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0. Introduction

The nearness of two operators means that they have similar algebraical or
topological properties. We can mention the classical inverse function theorem,
which says that if the differential at a point of a C1 function is invertible, then
the function itself is locally invertible.

In the last decade several notions of nearness between operators have been
introduced [1, 2, 10, 12]. They were used to study the existence of solutions for
nonlinear partial differential equations and to give estimates of their solutions.
If we use the PDE point of view, the first nearness condition was the Cordes
condition used by H. O. Cordes and G. Talenti [5, 11] to prove Cα, C1,α and
W 2,2 estimates for the solutions of second order linear and symmetric partial
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differential equations in nondivergence form

Au =
n∑

i,j=1

aij(x)∂iju ,

where A = (aij) ∈ L∞(Ω, Rn×n) is a symmetric matrix function. Later S.
Campanato and A. Tarsia realized [2, 3, 12, 13] that, because of the Cordes
conditions gives a nearness of the matrix A to the identity matrix and hence
a nearness of the operator A to the Laplacian ∆ in the spaces W 2,2

0 (Ω), it can
be generalized to nonlinear operators. A. Buica and A. Domokos [1] observed
that in general Banach spaces the nearness condition is related to the accretive
condition.

In this paper we will prove first the equivalence of two notions of nearness
in uniformly smooth Banach spaces, answering a question raised in [1]. As
an immediate corollary of this result we give a characterization of strongly
accretive and Lipschitzan mappings. Then we will give another, somewhat
easier, proof of a result proved by Tarsia regarding the equivalence between two
types of Campanato conditions [14]. Therefore, both of them are equivalent
to the Cordes condition.

1. Nearness and accretivity

We begin by listing the nearness conditions and by proving results regarding
the connections between them. Our starting point is the definition given by
Robinson [9], which is the closest to the classical Fréchet differential of a
mapping.

Definition 1.1. Let X and Z be Banach spaces, x0 ∈ X and X0 a neighbor-
hood of x0. Let A, B : X0 → Z. We say that A strongly approximates B
at x0 if for all ε > 0 there exists a neighborhood Xε ⊂ X0 of x0 such that for
all x, y ∈ Xε

‖B(x)− B(y)− (A(x)−A(y))‖ ≤ ε ‖x− y‖ . (1.1)

The following notion of nearness is due to Campanato [2, 11].

Definition 1.2. Let A and B be two mappings from a set X into a Banach
space Z. We say that A is near B if there exist α > 0 and 0 ≤ c < 1 such
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that for all x, y ∈ X we have

||Bx− By − α(Ax−Ay)|| ≤ c||Bx− By|| . (1.2)

A. Tarsia proved in [11] that if the restriction of B to a neighborhood Xε has
a Lipschitz continuous inverse and if A strongly approximates B at x0, then
A is near B in a neighborhood of x0. This shows that in problems where the
invertibility of B is satisfied, the strong approximation implies nearness.

In a Banach space Z the normalized duality mapping is a set-valued mapping
J : Z  Z∗, defined by (see [8])

J(z) = {z∗ ∈ Z∗ : 〈z∗, z〉 = ‖z∗‖ · ‖z‖ = ‖z‖2} .

The semi-scalar product in a Banach space is defined by

〈x, y〉+ = lim
t↘0

||x + ty||2 − ||x||2

2t
.

In the case when the norm is Gâteaux differentiable outside of the origin we
have that for x 6= 0

〈x, y〉+ = lim
t↘0

||x− ty||2 − ||x||2

−2t
= sup

t↘0

||x− ty||2 − ||x||2

−2t
.

The connection between the normalized duality mapping and the semi-scalar
product is given by

〈x, y〉+ = max{〈j(x), y〉 : j(x) ∈ J(x) } .

