SOME MAPS FOR WHICH PERIODIC AND FIXED POINTS COINCIDE

B. E. RHOADES

Department of Mathematics
Indiana University
Bloomington, IN 47405-7106
U.S.A. e-mail: rhoades@indiana.edu

Abstract

We show that a pair of maps satisfying a certain contractive condition has a common periodic point if and only if it has a unique common fixed point. As corollaries we obtain the same conclusion for a number of contractive conditions, as well as a result of [1]. 2000 Mathematics Subject Classification: 47 H 10. Key Words and Phrases: fixed points, periodic points.

In 1977 the author [5] listed 125 contractive conditions for a single map and another 125 conditions for a pair of maps. For many of these either a fixed point theorem was established, a theorem was quoted from the literature, or examples were provided of maps which do not possess a fixed point. Additional such examples were obtained by Kinces and Totik [4] and Collaco [2], [3].

In 1990 [1] the authors characterized the existence of fixed points for some of the maps listed in [5] in terms of conditions on periodic points. In this paper it is shown that two maps satisfying definition (200) in [5] have a common periodic point if and only if they have a unique common fixed point. As one of the corollaries of this result we obtain Theorem 2 of [1]. For certain inequalities in this paper we use the numbering from [5].

Theorem. Let f and g be selfmaps of a metric space (X, d) satisfying

$$
\begin{array}{r}
d\left(f^{p} x, g^{q} y\right)<\left\{d(x, y), d\left(x, f^{p} x\right), d\left(y, g^{q} y\right),\right. \\
\left.d\left(x, g^{q} y\right), d\left(y, f^{p} x\right)\right\} \tag{200}
\end{array}
$$

for each $x, y \in X$ for which the right hand side of (200) is not zero, and where p, q are fixed positive integers. Then $u \in X$ is a common periodic point of f and g if and only if u is the unique common fixed point of f and g.

Proof. Obviously any common fixed point is a periodic point. To prove the converse, define $S:=f^{p}, T:=g^{q}$. Then (200) becomes

$$
\begin{gather*}
d(S x, T y)<\max \{d(x, y), d(x, S x), d(y, T y), \\
d(x, T y), d(y, S x)\} . \tag{1}
\end{gather*}
$$

Lemma 1. Let S and T satisfy (1). Then $p=S p$ iff $p=T p$.
Proof. Suppose that $p=S p$. If $p \neq T p$, then from (1) we have

$$
\begin{aligned}
d(p, T p) & =d(S p, T p) \\
& <\max \{0,0, d(p, T p), d(p, T p), 0\} \\
& =d(p, T p),
\end{aligned}
$$

a contradiction. Similarly, $p=T p$ implies that $p=S p$.
Lemma 2. Let f and g satisfy (200). Then, if f^{p} and g^{q} have a coommon fixed point, it is unique.

Proof. Suppose that $r=f^{p} r, s=g^{q} s$ and that $r \neq s$. Then, from (200),

$$
\begin{aligned}
d(r, s) & =d\left(f^{p} r, g^{q} s\right) \\
& <\max \{d(r, s), 0,0, d(r, s), d(s, r)\} \\
& =d(r, s),
\end{aligned}
$$

a contradiction.
Lemma 3. Let f and g satisfy (200). Then any fixed point of f^{p} is also a fixed point of g^{q}.

Proof. Suppose that $r=f^{p} r$. If $r \neq g^{q} r$, then, from (200),

$$
\begin{aligned}
d\left(r, g^{q} r\right) & =d\left(f^{p} r, g^{q} r\right) \\
& <\max \left\{0,0, d\left(r, g^{q} r\right), d\left(r, g^{q} r\right), 0\right\} \\
& =d\left(r, g^{q} r\right),
\end{aligned}
$$

a contradiction.

