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1. INTRODUCTION

In [15] the author proved the following theorem

Theorem 1.1. Let (X, d) be a generalized metric space with d(x,y) € R | and
(Y, p) a generalized complete metric space with p(x,y) € RY'. Let A: X xY —
X XY be a continuous operator. If we suppose that:

a) A(z,y) = (B(z),C(x,y)) forallz € X andy €Y;

b) the operator B : X — X is a weakly Picard operator;

c) there exist a matrix Q € My, (Ry) convergent to zero, such that the

operator C(x,-) : Y — Y is a Q-contraction for all v € X

then the operator A is a weakly Picard operator. Moreover, if B is Picard
operator, then the operator A is a Picard operator too.

In [20] the author proved the following theorem (Theorem 3.1.3):

Theorem 1.2. Let (X, dy) with k = 0,q and g > 1 be some metric spaces
and Ay, 1 Xo X X1 X ... x X, — X}, for k =0, q be some operators such that:
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a) the spaces (Xy,dy) are complete metric spaces for k =1, q;
b) the operator Ag is (weakly) Picard;
c) there exist ay, € (0, 1] such that the operators Ay (xg, ..., Tx—1,") : X —
Xy s an ag-contraction ¥ (xg, x1,....,xp_1) € Xo X X3 X ... X Xi and
k=1,q;
d) the operators Ay, are continuous with respect to (xg,x1,...,xp_1) for all
xp € Xy, and k=1,q;
then the operator B, = (Ao, A1,...,Ap—1,Ap) is (weakly) Picard opera-
tor.  Moreover if Ay is a Picard operator and Fa, =z, Fay(ag.)

* ok _ * ok * *
x7, ...,FAP(%JTV__@;?I’.) = x,, then Fp, = (x(, 27, ..., x5 _1, Ty).

We extend the definition of a convex contraction (see [7]) and [2]) to gener-
alized metric spaces:

Definition 1.1. Let (X,d) be a generalized metric space with d(z,y) € R™, V
x,y € X. The operator T : X — X is called a convex contraction if it satisfies
the condition

p—1
d(TW (1), TV (22)) < Y Ay - (T (21), TV (2)),
j=0
p—1
where p € N*, Aj € M,(Ry) for j =0,p—1 and > [|Aj||m < 1 (the symbol
j=0
|| ||m denotes an arbitrary matriz norm on M, (R.) subordinated to the vector
norm || - ||y : R" — R4 ).

In [1] we proved that the convex contractions over a complete metric space
are Picard operators, this result was proved by V. Istratescu in [7] by com-
pletely different methods. In [2] we proved by the same technique that the
metric can be replaced by a generalized metric (which has values in R"). In
this paper we prove that the contraction condition from theorem 1.1 and 1.2
can be replaced with their convex analogous.

2. MAIN RESULT

In this section we prove the following theorem

Theorem 2.1. Let (X, dy) withk = 0,q and ¢ > 1 be some generalized metric
spaces and Ay, : Xo X X1 X ... x X, — X, for k = 0,q be some continuous
operators such that:
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a) the spaces (Xg,dy) are generalized complete metric spaces, with dj, :
Xi — R, ng e N* fork=1,¢;
b) the operator Ay is (weakly) Picard;
c) there e:L‘ist pk € N* and AI(,J,C) € My, (Ry) for j = 0,pr — 1 with the
property Z HA Hmk <1 such that the operators
jf

(Tk)() = Ak(fﬂo, ceey Lh—1, ) . Xk — Xk

satisfy the following condition

pr—1
dk(T;f;pk)(ﬂfm), (242)) ZApk di(T, («Tkl) (])(l“m)),

A (xo,:El, ...,:Ek_l) € Xox X1 X...XxXp_1 and xp1,Tp0 € Xg, k= m,‘
d) the operators Ay, are continuous with respect to (xg, x1,...,xp—1) for all
2, € X and k=1,q;
then the operator B, = (Ao, A1,...,Aq—1,A4q) is (weakly) Picard opera-
tor.  Moreover if Ay is a Picard operator and Fa, = x, Fay @z,

=z, then Fp, = (2§, 77, ..., 7, _1,Ty).

*
15 -0 Fay (o, g—1>"q

II7“'71‘2717')

In order to prove this theorem we need the following lemma

Lemma 2.1. The matrzces Agpi € M,, (Ry) withi=1,p; and j = 0,p — 1

satisfy the inequality Z HA < 1 for i = 1,pp. If the sequence

1Pk | ‘mk
(Tm)m>0 C (R )p’“ satzsﬁes the inequality
Tm+1 < A “Tm + yﬂ’wvm € N7

where (Ym)m>o0 C (R}*)P*, lim y,, =0 and A € My, (M,, (R.)) such that

0 1 -1

AQ AL AReh

B A(O) A(l) A(Pk—l)
A= 2Pk ok T2k , then the sequence (Tp,)m>0 is conver-

0 1 ~1

Aime Appe o AR

gent to 0.

