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1. Introduction

The Complementarity Theory is a relatively new chapter in Applied Mathe-
matics and its main goal is the study of complementarity problems. Generally
many complementarity problems are related to the study of equilibrium as it
is defined in Physics, in Techniques and even in Economics.

Obviously, Complementarity Theory has many applications in Optimiza-
tion, Economics, Engineering, Mechanics, Game Theory etc., [6], [8], [9], [15].

The classical Nonlinear Complementarity Problem is defined by a mapping
and a closed convex cone, in the Euclidean space (Rn, 〈·, ·〉) or in a Hilbert
space (H, 〈·, ·〉). It is possible to consider a complementarity problem with
respect to an unbounded closed set, however, because of the generality of the
set used in the definition, the study of the existence of solutions to this general
complementarity problem is a hard problem. In the Euclidean space a such
general complementarity problem was considered recently in our paper [18].
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In this paper we will consider the Nonlinear Complementarity Problem with
respect to a closed cone, not necessarily convex, in an arbitrary Hilbert space.
A similar problem was considered in the Euclidean space [18] and an existence
theorem was proved using the notion of Exceptional Family of Elements and
an Alternative Theorem. The Alternative Theorem used in [18] is valid in an
arbitrary Hilbert space but for completely continuous fields. The solvability
of complementarity problem has been studied in many papers by using the
notion of Exceptional Family of Elements introduced in [14] and the notion of
completely continuous fields. (See [2], [3], [9]-[20], [23], [25]-[32]).

We will study the solvability of the Nonlinear Complementarity Problem,
with respect to a closed cone not necessarily convex, in a Hilbert space, by
two methods. The first method is based on the notion of Exceptional Family
of Elements and a new Alternative Theorem deduced from a result proved re-
cently in [4]. The second method is based on some results proved in Proximal
Analysis [5]. Note that in the new Alternative Theorem used in this paper
the operator is not completely continuous field. This fact is essential for the
proof of our existence theorem. By this paper, we hope to open a new research
direction in Complementarity Theory. This direction is the study of comple-
mentarity problems for nonconvex sets. The complementarity problems with
respect to nonconvex sets can have applications to the study of new practical
problems and to the study of sensitivity of classical complementarity problems.

2. Preliminaries

We will denote in this paper by (H, 〈·, ·〉) an arbitrary real Hilbert space.
We recall that, a closed convex cone in H is a closed subset K ⊂ H such that
the following properties are satisfied:
(k1) K + K ⊆ K,
(k2) λK ⊆ K for all λ ∈ R+.

If we have also that
(k3) K ∩ (−K) = {0}
then in this case we say that K is a closed, pointed convex cone.

Given a closed convex cone, K ⊂ H, the dual of K is, by definition

K∗ = {y ∈ H| 〈x, y〉 ≥ 0, for all x ∈ K}.
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Obviously, K∗ is a closed convex cone in H. More general, if D ⊂ H is an
arbitrary, closed, non-empty subset in H, the dual of D is also the set

D∗ = {y ∈ H| 〈x, y〉 ≥ 0, for all x ∈ D}.

It is easy to prove that D∗ is a closed convex cone in H. We say that a
closed pointed convex cone K ⊂ H is well-based if and only if there exists a
convex set B such that 0 6∈ B and K =

⋃
λ≥0

λB.

It is known [9] that a pointed closed convex cone K is well-based if and only
if K has a bounded base, that is there exists ϕ ∈ K∗ with the property that
ϕ(x) > 0 for any x ∈ K\{0}, the set B∗ = {x ∈ K| ϕ(x) = 1} is bounded and
it has the property that for any x ∈ K, x 6= 0, there exist a unique λ > 0 and
a unique b ∈ B∗ such that x = λb (see details in [9]). In this case, we say that
B∗ is a bounded base for K. If B∗ is not necessarily bounded we say that K
has a base.

For this paper the following result is useful. A closed, pointed convex cone
K ⊂ H is locally compact, if and only if, K has a compact base. (Klee’s
Theorem [9]).

