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1. INTRODUCTION

May be one of the most interesting result in metric fixed point theory is
Kirk’s theorem [5]. The initial attempts to extend it to the nonlinear case were
not very successful. In the paper [4], Khamsi considers a notion of convexity
structure and discuss Sadowskii’s fixed point theorem in this setting. Then he
gives an interesting example of hyperconvex metric spaces.

In this paper we will present a general fixed point principle, which generalize
Khamsi’s fixed point theorem and we will give a general fixed point principle
for the case of non self-mappings. Our approach is based on the retraction

mapping principle.

2. KHAMSI’S FIXED POINT THEOREM

Definition 2.1. [4] Let (X, d) be a metric space and F a family of bounded
subsets of X. We will say:
(i) F' has the intersection property (IP) if and only if AN B € F provided
A€ Fand BeF.
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(ii) F has the chain intersection property (CIP) if and only if ﬂAi € F
el

provided (A4;);ecs is a decreasing chain of elements in F.

In both cases, we may talk about the F-closure of A € P,(X), which we will

denote cop(A). Indeed, if F' has IP , then we set

cop(A) = ﬂ B,

BEF(A)

where F(A) = {B € F'/A C B}.

Example 2.1. Let X be a normed linear space and ¥ C X a closed
bounded convex subset of X. Consider F' to be the family of all the closed
convex subsets of Y. Then F' satisfies IP.

Definition 2.2. [4] Let (X, d) be a metric space and F' a family of closed
bounded subsets of X. We will say that F' is ag- invariant if and only if for
any A € Py(X), cop(A) exists and ag(cop(A)) = ax(A).

Definition 2.3. [1] A metric space X is said to be hyperconvez if and
only if for any family (z;);es of points in X and any family(r;);er of positive
numbers such that d(x;,x;) < r; +1;, Vi,j € I, then we have :

i€l

Remark 2.1. [2] If X is a hyperconvex metric space and (H;) is a de-
creasing chain of bounded hyperconvex subsets of X, then ﬂ H; is not empty
and is hyperconvex. Therefore, the family H = {H C sz(X )/H # 0, H is
hyperconvex } satisfies CIP ( but fails to satisfy IP, i.e. the intersection of two
hyperconvex is not necessarily hyperconvex).

Proposition 2.1. (Khamsi) [4] Let X be a hyperconvex metric space and
H an associated family to X. Then H is ak- invariant.

Definition 2.4. [4] Let (X, d) be a metric space and F' a family of bounded
subsets of X. We will say that F' satisfies the property (iS) (for Schauder) if and
only if for any Y € F nonempty compact set and any f : Y — Y continuous
map, we have Fy # 0.

Proposition 2.2. (Khamsi) [3] Let X be a hyperconvex metric space and
H an associated family to X. Then the family H satisfies (.5).
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Theorem 2.2. (Khamsi) [4] Let (X,d) be a metric space and F a family
of bounded subsets of X. We assume that:
(i) F satisty IP ( or CIP)
(ii) F satisfy the property ()
(iii) F' is ag- invariant.
Then, for any nonempty Y € F and any continuous f : Y — Y, which is
condensing, we have Fy # 0.

Corollary 2.1. (Kirk) [5] Let X be a bounded hyperconvex metric space
and f: X — X a continuous condensing map. Then Fy # ().

3. MAIN RESULTS

The main result of the paper is the following:

Theorem 3.1. Let (X, S(X), M) be a fixed point structure, 6 : Z — R
and n : P(X) — P(X) a closure operator. Let S(X) C S1(X) C n(Z) C Z,
which satisfies the following condition: A € S1(X) and A € F,, N Zy implies
A e S(X).

Let Y € S1(X) and f € M(Y).

We suppose that:

(i) O(n(A)) = 6(4),YA € Z,

(i Ae Zxe X = AUu{z} € Z and 0(AU{z}) =0(A),
(iii) S1(X) satisfy the following intersection property:

A; € Sl(X),A/L'Jrl C A;,ie N=> ﬂ A; e Sl(X),

(iv) f is #- condensing mapping. o

Then:
(a) A € I(f) N S(X)
(b)Fy # 0.
(c) If Fy € Z, then §(Fy) = 0.

Proof. Let a € Y and A = {a} C Y. Then by a lemma in [10] there exists
Ap C Y, which satisfies the following conditions:
(c1)A C Ag
(c2)Ap € F,
(c3)Ao € I(f)
(ca)n(f(Ao) U 4) = Ao,
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Thus by (i), (i) and (cq) we have (n(f(Ag)UA)) = 6(f(Ag)UA) =0(f(Ag)U
{a}) = 0(f(Ag)) = 6(Ap). The mapping f is #- condensing, this implies
H(Ao) =0, thus Ay € Zy.
By (c2) we have Ag € F;, N Zy, this implies Ay € S(X) and by (c3) we have
Ap € I(f)NS(X)(a).
We consider f/a, : Ao — Ao, Ao C Y, f € M(Y), we have f/4, € M(Ap).
Since (X, S(X), M) is a fixed point structure, we have Fy # ((b).
If Fy € Z, from 0(Fy) = 0(f(Fy)) we have 0(Ff) = 0(c).

