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1. Introduction

May be one of the most interesting result in metric fixed point theory is
Kirk’s theorem [5]. The initial attempts to extend it to the nonlinear case were
not very successful. In the paper [4], Khamsi considers a notion of convexity
structure and discuss Sadowskii’s fixed point theorem in this setting. Then he
gives an interesting example of hyperconvex metric spaces.
In this paper we will present a general fixed point principle, which generalize
Khamsi’s fixed point theorem and we will give a general fixed point principle
for the case of non self-mappings. Our approach is based on the retraction
mapping principle.

2. Khamsi’s fixed point theorem

Definition 2.1. [4] Let (X, d) be a metric space and F a family of bounded
subsets of X. We will say:
(i) F has the intersection property (IP) if and only if A ∩ B ∈ F provided
A ∈ F and B ∈ F .
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(ii) F has the chain intersection property (CIP) if and only if
⋂
i∈I

Ai ∈ F

provided (Ai)i∈I is a decreasing chain of elements in F .
In both cases, we may talk about the F -closure of A ∈ Pb(X), which we will
denote coF (A). Indeed, if F has IP , then we set

coF (A) =
⋂

B∈F (A)

B,

where F (A) = {B ∈ F/A ⊂ B}.
Example 2.1. Let X be a normed linear space and Y ⊂ X a closed

bounded convex subset of X. Consider F to be the family of all the closed
convex subsets of Y . Then F satisfies IP.

Definition 2.2. [4] Let (X, d) be a metric space and F a family of closed
bounded subsets of X. We will say that F is αK- invariant if and only if for
any A ∈ Pb(X), coF (A) exists and αK(coF (A)) = αK(A).

Definition 2.3. [1] A metric space X is said to be hyperconvex if and
only if for any family (xi)i∈I of points in X and any family(ri)i∈I of positive
numbers such that d(xi, xj) ≤ ri + rj , ∀i, j ∈ I, then we have :

⋂
i∈I

B(xi, ri) 6= ∅.

Remark 2.1. [2] If X is a hyperconvex metric space and (Hi) is a de-
creasing chain of bounded hyperconvex subsets of X, then

⋂
i

Hi is not empty

and is hyperconvex. Therefore, the family H = {H ⊂ Pb(X)/H 6= ∅,H is
hyperconvex } satisfies CIP ( but fails to satisfy IP, i.e. the intersection of two
hyperconvex is not necessarily hyperconvex).

Proposition 2.1. (Khamsi) [4] Let X be a hyperconvex metric space and
H an associated family to X. Then H is αK- invariant.

Definition 2.4. [4] Let (X, d) be a metric space and F a family of bounded
subsets of X. We will say that F satisfies the property (S) (for Schauder) if and
only if for any Y ∈ F nonempty compact set and any f : Y → Y continuous
map, we have Ff 6= ∅.

Proposition 2.2. (Khamsi) [3] Let X be a hyperconvex metric space and
H an associated family to X. Then the family H satisfies (S).
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Theorem 2.2. (Khamsi) [4] Let (X, d) be a metric space and F a family
of bounded subsets of X. We assume that:
(i) F satisfy IP ( or CIP)
(ii) F satisfy the property (S)
(iii) F is αK- invariant.
Then, for any nonempty Y ∈ F and any continuous f : Y → Y , which is
condensing, we have Ff 6= ∅.

Corollary 2.1. (Kirk) [5] Let X be a bounded hyperconvex metric space
and f : X → X a continuous condensing map. Then Ff 6= ∅.

3. Main results

The main result of the paper is the following:
Theorem 3.1. Let (X, S(X),M) be a fixed point structure, θ : Z → R+

and η : P (X) → P (X) a closure operator. Let S(X) ⊂ S1(X) ⊂ η(Z) ⊂ Z,
which satisfies the following condition: A ∈ S1(X) and A ∈ Fη ∩ Zθ implies
A ∈ S(X).
Let Y ∈ S1(X) and f ∈ M(Y ).
We suppose that:
(i) θ(η(A)) = θ(A),∀A ∈ Z,

(ii) A ∈ Z, x ∈ X ⇒ A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A),
(iii) S1(X) satisfy the following intersection property:
Ai ∈ S1(X), Ai+1 ⊂ Ai, i ∈ N ⇒

⋂
i∈N

Ai ∈ S1(X),

(iv) f is θ- condensing mapping.

Then:
(a) ∃A ∈ I(f) ∩ S(X)
(b)Ff 6= ∅.
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Proof. Let a ∈ Y and A = {a} ⊂ Y . Then by a lemma in [10] there exists
A0 ⊂ Y , which satisfies the following conditions:
(c1)A ⊂ A0

(c2)A0 ∈ Fη

(c3)A0 ∈ I(f)
(c4)η(f(A0) ∪A) = A0.



244 EDITH MIKLÓS

Thus by (i), (ii) and (c4) we have θ(η(f(A0)∪A)) = θ(f(A0)∪A) = θ(f(A0)∪
{a}) = θ(f(A0)) = θ(A0). The mapping f is θ- condensing, this implies
θ(A0) = 0, thus A0 ∈ Zθ.
By (c2) we have A0 ∈ Fη ∩ Zθ, this implies A0 ∈ S(X) and by (c3) we have
A0 ∈ I(f) ∩ S(X)(a).
We consider f/A0 : A0 → A0, A0 ⊂ Y, f ∈ M(Y ), we have f/A0 ∈ M(A0).
Since (X, S(X),M) is a fixed point structure, we have Ff 6= ∅(b).
If Ff ∈ Z, from θ(Ff ) = θ(f(Ff )) we have θ(Ff ) = 0(c).