Returning to the proof of the theorem, let u be a periodic point of f; i.e., there exists a positive integer m such that $u=f^{n} u=g^{m} u$. Since $u=f^{m} u$ and $u=g^{m} u, u=f^{p m} u=S^{m} u$ and $u=g^{q m} u=T^{m} u$. From (1),

$$
\begin{aligned}
d(u, T u)= & d\left(S^{m} u, T^{m+1} u\right) \\
< & \max \left\{d\left(S^{m-1} u, T^{m} u\right), d\left(S^{m-1}, S^{m} u\right), d\left(T^{m} u, T^{m+1} u\right),\right. \\
& \left.\quad d\left(S^{m-1} u, T^{m+1} u\right), d\left(T^{m} u, S^{m} u\right)\right\} \\
= & \max \left\{d\left(S^{m-1} u, u\right), d(u, T u), d\left(S^{m-1} u, T u\right)\right\} \\
= & \max \left\{d\left(S^{m-1} u, u\right), d\left(S^{m-1} u, T u\right)\right\} .
\end{aligned}
$$

Suppose that $u \neq T u$.
Case I. $d(u, T u)<d\left(S^{m-1} u, u\right)$. Then we have

$$
\begin{aligned}
d(u, T u) & =d\left(S^{m} u, T^{m+1} u\right)<d\left(S^{m-1} u, T^{m} u\right) \\
& <\cdots<d(u, T u),
\end{aligned}
$$

a contradiction.
Case II. $d(u, T u)<d\left(S^{m-1} u, T u\right)$. Then we have

$$
\begin{aligned}
d(u, T u) & =d\left(S^{m} u, T u\right)<d\left(s^{m-1} u, T u\right) \\
& <\cdots<d(u, T u),
\end{aligned}
$$

a contradiction.
Therefore $u=T u$. From Lemma $1, u=S u$. We now have $u=f^{p} u=g^{q} u$. Thus $f u=f^{p}(f u)$. From Lemma 3, $f u=g^{q}(f u)$. Therefore $f u$ is also a common fixed point of f^{p} and g^{q}. But, from Lemma 2, the common fixed point is unique. Therefore $u=f u$.

A similar argument shows that $u=g u$.
Corollary 1. Let f and g satisfy

$$
\begin{gather*}
d\left(f^{p} x, g^{p} y\right)<\max \left\{d(x, y), d\left(x, f^{p} x\right), d\left(y, g^{p} y\right),\right. \\
\left.d\left(x, g^{p} y\right), d\left(y, f^{p} x\right)\right\} \tag{175}
\end{gather*}
$$

for all $x, y \in X$ for which the right hand side of (175) is not zero, p a fixed positive integer. Then u is a common periodic point of f and g if and only if u is the unique common fixed point of f and g.

In the Theorem set $q=p$.

Corollary 2. Let f satisfy

$$
\begin{gather*}
d\left(f^{p} x, f^{q} y\right)<\max \left\{d(x, y), d\left(x, f^{p} x\right), d\left(y, f^{q} y\right)\right. \\
\left.d\left(x, f^{q} y\right), d\left(y, f^{p} x\right)\right\} \tag{75}
\end{gather*}
$$

for all $x, y \in X$ for which the right hand side of (75) is not zero, p, q fixed positive integers. Then u is a common periodic point of f and g if and only if it is the unique common fixed point of f and g.

In the Theorem set $g=f$.
Corollary 3. ([1], Theorem 2) Let f satisfy

$$
\begin{gather*}
d\left(f^{p} x, f^{p} y\right)<\max \left\{d(x, y), d\left(x, f^{p} x\right), d\left(y, f^{p} y\right)\right. \\
\left.d\left(x, f^{p} y\right), d\left(y, f^{p} x\right)\right\} \tag{50}
\end{gather*}
$$

for all $x, \in X$ for which the right hand side of (50) is not zero, p a fixed positive integer. Then u is a periodic point of f if and only if it is the unique fixed point of f.

In Corollary 1 set $g=f$.
Since the definitions of this paper include a number of those in [5], one immediately obtains the fact that periodic and fixed points coincide for those contractive conditions also.

References

[1] Shis-Sen Chang and Qi-Cun Zhong, On Rhoades' open questions, Proc. Amer. Math. Soc., 109(1990), 269-274.
[2] Paula Oliveira Collaço and Andrey Sarychev, An example of a contractive mapping without a fixed point, Ann. Univ. Mariae Curie-Sklowdowska Sect. A, 51(1997), 47-54.
[3] Paula Collaço, Jaime Carvalho e Silva, A complete comparison of 25 contraction conditions, Nonlinear Analysis, 30(1997), 471-476.
[4] J. Kinces and V. Totik, Theorems and counter examples on contractive mappings, Mat. Balkanica, 4(1990), 69-90.
[5] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.