We say that a set B ⊂ H is star-shaped with respect to a convex set A ⊂ B

if and only if, x ∈ B whenever λx + (1 − λ)y ∈ B for some y ∈ A and any
λ ∈ [0, 1].

Let ε > 0, be a real number, eventually very small. We say that a non-
empty subset B ⊂ H is ε-convex, if and only if whenever [x, y[⊂ conv(B) \B,
we have that ‖y− x‖ < ε. In this definition [x, y[= {λy + (1−λ)x| λ ∈ [0, 1[}.
Let D ⊂ H be a non-empty subset. We denote by K(D) the smallest closed
convex cone such that D ⊆ K(D). We say that a non-empty subset D ⊂ H is
locally compact pointed conical set if the following properties are satisfied:
(c1) for all x ∈ D and all λ ∈ R+, we have λx ∈ D,
(c2) K(D) ∩ (−K(D)) = {0},
(c3) K(D) is a locally compact convex cone.

From some practical problems the following examples are interesting.
(1) D =

⋃
i∈I

Ki, where for every i ∈ I, Ki is pointed convex cone, or Ki is a

polyhedral cone not necessarily convex.
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(2) D ∩ B is a set, star-shaped with respect to a convex set A ⊂ D ∩ B,
where B is base of K(D).
(3) D ∩B is an ε-convex set, with ε > 0 very small, where B is again a base
of K(D).

We recall also that a mapping T : H → H is a completely continuous
mapping if T is continuous and for any bounded set A ⊂ H, we have that
T (A) is relatively compact. A mapping f : H → H is said to be a completely
continuous field if f has a representation of the form f(x) = x−T (x), for any
x ∈ H, where T is a completely continuous mapping.

The following notion is essential for this paper.
We call a mapping f : H → H regular if for each sequence {xn}n∈N ⊂ H

weakly convergent to an element x∗ ∈ H and such that the sequence
{f(xn)}n∈N is convergent in norm to an element y∗ ∈ H the equation
f(x∗) = y∗ holds. This notion was used systematically by A. Carbone and
P. P. Zabreiko in [4].

3. Complementarity problems

Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H, a closed pointed cone and f :
H → H a mapping. The Nonlinear Complementarity Problem defined by f

and K is:

NCP (f,K) :

{
find x∗ ∈ K such that
f(x∗) ∈ K∗ and 〈x∗, f(x∗)〉 = 0.

The NCP (f,K) has been studied by many authors and it has many appli-
cations. In this sense, the reader is referred to [6], [8], [9], among others.

Consider an arbitrary non-empty subset A ⊂ H and a mapping f : H → H.
The nonlinear complementarity problem defined by f and A is:

NCP (f,A) :

{
find x∗ ∈ A such that
f(x∗) ∈ A∗ and 〈x∗, f(x∗)〉 = 0.

In our paper [18] we considered this general complementarity problem in Rn,
but under the name of relational complementarity problem. Obviously, it is
not easy to find existence theorems for this general complementarity problem.
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This paper focuses on NCP (f,A), but in the particular case when A = D,
where D is a conical set in an arbitrary Hilbert space. We note that in [18]
we considered this problem, but only in the Euclidean space (Rn, 〈·, ·〉).

4. Exceptional family of elements and the solvability of

complementarity problem

Recently, in several of our papers [2], [3], [9]-[17] we studied the solvability
of complementarity problems using a new topological method, based on the
notion of Exceptional Family of Elements, denoted also by EFE. This notion
was introduced in 1997, in our paper [14], by using the topological degree.
Until now this notion has been used also in other papers such as [4], [7], [18],
[19], [20], [23] and [25]-[32] among others.

We note that in several of our recent papers on complementarity problems or
on variational inequalities we introduced the notion of EFE by Leray-Schauder
type alternatives. It is known that the classical Leray-Schauder Alternative
proved in 1934 in [22] is one of the most important theorem in Nonlinear
Analysis.

