*}$ such that $\left\|A^{p}\right\|_{m m}<\frac{\epsilon}{M_{1}}, \forall p \geq p(\epsilon)$ where M_{1} is a fixed constant. From the condition $\lim _{m \rightarrow \infty} y_{m}=0$ we deduce that for every $\epsilon>0$ there exists $m(\epsilon) \in \mathbb{N}^{*}$ such that $\left\|y_{m}\right\| \leq \frac{\epsilon}{2 M}, \forall m \geq m(\epsilon)$. By the other hand from the given inequality we deduce

$$
\bar{A}^{k} \cdot x_{m+p-k} \leq \bar{A}^{k+1} \cdot x_{m+p-k-1}+\bar{A}^{k} \cdot y_{m+p-k-1}, \quad k=\overline{0, p-1} .
$$

Adding these inequalities term by term we obtain

$$
x_{m+p} \leq \bar{A}^{p} \cdot x_{m}+\sum_{j=0}^{p-1} \bar{A}^{j} \cdot y_{m+p-1-j} .
$$

From this inequality we deduce
$\left\|x_{m_{\epsilon}+p}\right\|_{n p} \leq\left\|\bar{A}^{p}\right\|_{m m} \cdot\left\|x_{m_{\epsilon}}\right\|_{n p}+\frac{\epsilon}{2 M} \cdot \sum_{j=0}^{p-1}\left\|\bar{A}^{j}\right\|_{m m} \leq\|\bar{A}\|_{m m}^{p} \cdot M_{1}+\frac{\epsilon}{2} \leq \epsilon$,
if $p \geq p(\epsilon)$. So there exists $n(\epsilon)=p(\epsilon)+m(\epsilon) \in \mathbb{N}^{*}$ such that

$$
\left\|x_{n}\right\|_{n p} \leq \epsilon, \quad \forall n \geq n(\epsilon) .
$$

This implies that $\lim _{n \rightarrow \infty} x_{n}=0$.

Proof of the theorem. First we prove the theorem for $q=1$ and then we proceed by induction on q. For $q=1$ let's consider the sequences $\left(x_{n}^{0}\right)_{n \geq 0} \subset X_{0}$ and $\left(x_{n}^{1}\right)_{n \geq 0} \subset X_{1}$ defined by the relations

$$
\begin{equation*}
x_{n+1}^{0}=A_{0}\left(x_{n}^{0}\right), \forall n \geq 0 \quad \text { and } \quad x_{n+1}^{1}=A_{1}\left(x_{n}^{0}, x_{n}^{1}\right), \forall n \geq 0 \tag{2.1}
\end{equation*}
$$

The sequence $\left(x_{n}^{0}\right)_{n \geq 0}$ is convergent to an element $x_{0}^{*} \in X_{0}$ because the operator A_{0} is a weakly Picard operator. Due to the main result from [2] the operator $A_{1}\left(x_{0}^{*}, \cdot\right): X_{1} \rightarrow X_{1}$ is a Picard operator, so there exists an unique $x_{1}^{*} \in X_{1}$ such that $A_{1}\left(x_{0}^{*}, x_{1}^{*}\right)=x_{1}^{*}$. We prove that the sequence $\left(x_{n}^{1}\right)_{n \geq 0}$ is convergent to x_{0}^{*}.

$$
\begin{gathered}
d_{1}\left(x_{n+p_{1}}^{1}, x_{1}^{*}\right)=d_{1}\left(A_{1}\left(x_{n+p_{1}-1}^{0}, x_{n+p_{1}-1}^{1}\right), A_{1}\left(x_{0}^{*}, x_{1}^{*}\right)\right) \leq \\
\leq \sum_{j=1}^{p_{1}} d_{1}\left(A_{1}^{j-1}\left(A_{1}\left(x_{n+p_{1}-j}^{0}, x_{n+p_{1}-j}^{1}\right)\right), A_{1}^{j}\left(x_{n+p_{1}-j}^{1}\right)\right)+d_{1}\left(A_{1}^{p_{1}}\left(x_{n}^{1}\right), A_{1}^{p_{1}}\left(x_{1}^{*}\right)\right) \leq \\
\leq \sum_{j=1}^{p_{1}} d_{1}\left(A_{1}^{j-1}\left(A_{1}\left(x_{n+p_{1}-j}^{0}, x_{n+p_{1}-j}^{1}\right)\right), A_{1}^{j}\left(x_{n+p_{1}-j}^{1}\right)\right)+ \\
+\sum_{j=0}^{p_{1}-1} \Lambda_{p_{1}}^{(j)} \cdot d_{1}\left(A_{1}^{j}\left(x_{n}^{1}\right), A_{1}^{j}\left(x_{1}^{*}\right)\right)
\end{gathered}
$$