Definition 1.3. Let A and B be two mappings from a set X into a Banach
space Z. We say that A is strongly accretive with respect to B if there
exists 0 < m < 1 such that for all x, y ∈ X there exists j(Bx−By) ∈ J(Bx−By)
such that

〈j(Bx− By),Ax−Ay〉 ≥ m||Bx− By||2 . (1.3)

Using the semi-scalar product, condition (1.3) can be written as

〈Bx− By,Ax−Ay〉+ ≥ m||Bx− By||2 . (1.4)

Definition 1.4. Let A and B be two mappings from a set X into a Banach
space Z. We say that A is Lipschitzian with respect to B if there exists
L > 0 such that for all x, y ∈ X

||Ax−Ay|| ≤ L||Bx− By|| . (1.5)
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If Z is a Hilbert space, then A is near B if and only if A is strongly accretive
with respect to B and Lipschitzian with respect to B (see [1, 2, 12]).
Let us remind some facts about the differentiability of the norm in a Banach
space.

Definition 1.5. We say that in a Banach space Z the norm is uniformly
Fréchet differentiable if for all x 6= 0 there exists the Fréchet differential
D(||x||) ∈ Z∗ of the norm at x and for all ε > 0 there exists δ > 0 such
that for all x, y ∈ Z such that ||x|| = 1 and ||y|| ≤ δ we have∣∣∣∣ ||x + y|| − ||x|| −D(||x||)(y)

||y||

∣∣∣∣ ≤ ε .

A Banach space Z with its dual Z∗ uniformly convex has this property. There-
fore the Lp spaces have uniformly Fréchet differentiable norms for 1 < p < ∞.
Because of

D

(
||x||2

2

)
= ||x||D(||x||)

it follows that if the norm is uniformly Fréchet differentiable, then ||x||2/2 is
also uniformly Fréchet differentiable.

We are now able to answer a conjecture about nearness in uniformly smooth
Banach spaces.

Theorem 1.1. Let Z be a Banach space with uniformly Fréchet differentiable
norm. Let X be a Banach space and A,B : X → Z. Then A is near B if and
only if A is strongly accretive with respect to B and Lipschitzian with respect
to B.

Proof. “ ⇒ ”
The fact that if A is near B then A is strongly accretive with respect to B
and Lipschitzian with respect to B, was proved in [1]. We include the proof
for the completeness of our treatment.
Let us suppose that A is near B, which means that there exist α > 0, 0 < c < 1
such that for all x, y ∈ X

||Bx− By − α(Ax−Ay)|| ≤ c||Bx− By||.

Hence,
〈Bx− By,Bx− By − α(Ax−Ay)〉+ ≤
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≤ ||Bx− By|| ||Bx− By − α(Ax−Ay)|| ≤ c||Bx− By||2 .

Using the properties of the semi-scalar product we get

||Bx− By||2 − α〈Bx− By,Ax−Ay〉+ ≤ c||Bx− By||2,

and
〈Bx− By,Ax−Ay〉+ ≥

1− c

α
||Bx− By||2.

In this way we have proved that A is strongly accretive with respect to B.
In order to prove that A is Lipschitzian with respect to B it is enough to
observe that

α||Ax−Ay|| − ||Bx− By|| ≤

≤ ||Bx− By − α(Ax−Ay)|| ≤ c||Bx− By|| ,

and conclude
||Ax−Ay|| ≤ c + 1

α
||Bx− By|| .

“ ⇐ ” Let us suppose now that A is strongly accretive with respect to B and
Lipschitzian with respect to B. Therefore there exists L ≥ 0 and 0 < m < 1
such that (1.4) and (1.5) are true.
(1.5) implies that whenever Bx = By, then Ax = Ay and the formula (1.2)
for nearness is true for any constants.
Suppose now that Bx 6= By. The formula (1.4) implies that〈

Bx− By

||Bx− By||
,
Ax−Ay

||Bx− By||

〉
+

≥ m

and therefore

lim
t↘0

∥∥∥ Bx−By
||Bx−By|| − t Ax−Ay

||Bx−By||

∥∥∥2
−
∥∥∥ Bx−By
||Bx−By||

∥∥∥2

−2t
≥ m .