Now we recall the notion of EFE introduced in [14].
Let (H, 〈·, ·〉) be again a Hilbert space, K ⊂ H, a closed pointed convex

cone and f : H → H a mapping.
Definition 1. [14] We say that a family of element {xr}r>0 ⊂ K, is an

EFE for f , with respect to K, if and only is, for every real number r > 0 there
exists a real number µr > 0, such that the vector ur = f(xr) + µrxr satisfies
the following conditions:
(1) ur ∈ K∗,
(2) 〈xr, ur〉 = 0,
(3) ‖xr‖ → +∞ as r → +∞.

In [13], by using the classical Leray-Schauder Alternative, we proved the
following result.

Theorem 1. [13] If f : H → H is a completely continuous field, and
K ⊂ H is a closed convex cone, then there exists either a solution to the
problem NCP (f,K), or an EFE for f with respect to K. Consequently, if
f is a completely continuous field without EFE then the problem NCP (f,K)
has a solution.
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The proof of the main result in (Theorem 3 of [18]) is strongly based on
Theorem 1.

We note that, for the extension to the infinite dimensional case of Theorem
3 proved in [18], the proof can not be based on Theorem 1. Therefore for the
main result of this paper we need to replace Theorem 1 by a similar alternative
based on the notion of regular mapping. To obtain this useful alternative we
use the main result proved recently by A. Carbone and P. P. Zabreico in [4].
This result is the following and its proof is based on the topological degree
defined by Skrypnik in [24].

Theorem 2. [4] Let f : K → H be a regular, completely continuous
mapping and 0 < r < +∞.

Then either the NCP ((1− λ)I + λf,K) has a solution in the set Sr(K) =
{x ∈ K| ‖x‖ = r} for some λ ∈]0, 1[, or the NCP (f,K) has a solution in the
set Br(K) = {x ∈ K| ‖x‖ ≤ r}.

From Theorem 2, we deduce the following alternative:
Theorem 3. Let f : K → H be a regular, completely continuous mapping.

Then either the NCP (f,K) has a solution or f has an EFE, in the sense of
Definition 1, with respect to K.

Proof. Indeed, if the NCP (f,K) has a solution, then the proof is finished.
Suppose that the NCP (f,K) has no solution. In this case for any r > 0
there exists λr ∈]0, 1[ and xr ∈ Sr(K) which is a solution of the problem
NCP ((1− λ)I + λf,K). Then we have xr ∈ K, ‖xr‖ = r and{

(1− λr)xr + λrf(xr) ∈ K∗ and
〈xr, (1− λr)xr + λrf(xr)〉 = 0.

(1)

Dividing both relations in (1) by λr, we obtain that {xr}r>0 is an EFE for
f , in the sense of Definition 1, with respect to K. �

5. An existence theorem for complementarity problems with

respect to nonconvex cones

Let (H, 〈·, ·〉) be a Hilbert space. Suppose given a non-empty, locally com-
pact closed and pointed conical set. The set D is supposed to be a nonconvex
set. We say that the set R(D;K) = K(D) \ D is the residual set of D with
respect to K(D). Obviously, 0 6∈ R(D;K) and R(D;K) is empty if D is closed
pointed convex cone.
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We recall that f : H → H is called bounded if for any bounded set B ⊂ H,
f(B) is bounded.

A main result of this paper is the following theorem.
Theorem 4. Let D ⊂ H be a non-empty, locally compact, closed and

pointed conical set. D is supposed to be nonconvex. Let f : H → H be a
continuous bounded mapping. If there exists ρ > 0 such that the following
assumptions are satisfied:
(1) for every x ∈ K(D) with ‖x‖ = ρ, there exists y ∈ K(D) such that
‖y‖ < ρ and 〈f(x), x− y〉 ≥ 0,
(2) for every x ∈ Rρ(D;K) = {z ∈ R(D;K)| ‖z‖ ≤ ρ}, there exists y ∈
K(D) with ‖y‖ < ‖x‖ such that 〈f(x), x− y〉 ≥ 0,
then the NCP (f,D) has a solution x∗ such that ‖x∗‖ ≤ ρ.

Proof. Let ε > 0 be a real number. Consider the mapping

fε(x) := f(x) + εx, for any x ∈ H.