Proof of the theorem 2.2. Let S(X) := {Y ∈ Pcp(X)/f ∈ C(Y ) ⇒
Ff 6= ∅} and M = C.
Thus (X, S(X),M) is a fixed point structure. We consider the Kuratowski’s
mapping θ = αK : Pb(X) → R+, and η : P (X) → P (X) a closure operator,
η(A) = coF (A),∀A ∈ P (X). Let S1(X) = F from hypothesis.
If A ∈ S1(X) = F and A ∈ Fη ∩ Zθ, we have A bounded, coF (A) = A and
αK(A) = 0, this implies A is compact. For any f ∈ C(A), from(ii) we have
Ff 6= ∅, thus A ∈ S(X).
Y ∈ F = S1(X), from hypothesis f ∈ M(Y ). F is αK-invariant, for any
A ∈ Pb(X), x ∈ X we have A ∪ {x} ∈ Pb(X) and αK(A ∪ {x}) = αK(A).
S1(X) = F has the intersection property CIP, f is αK -condensing mapping,
and for any f ∈ C(Y ), Z ⊂ Y, f(Z) ⊂ Z ⇒ f/Z ∈ C(Z). Then by the above
theorem, we have Ff 6= ∅.

Further on we will present a general fixed point principle for the case of non-
self mappings. Our approach is based on the retraction mapping principle.
Then we will give as application, Khamsi’s fixed point theorem for the case of
non-self mappings.

Definition 3.1. Let X be a nonempty set and Y ⊂ X a nonempty subset
of X. A mapping ρ : X → Y is called a retraction of X onto Y , if ρ/Y = 1Y .

Definition 3.2. A mapping f : Y → X is called retractible onto Y by
ρ : X → Y , if Ff = Fρ◦f .

Theorem 3.2. Let (X, S(X),M) be a fixed point structure, θ : Z → R+

and η : P (X) → P (X) a closure operator. Let S(X) ⊂ S1(X) ⊂ η(Z) ⊂ Z,
which satisfies the following condition:
A ∈ S1(X) and A ∈ Fη ∩ Zθ implies A ∈ S(X).
Let Y ∈ S1(X) and f : Y → X a mapping and ρ : X → Y a retraction.
We suppose that:
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(i) θ(η(A)) = θ(A),∀A ∈ Z,

(ii) A ∈ Z, x ∈ X ⇒ A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A),
(iii) S1(X) satisfy the following intersection property:
Ai ∈ S1(X), Ai+1 ⊂ Ai, i ∈ N ⇒

⋂
i∈N

Ai ∈ S1(X),

(iv) f is a strong θ- condensing mapping
(v) ρ is (θ, 1)- contraction mapping
(vi) f is retractible onto Y by ρ and ρ ◦ f ∈ M(Y ).
Then Ff 6= ∅ and if Ff ∈ Z, we have θ(Ff ) = 0.

Proof. Let a ∈ Y and A = {a} ⊂ Y . The set Y ∈ Fη and ρ ◦ f : Y → Y .
Then by a lemma in [10] there exists A0 ⊂ Y , which satisfies the following
conditions:
(c1)A ⊂ A0

(c2)A0 ∈ Fη

(c3)A0 ∈ I(ρ ◦ f)
(c4)η((ρ ◦ f)(A0) ∪A) = A0.
The mapping ρ ◦ f : Y → Y is strong θ-condensing, because from conditions
(v) and (iv) we have:

θ((ρ ◦ f)(A)) ≤ θ(f(A)) < θ(A),∀A ∈ P (Y ) ∩ Z, θ(A) 6= 0

Thus by (i), (ii) and (c4) we have θ(η((ρ ◦ f)(A0)∪A)) = θ((ρ ◦ f)(A0)∪A) =
θ((θ ◦ f)(A0) ∪ {a}) = θ((ρ ◦ f)(A0)) = θ(A0). The mapping ρ ◦ f : Y → Y is
strong θ- condensing, this implies θ(A0) = 0, thus A0 ∈ Zθ.
By (c2) we have A0 ∈ Fη ∩ Zθ, this implies A0 ∈ S(X) and by (c3) we have
A0 ∈ I(ρ ◦ f) ∩ S(X).
We consider ρ◦f/A0 : A0 → A0, A0 ⊂ Y, ρ◦f ∈ M(Y ), (X, S(X),M) is a fixed
point structure, thus Fρ◦f = Ff 6= ∅. If Ff ∈ Z, from θ(Ff ) = θ((ρ◦f)(Ff )) <

θ(Ff ), ρ ◦ f is θ-condensing, we have θ(Ff ) = 0.
Theorem 3.3. Let (X, d) be a metric space and F a family of bounded

subsets of X. We assume that:
(i) F satisfy CIP
(ii) F satisfy the property (S)
(iii) F is αK- invariant.
Then, for any nonempty Y ∈ F and any continuous f : Y → X, which
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is a strong αK-condensing mapping, such that f is retractible onto Y by
ρ : X → Y , and ρ is a strong (αK , 1)-contraction mapping, we have Ff 6= ∅.

Proof. Let S(X) := {Y ∈ Pcp(X)/f ∈ C(Y ) ⇒ Ff 6= ∅} and M = C.
Thus (X, S(X),M) is a fixed point structure. We consider the Kuratowski’s
measure of noncompactness θ = αK : Pb(X) → R+, and η : P (X) → P (X)
a closure operator, η(A) = coF (A),∀A ∈ P (X). Let S1(X) = F from
hypothesis.
Y ∈ F = S1(X), ρ ◦ f ∈ M(Y ). From theorem 3.2 we have Ff 6= ∅ and if
Ff ∈ Z, thus αK(Ff ) = 0.
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