where

$$
A_{1}^{j}: X_{1} \rightarrow X_{1}, \quad A_{1}^{j}(x)=\underbrace{A_{1}\left(x_{0}^{*}, A_{1}\left(x_{0}^{*}, \ldots, A_{1}\right.\right.}_{j}\left(x_{0}^{*}, x\right) \ldots))
$$

for $j=\overline{1, p_{1}}$ and $A_{1}^{0}(x)=x, \forall x \in X_{1}$. By the same technique we obtain

$$
\begin{aligned}
d_{1}\left(A_{1}^{j}\left(x_{n+p_{1}}^{1}\right), A_{1}^{j}\left(x_{1}^{*}\right)\right) & \leq \sum_{l=1}^{p_{1}} d_{1}\left(A_{1}^{j+l-1}\left(A_{1}\left(x_{n+p_{1}-l}^{0}, x_{n+p_{1}-l}^{1}\right)\right), A_{1}^{j+l}\left(x_{n+p_{1}-l}^{1}\right)\right)+ \\
& +\sum_{l=0}^{p_{1}-1} \Lambda_{p_{1}}^{(l)} \cdot d_{1}\left(A_{1}^{j+l}\left(x_{n}^{1}\right), A_{1}^{j+l}\left(x_{1}^{*}\right)\right)
\end{aligned}
$$

for $j=\overline{1, p_{1}-1}$. By the other hand we can construct inductively the matrices

$$
\begin{aligned}
& \Lambda_{i p_{1}}^{(j)} \in M_{n_{k}}\left((R)_{+}\right) \text {such that } \\
& \sum_{l=0}^{p_{1}-1} \Lambda_{p_{1}}^{(l)} \cdot d_{1}\left(A_{1}^{j+l}\left(x_{n}^{1}\right), A_{1}^{j+l}\left(x_{1}^{*}\right)\right) \leq \sum_{l=0}^{p_{1}-1} \Lambda_{i p_{1}}^{(l)} \cdot d_{1}\left(A_{1}^{l}\left(x_{n}^{1}\right), A_{1}^{l}\left(x_{1}^{*}\right)\right) \quad i=\overline{1, p_{1}}
\end{aligned}
$$

and with this construction we have

$$
\sum_{j=0}^{p_{1}-1}\left\|\Lambda_{i p_{1}}^{(j)}\right\|_{m_{1}}<1, \quad i=\overline{1, p_{1}}
$$

With these constructions we consider $\bar{A}=\left[\Lambda_{i p 1}^{(j)}\right]_{i=\overline{1, p_{1}}, j=\overline{0, p_{1}-1}}$,

$$
x_{m}=\left[\begin{array}{c}
\left(d_{1}\left(x_{p \cdot m}^{1}, x_{1}^{*}\right)\right. \tag{2.2}\\
d_{1}\left(A_{1}^{1}\left(x_{p \cdot m}^{1}\right), x_{1}^{*}\right) \\
d_{1}\left(A_{1}^{2}\left(x_{p \cdot m}^{1}\right), x_{1}^{*}\right) \\
\vdots \\
d_{1}\left(A_{1}^{p_{1}-1}\left(x_{p \cdot m}^{1}\right), x_{1}^{*}\right)
\end{array}\right], \forall m \in \mathbb{N} .
$$