The mapping fε satisfies the following properties:
(i) fε is a continuous and bounded mapping,
(ii) for every x ∈ K(D), with ‖x‖ = ρ, there exists y ∈ K(D), such that
‖y‖ < ρ and 〈fε(x), x− y〉 > 0,
(iii) for every x ∈ Rρ(D;K), there exists y ∈ K(D), with ‖y‖ < ‖x‖ such that
〈fε(x), x− y〉 > 0.

Indeed, let x ∈ K(D), with ‖x‖ = ρ, (resp. x ∈ Rρ(D;K)), then by
assumption (1) (resp. (2)), there exists y ∈ K(D) such that ‖y‖ < ρ (resp.
‖y‖ < ‖x‖) and 〈f(x), x− y〉 ≥ 0. For such x and y we have

〈fε(x), x− y〉 = 〈f(x) + εx, x− y〉 = 〈f(x), x− y〉+ ε[‖x2‖ − 〈x, y〉]

≥ ε[‖x‖2 − ‖x‖‖y‖] = ε‖x‖[‖x‖ − ‖y‖] > 0.

Therefore (ii) and (iii) are satisfied. Obviously (i) is also satisfied. For
each x ∈ K(D), with ‖x‖ > ρ we denote by Tρ(x) the radial projection onto
S+

ρ = {x ∈ K(D)| ‖x‖ = ρ}, i.e., Tρ(x) =
ρx

‖x‖
. Now, we consider the mapping

gε : K(D) → H defined by

gε(x) :=

{
fε(x), if ‖x‖ ≤ ρ

fε(Tρ(x)) + ‖x− Tρ(x)‖x, if ‖x‖ > ρ.
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For any x ∈ K(D) with ‖x‖ > ρ, there exists λx > 0 such that x = λxTρ(x).

(We note that λx =
‖x‖
ρ

). Since fε satisfies (ii), we have that for Tρ(x) there

exists ux
ρ ∈ K(D) with ‖ux

ρ‖ < ρ such that

〈Tρ(x)− ux
ρ , fε(Tρ(x))〉 > 0. (2)

Multiplying (2) by λx we obtain

〈x− λxux
ρ , gε(x)〉 > 0. (3)

If for a give x ∈ K(D) with ‖x‖ > ρ, we let y = λxux
ρ , we obtain that the

mapping gε satisfies the following property:
(iv) for every x ∈ K(D) with ‖x‖ > ρ, there exists y ∈ K(D) with ‖y‖ < ‖x‖
such that 〈x− y, gε(x)〉 > 0.

The mapping gε is completely continuous because it is continuous and for
any bounded set B ⊂ K(D), we have that gε(B) is relatively compact since
K(D) being locally compact infers B is relatively compact. The mapping gε

is also a regular mapping. Indeed, if {xn}n∈N is a sequence in K(D), weakly
convergent to an element x∗ ∈ K(D), and gε(xn) is convergent in norm to an
element v∗, then we must have gε(xn) = v∗; the locally compactness of K(D)
and the Eberlein-Šmulian Theorem, imply that {xn}n∈N is also convergent in
norm to the same element x∗.

(We used also the following classical result: ”if every sub-sequence of a
sequence {xn}n∈N has a sub-sequence which converges to x∗, then {xn}n∈N is
convergent also to x∗.”)

Now, we show that for any ε > 0, the mapping gε is without EFE with
respect to K(D). Indeed, if we suppose that gε has an EFE, {xr}r>0 ⊂ K(D),
then we have 

ur = µrxr + gε(xr) ∈ (K(D))∗, for all r > 0,

〈xr, ur〉 = 0, for all r > 0 and
‖xr‖ → +∞ as r → +∞.