Formulas (1.4) and (1.5) implies that

m ≤
∥∥∥∥ Ax−Ay

||Bx− By||

∥∥∥∥ ≤ L

so, by uniform Fréchet differentiability of the norm we get that for arbitrary
ε ∈ (0,m) there exists an α > 0 such that 2α(m− ε) < 1 and for all x, y ∈ Z

such that Bx 6= By we have∥∥∥ Bx−By
||Bx−By|| − α Ax−Ay

||Bx−By||

∥∥∥2
−
∥∥∥ Bx−By
||Bx−By||

∥∥∥2

−2α
≥ m− ε .
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Therefore

||Bx− By − α(Ax−Ay)||2 ≤ (1− 2α(m− ε))||Bx− By||2 .

�

Theorem 1.1 gives the following characterization:

Corollary 1.1. In a Banach space Z with uniformly differentiable norm, a
mapping A : Z → Z is strongly accretive and Lipschitzian if and only if it is
near the identity mapping of Z.

2. Cordes and Campanato conditions

Let Ω ∈ Rn be a bounded domain. Consider the matrix valued mapping
A : Ω →Mn(R), defined by A(x) = (aij(x)), where aij ∈ L∞(Ω), and let

Au =
n∑

i,j=1

aij(x)∂ij(u) (2.1)

Definition 2.1. (Cordes condition Kε,σ)
We say that A satisfies condition Kε,σ if there exists ε ∈ (0, 1] and δ > 0 such
that

0 <
1
σ
≤

n∑
i,j=1

a2
ij(x) ≤ 1

n− 1 + ε

(
n∑

i=1

aii(x)

)2

, a.e. x ∈ Ω . (2.2)

Remark 2.1. The original condition Kε [5, 11, 14] corresponds to the Kε,n,
since the normalization condition

∑n
i=1 aii = 1 shows that σ can be taken n.

We use the notations trace A =
∑n

i=1 aii for the trace of an n×n matrix A.
Also, we denote by I the identity n× n matrix, by 〈A,B〉 =

∑n
i,j=1 aij bij the

inner product and by ||A|| =
√∑n

i,j=1 a2
ij the norm in Rn×n.

Let us remark that condition Kε,δ does not specify the sign of trace A. In
this section we need to impose a fixed sign for trace A, therefore using (2.2),
let us suppose that

trace A ≥
√

n− 1 + ε

σ
, ∀ x ∈ Ω′ .

The Cordes condition Kε,σ implies that

〈A(x), I〉2

||A(x)||2
≥ n− (1− ε) (2.3)
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for all x ∈ Ω′ ⊂ Ω, where the Lebesgue measure of Ω \ Ω′ is 0. Let be now
x ∈ Ω′ arbitrary, but fixed. Consider the quadratic polynomial

P (α) = ||A(x)||2α2 − 2〈A(x), I〉α + n− (1− ε) .

Inequality (2.3) shows that

min
α∈R

P (α) = P

(
〈A(x), I〉
||A(x)||2

)
≤ 0 . (2.4)

Therefore there exists

α(x) =
〈A(x), I〉
||A(x)||2

(2.5)

such that P (α(x)) ≤ 0. Observing that

||I − α(x)A(x)||2 = ||A(x)||2α2(x)− 2〈A(x), I〉α(x) + n

we get that (2.3) implies that

||I − α(x)A(x)||2 ≤ 1− ε ,

which is equivalent to

|〈I − α(x)A(x),M〉| ≤
√

1− ε||M || , ∀ M ∈Mn(R) . (2.6)

Condition (2.6) can be written also as∣∣∣∣∣∣
n∑

i=1

mii − α(x)
n∑

i,j=1

aij(x)mij

∣∣∣∣∣∣ ≤ √
1− ε

 n∑
i,j=1

m2
ij

1/2

(2.7)

for all M ∈Mn(R).