and

$$
y_{m}=\left[\begin{array}{c}
\sum_{l=1}^{p_{1}} d_{1}\left(A_{1}^{l-1}\left(A_{1}\left(x_{n+p_{1}-l}^{0}, x_{n+p_{1}-l}^{1}\right)\right), A_{1}^{l}\left(x_{n+p_{1}-l}^{1}\right)\right) \tag{2.3}\\
\sum_{l=1}^{p_{1}} d_{1}\left(A_{1}^{1+l-1}\left(A_{1}\left(x_{n+p_{1}-l}^{0}, x_{n+p_{1}-l}^{1}\right)\right), A_{1}^{1+l}\left(x_{n+p_{1}-l}^{1}\right)\right) \\
\sum_{l=1}^{p_{1}} d_{1}\left(A_{1}^{2+l-1}\left(A_{1}\left(x_{n+p_{1}-l}^{0}, x_{n+p_{1}-l}^{1}\right)\right), A_{1}^{2+l}\left(x_{n+p_{1}-l}^{1}\right)\right) \\
\vdots \\
\sum_{l=1}^{p_{1}} d_{1}\left(A_{1}^{p_{1}+l-2}\left(A_{1}\left(x_{n+p_{1}-l}^{0}, x_{n+p_{1}-l}^{1}\right)\right), A_{1}^{p_{1}+l-1}\left(x_{n+p_{1}-l}^{1}\right)\right)
\end{array}\right], \forall m \in \mathbb{N} .
$$

From the previous inequalities, the properties of A_{0} and the continuity of A_{1} follows that the sequences $\left(x_{m}\right)_{m \geq 0},\left(y_{m}\right)_{m \geq 0} \in\left(\mathbb{R}_{+}^{n_{1}}\right)^{p_{1}}$ satisfy the conditions of lemma 2.1, so $\lim _{m \rightarrow \infty} d_{1}\left(x_{p \cdot m}^{1}, x_{1}^{*}\right)=0$. From the continuity of A_{1} we deduce $\lim _{m \rightarrow \infty} x_{m}^{1}=x_{1}^{*}$.
If the theorem is proved for q we can prove it for $q+1$ by applying the case we have just proved (with $A_{0} \rightarrow\left(A_{0}, A_{1}, \ldots, A_{q}\right)$ and $A_{1} \rightarrow A_{q+1}$).

3. Application

We give an example where theorem 1.1 or theorem 1.2 can not be applied without changing the norms. We mention that due to the theorem of Bessaga (which asserts that if (X, d) is a metric space and $A: X \rightarrow X$ is a Picard operator, than we can construct a metric $\rho: X \times X \rightarrow \mathbb{R}$ such that $A:(X, \rho) \rightarrow(X, \rho)$ became a contraction) whenever we can guarantee that $\lim _{n \rightarrow \infty} A^{n}=0$ with $A \in M_{n}(\mathbb{R})$, we can change the norm to have $\|A\|<1$. By the other hand if $\lim _{n \rightarrow \infty} A^{n}=0$, we can choose $p \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{p} \in(0,1)$ to have $\left\|A^{p}\right\| \leq \sum_{j=0}^{p-1}\left\|A^{j}\right\|$, so we do not need to change the norm.
In what follows we denote

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left[\begin{array}{l}
\left|x_{1}-y_{1}\right| \\
\left|x_{2}-y_{2}\right|
\end{array}\right] \quad \forall x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}
$$

and

$$
\|A\|=\max \left\{\left|a_{11}\right|+\left|a_{12}\right|,\left|a_{21}\right|+\left|a_{22}\right|\right\} \text { if } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

For the matrix $A=\left[\begin{array}{cc}\frac{5}{6} & \frac{1}{4} \\ \frac{1}{16} & \frac{5}{6}\end{array}\right]$ we have $\|A\|=\frac{13}{12},\left\|A^{2}\right\|=\frac{649}{576},\left\|A^{3}\right\|=\frac{465}{407}$, $\left\|A^{4}\right\|=\frac{507}{445} \ldots,\left\|A^{9}\right\|=\frac{4211}{4210}>1$ and $\left\|A^{10}\right\|=\frac{1211}{1256}<1$ so we have

$$
\begin{equation*}
0.99 \cdot\left\|A^{10}\right\|+\sum_{j=1}^{9} 0.001 \cdot\left\|A^{j}\right\|=\frac{762}{947}<1 \tag{3.4}
\end{equation*}
$$