Take r > 0 such that ‖xr‖ > ρ. Since gε satisfies (iv), there exists yr ∈ K(D)
such that ‖yr‖ < ‖xr‖ and 〈xr − yr, gε(xr)〉 > 0. We have

0 < 〈xr − yr, gε(xr)〉 = 〈xr − yr, ur − µrxr〉

= 〈xr − yr, ur〉 − µr‖xr‖2 + µr〈yr, xr〉 ≤ −µr‖xr‖[‖xr‖ − ‖yr‖] < 0
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which is a contradiction.
Applying Theorem 3, we obtain that for any ε > 0 the classical

NCP (gε,K(D)) has a solution x∗ε.
Because the mapping gε satisfies condition (iv), it is impossible to have

‖x∗ε‖ > ρ. Hence, we must have ‖x∗ε‖ ≤ ρ which implies that gε(x∗ε) = fε(x∗ε)
and we obtain the following result. For any ε > 0, the NCP (gε,K(D)) has
a solution x∗ε such that ‖x∗ε‖ ≤ ρ. Considering the fact that fε satisfies (iii)
we have that x∗ε ∈ {x ∈ D| ‖x‖ ≤ ρ} = Dρ. If for any n = 1, 2, . . . , we take

εn =
1
n

, we obtain a sequence
{

x∗1
n

}∞
n=1

such that x∗1
n

∈ Dρ, and for every

n ∈ N , x∗1
n

is a solution to the NCP (fεn ,K(D)). Because D is a closed locally

compact and pointed cone, Dρ is compact and hence the sequence
{

x∗1
n

}∞
n=1

has a convergent sub-sequence
{

x∗1
nk

}∞
k=1

. As a consequence, x∗ = lim
k→∞

x∗1
nk

is

an element of D. Considering the definition of fε and the fact (K(D))∗ ⊂ D∗

we obtain that x∗ is a solution to the NCP (f,D) and ‖x∗‖ ≤ ρ. The proof is
complete.

6. Proximal analysis and the ε-complementarity problem

with respect to nonconvex cones

In this section we consider some recent results obtained in Proximal Analysis
and we apply these results to the study of complementarity problems with
respect to nonconvex cones. On the subject of Proximal Analysis the reader
is referred to the recent book [5].

Let (H, 〈·, ·〉) be a Hilbert space and let D ⊂ H be a non-empty subset.
Let x ∈ H such that x 6∈ D. Suppose that there exists a point d ∈ D whose
distance to x is minimal, i.e., ‖x− d‖ ≤ ‖x− y‖, for any y ∈ D.

In this case d is called a projection of x onto D. The set of all such closest
points is denoted by ProjD(x). It is known that there exists sets D such
D is nonconvex and ProjD(x) is a singleton [21]. If for any x ∈ H, the set
ProdD(x) is a singleton, we denote this element by PD(x). Additionally, if
PD(x) satisfies some continuity conditions, then the set D is a convex set. (See
the results proved in [1]).

Let D ⊂ H be closed, pointed and locally compact cone (not necessarily
convex), that is D is a cone and there exists a neighborhood U of zero in H
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such that U ∩D is a compact set. In this case for any x ∈ H, x 6∈ D, the set
ProjD(x) is a non-empty set. Indeed, let 0 ≤ α = inf{‖x − y‖| y ∈ D}, and
let {yn}n∈N be a sequence in D such that lim

n→∞
‖x − yn‖ = α. There exists

M > 0 such that for any n ∈ N ,

‖yn‖ = ‖yn − x + x‖ ≤ ‖x‖+ ‖x− yn‖ ≤ M.

Because D is a locally compact cone, the sequence {yn}n∈N has a subse-
quence {ynk

}k∈N convergent to an element d ∈ D and we have ‖x− d‖ = α ≤
‖x− y‖, for any y ∈ D and, consequently d ∈ ProdD(x). The following result
is useful for the main result of this section.

Theorem 5. Let D be a non-empty subset of H and let x ∈ H, d ∈ D.
The following are equivalent:
(1) d ∈ ProjD(x),

(2) 〈x− d, d′ − d〉 ≤ 1
2
‖d′ − d‖, for all d′ ∈ D.

Proof. This theorem is a part of Proposition 1.3 proved in [5]. �

Let D ⊂ H be a closed, pointed and locally compact cone (not necessarily
convex) and f : H → H a mapping. Given ε > 0, the ε-Complementarity
Problem defined by f and D is the following:

ε− CP (f,D) :

{
find x∗ ∈ D such that
f(x∗) ∈ D∗ and |〈f(x∗), x∗〉| ≤ ε.