Definition 2.2. [14] Let A ∈ L∞(Ω,Mn(R)). We say that A satisfies the
Campanato condition C(τ, γ, δ) if there exist α ∈ L∞(Ω) and τ > 0, γ > 0,
δ ≥ 0 such that γ + δ < 1, α(x) ≥ τ and∣∣∣∣∣∣

n∑
i=1

mii − α(x)
n∑

i,j=1

aij(x)mij

∣∣∣∣∣∣ ≤ γ

 n∑
i,j=1

m2
ij

1/2

+ δ

∣∣∣∣∣
n∑

i=1

mii

∣∣∣∣∣ , (2.8)

for all M = (mij) ∈Mn(R), and a.e. x ∈ Ω.

We can summarize the introduction to this section as:

Proposition 2.1. [14] The Cordes condition Kε,σ is equivalent to a Cam-
panato condition C(τ, γ, 0).
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Tarsia [14] also proved that if A satisfies the condition C(τ, γ, δ), then A

satisfies also a condition C(τ ′, γ′, 0), possible with other constants τ ′ and γ′,
and therefore satisfies the Cordes condition.
We show now a simpler version of his proof.

Theorem 2.1. Suppose A satisfies the Campanato condition C(τ, γ, δ). Then
there exists τ ′ > 0, 0 < γ′ < 1 such that A satisfies the condition C(τ ′, γ′, 0).

Proof. We want to prove that there exist τ ′ > 0, 0 < γ′ < 1, α′ ∈ L∞(Ω)
such that for a.e x ∈ Ω we have α′(x) ≥ τ ′ and∣∣〈I, M〉 − α′(x)〈A(x),M〉

∣∣ ≤ γ′||M || , ∀ M ∈Mn . (2.9)

For the moment, suppose that for an x ∈ Ω inequality (2.9) is valid. Then
(2.9) is equivalent to

||I − α′(x)A(x)|| ≤ γ′ < 1

which means that α′(x)A(x) is included in a closed ball B(I, γ′) of radius γ′

around the identity matrix I ∈ Rn×n. Because of (2.8) and A ∈ L∞(Ω, Rn×n),
another equivalent way is to saying that A(x) is included in the cone with
vertex at 0 and generated by B(I, γ′).
Therefore, we have to prove that in the 2 dimensional subspace of Rn×n

spanned by I and A(x), the cosine of the angle between I and A(x) is bounded
below by a positive number

c0 >

√
n− 1√

n
(2.10)

that does not depend on x, i.e.

〈I, A(x)〉√
n||A(x)||

≥ c0 , a.e. x ∈ Ω .

In this subspace generated by I and A(x) let E1(x) and E2(x) two n × n

matrices such that

(1) E1(x) is that tangent to the circle with center at I and radius 1 which
is the closest to A(x).

(2) 〈E1(x), E2(x)〉 = 0.
(3) I = E1(x) + E2(x).

We have that

〈I, E1(x)〉 = n− 1 , ||E1(x)|| =
√

n− 1 , 〈I, E2(x)〉 = 1 , ||E2(x)|| = 1 .
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Let us write
A(x) = a1(x)E1(x) + a2(x)E2(x)

and then use E1(x) and E2(x) for M in formula (2.8) to get

0 <
1− γ√

n−1
− δ

α(x)
≤ a1(x) ≤

1 + γ√
n−1

+ δ

α(x)

and

0 <
1− γ − δ

α(x)
≤ a2(x) ≤ 1 + γ + δ

α(x)
.

Therefore, the angle between I and A(x) will be smaller then the angle between
I and

V (x) =
1 + γ√

n−1
+ δ

α(x)
E1(x) +

1− γ − δ

α(x)
E2(x) .

The cosine of the angle between I and V (x) is given by

〈I, V (x)〉√
n||V (x)||

=

(
1 + γ√

n−1
+ δ
)

(n− 1) + 1− γ − δ

√
n

√(
1 + γ√

n−1
+ δ
)2

(n− 1) + (1− γ − δ)2
= c0

For n ≥ 2 the inequality

1 +
γ√

n− 1
+ δ >

n− 2
2(n− 1)

(
1− γ − δ

)
implies (2.10) and this finishes the proof. �
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