Due to this property we can apply 2.1 in studying the following system:

$$
\left\{\begin{array}{l}
x_{1}(\lambda)=\sin \left(\frac{5}{6} x_{1}(\lambda)+\frac{1}{4} x_{2}(\lambda)+\lambda\right) \tag{3.5}\\
x_{2}(\lambda)=\cos \left(\frac{1}{16} x_{1}(\lambda)+\frac{5}{6} x_{2}(\lambda)+\lambda^{2}\right)
\end{array}\right.
$$

We have $A_{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
A_{0}\left(x_{1}, x_{2}\right)=\left(\sin \left(\frac{5}{6} x_{1}(\lambda)+\frac{1}{4} x_{2}(\lambda)+\lambda\right), \cos \left(\frac{1}{16} x_{1}(\lambda)+\frac{5}{6} x_{2}(\lambda)+\lambda^{2}\right)\right)
$$

and $A_{1}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, A_{1}\left(x_{1}, x_{2}, u_{1}, u_{2}\right)=\left(v_{1}, v_{2}\right)$, where

$$
v_{1}=\frac{5}{6} \sin \left(\frac{5}{6} x_{1}(\lambda)+\frac{1}{4} x_{2}(\lambda)+\lambda\right) \cdot u_{1}+
$$

$$
\begin{aligned}
+ & \frac{1}{4} \sin \left(\frac{5}{6} x_{1}(\lambda)+\frac{1}{4} x_{2}(\lambda)+\lambda\right) \cdot u_{2}+1 \\
v_{2} & =\frac{1}{16} \cos \left(\frac{1}{16} x_{1}(\lambda)+\frac{5}{6} x_{2}(\lambda)+\lambda^{2}\right) \cdot u_{1}+ \\
+ & \frac{5}{6} \cos \left(\frac{1}{16} x_{1}(\lambda)+\frac{5}{6} x_{2}(\lambda)+\lambda^{2}\right) \cdot u_{2}+2 \lambda
\end{aligned}
$$

With these notations A_{0} is a Picard operator because

$$
d\left(A_{0}\left(x_{1}, x_{2}\right), A_{0}\left(y_{1}, y_{2}\right)\right) \leq A \cdot d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)
$$

and 3.4 (see [2]). By the other hand we have

$$
d\left(A_{1}\left(x_{1}, x_{2}, u_{1}, u_{2}\right), A_{1}\left(x_{1}, x_{2}, v_{1}, v_{2}\right)\right) \leq A \cdot d\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)
$$

This implies

$$
d\left(A_{1}^{(11)}\left(u_{1}, u_{2}\right), A_{1}^{(11)}\left(v_{1}, v_{2}\right)\right) \leq A^{j} \cdot d\left(A_{1}^{(11-j)}\left(u_{1}, u_{2}\right), A_{1}^{(11-j)}\left(v_{1}, v_{2}\right)\right)
$$

$j=\overline{1,10}$, where $A_{1}^{j+1}\left(u_{1}, u_{2}\right)=A_{1}^{(j)}\left(x_{1}, x_{2}, u_{1}, u_{2}\right) \forall u_{1}, u_{2} \in \mathbb{R}$ with fixed $x_{1}, x_{2} \in \mathbb{R}$. So we have

$$
\begin{gathered}
d\left(A_{1}^{(11)}\left(u_{1}, u_{2}\right), A_{1}^{(11)}\left(v_{1}, v_{2}\right)\right) \leq 0.99 \cdot A^{10} \cdot d\left(A_{1}^{(1)}\left(u_{1}, u_{2}\right), A_{1}^{(1)}\left(v_{1}, v_{2}\right)\right)+ \\
+0.001 \cdot \sum_{j=1}^{9} A^{j} \cdot\left(A_{1}^{(11-j)}\left(u_{1}, u_{2}\right), A_{1}^{(11-j)}\left(v_{1}, v_{2}\right)\right)
\end{gathered}
$$

This inequality with 3.4 and theorem 2.1 guarantee the convergence of the sequences

$$
\left(x_{1}^{(n+1)}, x_{2}^{(n+1)}\right)=A_{0}\left(x_{1}^{(n)}, x_{2}^{(n)}\right)
$$

and

$$
\left(u_{1}^{(n+1)}, u_{2}^{(n+1)}\right)=A_{1}\left(x_{1}^{(n)}, x_{2}^{(n)}, u_{1}^{(n)}, u_{2}^{(n)}\right)
$$