We say that an element x∗ ∈ D is regular if for any y ∈ D there exists
ε0 > 0 such that x∗ + ε′y ∈ D for any ε′ ∈]0, ε0[.

Obviously, if D is a convex cone, then any x∗ ∈ D is regular.
Indeed, take an arbitrary y ∈ D and u = λx∗ + (1 − λ)y. We have that

u ∈ D which implies,
1
λ

u ∈ D. Hence x∗ +
1− λ

λ
y =

1
λ

y ∈ D. If λ → 1 then

we obtain that ε′ =
1− λ

λ
→ 0. Now, we can introduce the following result.

Theorem 6. Let f : H → H be a mapping and D ⊂ H a closed, pointed
and locally compact cone (not necessarily convex). Let ε > 0 and δ > 0
be arbitrary real numbers (δ can be very big and ε small). If the set-valued

mapping x → ProjD[x−αf(x)] with α ≥ δ2

4ε
, has a regular fixed point x∗ ∈ D

such that ‖x∗‖ ≤ δ, then x∗ is a solution to the ε− CP (f,D).
Proof. By assumption we have that

x∗ ∈ ProjD[x∗ − αf(x∗)].



ON THE COMPLEMENTARITY PROBLEM 233

In this case, by Theorem 5 we have

〈x∗ − αf(x∗)− x∗, d− x∗〉 ≤
1
2
‖d− x∗‖2, for all d ∈ D,

which implies

〈−αf(x∗), d− x∗〉 ≤
1
2
‖d− x∗‖2, for all d ∈ D. (4)

If we take d =
1
2
x∗, we obtain〈

−αf(x∗),−
1
2
x∗

〉
≤ 1

8
‖x∗‖2,

or
〈αf(x∗), x∗〉 ≤

1
4
‖x∗‖2. (5)

If we take d =
3
2
x∗ in (4) we deduce〈

−αf(x∗),
1
3
x∗

〉
≤ 1

8
‖x∗‖2

or
〈αf(x∗), x∗〉 ≥ −1

4
‖x∗‖2. (6)

From (5) and (6) we have

|〈αf(x∗), x∗〉| ≤
1
4
‖x∗‖2

which implies

|〈f(x∗), x∗〉 ≤
1
4α
‖x∗‖2 ≤ 1

4α
δ2 ≤ ε,

that is
|〈f(x∗), x∗〉 ≤ ε.

Because x∗ is regular, then for any y ∈ D, there exists ε∗ > 0 such that
d = ε′y + x∗ ∈ D, with ε′ ∈]0, ε∗[. If we let d = ε′y + x∗ in (4) we have

〈−αf(x∗), ε′y〉 ≤
1
2
‖ε′y‖2, for any ε′ ∈]0, ε∗[

or
〈αf(x∗), ε′y〉 ≥ −1

2
ε′

2‖y‖, for any ε′ ∈]0, ε∗[

which implies

〈αf(x∗), y〉 ≥ −1
2
ε′‖y‖, for any ε′ ∈]0, ε∗[
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Taking ε′ → 0 we have 〈f(x∗), y〉 ≥ 0 for all y ∈ D, that is f(x∗) ∈ D∗ and
therefore, x∗ is a solution to the ε− CP (f,D). �

Remarks. 1. If D is an arbitrary closed convex cone, the mapping x →
ProjD[x−αf(x)] is a single-valued mapping. If x∗ = ProjD[x∗−αf(x∗)], then
x∗ is a solution to the classical nonlinear complementarity problem NCP (f,D)
and we have 〈f(x∗), x∗〉 = 0, that is x∗ is a solution to the ε − CP (f,D) for
any ε ≥ 0.

2. On closed locally compact cone, we have that Theorem 6 reduces the
study of the solvability of the ε− CP (f,D) to the study of existence of fixed
points of a set-valued mapping with respect to closed nonconvex sets. For
practical problems, δ > 0 is given and ε > 0 must be very small.

7. Comments

This paper may be considered as a starting point for the study of comple-
mentarity problems with respect to nonconvex cones and also for the study of
fixed points of a set-valued mapping with respect to a nonconvex set.
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