Proof of the lemma. Let || - [|,, : R}* — Ry be a vector norm on R’*

and || - ||m, @ Mn,(Ry) — R4 the subordinated matrix norm. We define
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I lnp = (REF)™ — Ry by
||z||np = max {||xz\|nk|x = (21,22, ..., Tp, ), Ti € RT“}

and [ - {|mm : Mpk(Mnk (Ry)) — Ry by

Pk

1A lmm = max Y [aijm.
1=1,pk ]:1
where A = [aij]lgngpk and ai; € Mnk(R—i-) for 1 < 4,5 < pr. With these
notations we have the following properties:

(1) [[Azlnp < [[Allmm - [[2]lnp, ¥ @ € (R}*)™ and A € My, (My, (R+));
(2) [A - Bllmm < |[Allmm - [|Bllmm, ¥ A, B € My, (M, (Ry));

(3) If A < B then ||A|jmm < ||B|mm.

From the given conditions we have ||A||;nm = max Z HA l|m, < 1, so the

Pk
i=1,pr j=0

sequence X,, = Z AJ is convergent to a matrix A. This implies that there
j=1
exists M € Ry such that || Z Al||m < M, ¥ p € N* and for every € > 0

there exists p(e) € N* such that |[AP|lmm < 375 ¥ p > p(€) where M is a fixed
constant. From the condition hm Ym = 0 we deduce that for every ¢ > 0
there exists m(e) € N* such that HymH < 557> ¥V m > m(e). By the other hand
from the given inequality we deduce

Ak * Tm4p—k < AkJrl * TmAp—k—1 + Ak *Ym+p—k—1, k= 0,]3 - L

Adding these inequalities term by term we obtain

p—1
Tm4p < AP -y, + Z AV Ym+p—1—j-
Jj=0

From this inequality we deduce
- € = - €
emespllop < 1A%l llmelbop + 57+ 221147 b < (1Al M+ 5 <
j=0

if p > p(e). So there exists n(e) = p(e) + m(e) € N* such that

Hannp < €, Vn > n(e)
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This implies that lim z, = 0.

n—oo

O

Proof of the theorem. First we prove the theorem for ¢ = 1 and then we pro-
ceed by induction on g. For ¢ = 1 let’s consider the sequences (29),>0 C Xo
and (z1)n>0 C X; defined by the relations

201 = Ag(a2),Yn >0 and x4 = Ai(ad,,),¥n > 0. (2.1)

The sequence (ac%)nzo is convergent to an element xf € X because the op-
erator Ap is a weakly Picard operator. Due to the main result from [2] the
operator Aj(xf,-) : X1 — X is a Picard operator, so there exists an unique
xt € X; such that Ay(z},27) = 2. We prove that the sequence (x}),>0 is
convergent to x).

(T, #1) = di (AL (T 15 gy 1), A1 (25, 27)) <

< Zdl T tn—gs Tnepn—))s A (@, 3)) + di (AT (), AT (2)) <

1 (1
<Zd1 AJ n+p1 —j> n+p1—j))’Aj1($n+p1—j))+

p1—1

Z A (), A (21)),

where
Al Xy = Xy, Al(r) = Ay(ah, A1 (@, o A, 2)..0)

J

for j =1,p; and AY(x) = z, Vo € X;. By the same technique we obtain

d(A]( ) A] xl <Zd A]H 1(A1( n+p1 T n+p1—l))aA{+l($}z+p1—l))+

=1

Tntpy

p1—1

+ZA”dMWmMWm»

for j = 1,p; — 1. By the other hand we can construct inductively the matrices
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AY) € My, ((R)+) such that
(S j+1 j+ = 0]

STAD (AT ), AT ) < ST AL - di (Al (xh), Al (D))
(=0 =0

and with this construction we have

p1—1

STIAD |y < 1,
j=0

Il
-
3
.