Proof of the theorem 2.2. Let S(X) :={Y € P,(X)/f € CY) =
Ff#@} and M =C.
Thus (X, S(X), M) is a fixed point structure. We consider the Kuratowski’s
mapping 6 = ai : Py(X) — Ry, and n : P(X) — P(X) a closure operator,
n(A) =cop(A),VA € P(X). Let S1(X) = F from hypothesis.
If Ae S(X)=F and A € F,,N Zg, we have A bounded, corp(A) = A and
ag(A) = 0, this implies A is compact. For any f € C(A), from(ii) we have
Fp #0, thus A € S(X).
Y € F = 51(X), from hypothesis f € M(Y). F is ag-invariant, for any
A€ Py(X),z € X we have AU {z} € Py(X) and ax(AU {z}) = ax(A).
S1(X) = F has the intersection property CIP, f is ax -condensing mapping,
and for any f € C(Y),Z CY,f(Z) C Z = f/z € C(Z). Then by the above
theorem, we have Fy # .

Further on we will present a general fixed point principle for the case of non-
self mappings. Our approach is based on the retraction mapping principle.
Then we will give as application, Khamsi’s fixed point theorem for the case of
non-self mappings.

Definition 3.1. Let X be a nonempty set and ¥ C X a nonempty subset
of X. A mapping p: X — Y is called a retraction of X onto Y, if p/y = 1y.

Definition 3.2. A mapping f : Y — X is called retractible onto Y by
p: X =Y if Fp=Fyy.

Theorem 3.2. Let (X,S(X), M) be a fixed point structure, § : Z — R4
and 7 : P(X) — P(X) a closure operator. Let S(X) C S1(X) C n(Z) C Z,
which satisfies the following condition:

A€ Si(X)and A € F,N Zy implies A € S(X).
Let Y € S1(X) and f: Y — X a mapping and p: X — Y a retraction.
We suppose that:
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i) 0(n(A)) =0(A),VA e Z,

(i) Ace Z,x e X = AU{z} € Z and (AU {z}) = 0(A),
(iii) S1(X) satisfy the following intersection property:
AleSl( ) A7;+1CAZ',Z'EN:> mAZ'E;Sl(X),

iEN
(iv) f is a strong 6- condensing mapping

(v) pis (0,1)- contraction mapping
(vi) f is retractible onto Y by p and po f € M(Y).
Then Fy # () and if Fy € Z, we have §(F) = 0.

Proof. Let a € Y and A= {a} CY. ThesetY € F,,and pof:Y =Y.
Then by a lemma in [10] there exists Ay C Y, which satisfies the following
conditions:

(Cl)A C Ao

(c2)Ap € F

(c3)Ag € I(po f)

(cn((po £)(Ag) U 4) = 4.

The mapping po f : Y — Y is strong 6-condensing, because from conditions
(v) and (iv) we have:

0((po f)(A)) < 0(f(A)) <0(A), VA e P(Y)NZ,0(A) #0

Thus by (i), (ii) and (es) we have 8(n((po £)(Ao) U A)) = 0((po £)(As) U A) =
0((0 0 f)(Ao) U{a}) =0((po f)(Ao)) = 0(Ag). The mapping po f:Y — Y is
strong 6- condensing, this implies 8(Ay) = 0, thus Ay € Zy.
By (c2) we have Ay € F,, N Zy, this implies Ag € S(X) and by (c3) we have
Ao € I(po f) N S(X).
We consider pof/4, : Ag — Ao, Ao CY,pof e M(Y), (X,S(X), M) is a fixed
point structure, thus F,or = Fy # 0. If Fy € Z, from §(Fy) = ((,oof)(Ff))
O(F¢), po f is f-condensing, we have §(Fy) = 0.

Theorem 3.3. Let (X,d) be a metric space and F a family of bounded
subsets of X. We assume that:
(i) F satisfy CIP
(ii) F satisfy the property (S)
(iii) F' is ak- invariant.

Then, for any nonempty Y € F and any continuous f : Y — X, which
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is a strong ag-condensing mapping, such that f is retractible onto Y by
p:X — Y, and pis a strong (ax, 1)-contraction mapping, we have Fy # ().
Proof. Let S(X):={Y € P,,(X)/f € C(Y) = Fy #0} and M = C.
Thus (X, S(X), M) is a fixed point structure. We consider the Kuratowski’s
measure of noncompactness § = ag : P(X) — Ry, and nn : P(X) — P(X)
a closure operator, n(A) = cor(A),VA € P(X). Let Si(X) = F from
hypothesis.
Y € F=25(X),pofeMY). From theorem 3.2 we have Fy # () and if
Fr e Z, thus aK(Ff) =0.
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