By choosing $x_{1}, x_{2} \in C^{1}\left[\lambda_{1}, \lambda_{2}\right], u_{1}=\frac{\partial x_{1}}{\partial \lambda}$ and $u_{2}=\frac{\partial x_{2}}{\partial \lambda}$, we have $u_{1}^{(n)}=$ $\frac{\partial x_{1}^{(n)}}{\partial \lambda}$ and $u_{2}^{(n)}=\frac{\partial x_{2}^{(n)}}{\partial \lambda}$, so from Weierstrass's theorem we obtain the continuous differentiability of the solution of 3.5 with respect to the parameter λ. Thus we have the following theorem:

Theorem 3.1. The system 3.5 has an unique solution in \mathbb{R}^{2} for every $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$ and the functions $\lambda \rightarrow x_{1}(\lambda)$ and $\lambda \rightarrow x_{2}(\lambda)$ are continuously differentiable with respect to λ.

References

[1] Sz. András, Subconvex sequences and the Banach contraction principle, Revue D'Analyse Numerique et de Theorie de l'Approximation, (to appear).
[2] Sz. András, A note on Perov's fixed point theorem, Fixed Point Theory, 4(2003), Nr. 1, 109-115.
[3] Sz. András, Fiber φ-contractions on generalized metric spaces and application, Mathematica (to appear).
[4] D. Bărbosu, M. Andronache, Asupra convergenţei şirurilor subconvexe, Gazeta Matematică, 102(1997), No. 1, 3-4.
[5] V. Berinde, Iterative approximation of fixed points, Efemeride, Baia Mare, 2002.
[6] A. Buică, Princpii de coincidenţă şi aplicaţii, Presa Universitară Clujeană, 2001.
[7] V. Istrăţescu, Fixed point theorems for convex contraction mappings and convex nonexpansive mappings, Libertas Mathematica, 1(1983), 151-165.
[8] B. G. Pachpatte, On a new inequality suggested by the study of certain epidemic models, Journal of Math. Anal. and Appl., 195(1995), 638-644.
[9] B. G. Pachpatte, Inequalities arising in the theory of differential and difference equations, Octogon Math. Mag., 6(1998), fas. 2, 36-42.
[10] L. Panaitopol, I. C. Drăghicescu, Polinoame şi ecuaţii algebrice, Editura Albatros, 1980.
[11] Gh. Pic, Algebră superioară, Editura didactică şi pedagogică, Bucureşti, 1966.
[12] I. A. Rus, An abstract point of view for some integral equations from applied mathemat$i c s$, Proc. Int. Conf. Nonlinear Systems, Timişoara, 1997, 256-270.
[13] I. A. Rus, Ecuații diferenţiale, ecuaţii integrale şi sisteme dinamice, Transilvania Press,Cluj-Napoca, 1996.
[14] I. A. Rus, Fiber Picard operators and applications, Mathematica, 41(1999), no. 1, 85-90.
[15] I. A. Rus, Fiber Picard operators on generalized metric spaces and application, Scripta Scientenarum Mathematicarum, 1(1999), 326-334.
[16] I. A. Rus, Generalized contractions, Cluj University Press, 2001.
[17] I. A. Rus, Generalized φ-contractions, Mathematica, 24(1982), 175-178.
[18] I. A. Rus, Picard operators and applications, Semin. Fixed Point Theory Cluj-Napoca, 1996.
[19] M. A. Şerban, Fiber φ-contractions, (to appear).
[20] M. A. Şerban, Teoria punctului fix pentru operatori definiţi pe produs cartezian, Presa Universitară Clujeană, 2002.
[21] S. M. Şoltuz, Upon the convergence of subconvex sequences, Octogon Mathematical Magazine, 6(1998), 120-121.
[22] M. R. Tasković, Monotonic mappings on ordered sets, a class of inequalities with finite differences and fixed points, Publ. Inst. Math. NS, 17(31), 1974, 163-172.