With these constructions we consider A = [Al(ﬁ] i=Tprj=0pi=T»

(dl (w;})nw 1’1‘)
di (A} (), 27)
Tm = dl(A%(m;l)m)7x>{) ,Vm € N.
di (AP (@), )
and

S -1 0 1 1(,1 ]

121 di (A7 (Ay (xn+p1_l, mn+p1_l)), AY (xn+pl_l))
P1
lzl di (A%—H_l (Al (xg—&-pl—l? x711+p1—l))7 A%—H (xylH-pl —l))
P1

Ym = dy (A%—H_l (Al (xg—&-pl—l? x711+p1—l))7 A%—H (‘TylH-pl —l))

=1

P1
> dy (AP (A (29
Li=1

), AP @l )

1
+p1—0 Tnpy—1 n+p1—l

1= 17p1
(2.2)

,Vm € N.
(2.3)

From the previous inequalities, the properties of Ag and the continuity of A

follows that the sequences (2 )m>0, (Ym)m>0 € (R')P! satisfy the conditions

of lemma 2.1, so lim dy(x,,,,,z}) = 0. From the continuity of A; we deduce
m—0o0

: 1 _
lim z,, = z7.
m—0o0

If the theorem is proved for ¢ we can prove it for ¢ + 1 by applying the case

we have just proved (with Ag — (Ap, A1, ..., 4y) and A1 — Ag41).

g
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3. APPLICATION

We give an example where theorem 1.1 or theorem 1.2 can not be applied
without changing the norms. We mention that due to the theorem of
Bessaga (which asserts that if (X, d) is a metric space and A : X — X is a
Picard operator, than we can construct a metric p : X x X — R such that
A (X,p) — (X, p) became a contraction) whenever we can guarantee that
lim A" =0 with A € M, (R), we can change the norm to have [|A|| < 1. By

n—oo

the other hand if lim A™ = 0, we can choose p € N and oy, ..., € (0,1) to

n—oo
p—1
have ||AP|| < > ||A?]], so we do not need to change the norm.

In what follows we denote

'1/‘ —
d((z1,22), (Y1,92)) = 1=l Vi, 22, y1,y2 €R
|22 — y2
and
: air a2
IA]l = max{|aii| + [a12], |az1| + [ag2|} if A =
a1 a2
5 1
For the matrix A = j g we have [|A|| = 13, [|A%|| = 2472, ||A3]| = f‘l%?,
6 6
|AY| =292 ||A%| = 3315 > 1 and ||A"]| = 125 < 1 so we have
9
, 762
0.99 - ||AY 0.001 - [|A|| = —= < 1. 3.4
149) + 30001 1) = 5 (34)
Due to this property we can apply 2.1 in studying the following system:
I ()\) = sin (%J)l()\) + i.ﬁg()\) + )\) (3.5)
22(A) = cos (f5z1(N) + 222(N) + A?)

We have 4 : R? — R?,

Ao(z1,22) = <sin <Zm1()\) - ixQ(A) + A) , COS <116‘7”1(A) T gmm n Az))

and A; : R? x R? — R2?, Ay (21,22, u1,u2) = (v1,v2), where

5 . 5 1
v] = 65'Ln <63L‘1(>\) + ng()\) + )\) - U1+
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1 5} 1
Zein 2 Z . 1
+4sm <6x1()\)+4$2()\)+)\> uz + 1,

1 1 5 \
vy = Ecos <16x1(/\) + 6:):2(/\) + A ) Sult

1
—i—%cos (16331()\) + gmg(/\) + )\2) U9 + 2.

With these notations Ay is a Picard operator because
d(Ao(x1,22), Ao(y1,92)) < A-d((x1,22), (Y1,92))
and 3.4 (see [2]). By the other hand we have
d(Ay(z1, 22, u1,u2), A1 (21, T2, 01,02)) < A-d((u1,uz2), (v1,v2)).
This implies
A(AT (ur, uz), AT (01, 02)) < A7 (A (i w2), AT (0, 02)),

7 = 1,10, where ATt U, Ug) = AW T1,To, U1, u2) Yui,ue € R with fixed
1 1

r1,T9 € R. So we have

d(AM (g, ug), A (01, 09)) < 0.99 - A d(AWM (g, up), AV (vy, 09))+

9
+0.001 - S 47 (AN (ur, ug), AT (w1, 09)).
j=1
This inequality with 3.4 and theorem 2.1 guarantee the convergence of the

sequences
(2" ") = Ag(af” 2"
and
(uf™ ), uf V) = Ay, 28wl uf).
By choosing x1,72 € C[A1, \o], us = % and up = %, we have ugn) =
ag—l/\n) and ugn) = az%\n) , so from Weierstrass’s theorem we obtain the continuous

differentiability of the solution of 3.5 with respect to the parameter A. Thus
we have the following theorem:

Theorem 3.1. The system 3.5 has an unique solution in R? for every
A € [A1, A2] and the functions A — z1(\) and A — x9(\) are continuously
differentiable with respect to A.
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