SOME COMMON FIXED POINT THEOREMS FOR SEQUENCES OF NONSELF MULTIVALUED OPERATORS IN METRICALLY CONVEX METRIC SPACES

B. C. DHAGE ${ }^{1}$, U. P. DOLHARE ${ }^{2}$ AND ADRIAN PETRUŞEL ${ }^{3}$
${ }^{1}$ Kasubai, Gurukul Colony, Ahmedpur-413 515
Dist: Latur, Maharashtra, India
e-mail: bcd20012001yahoo.co.in
${ }^{2}$ Department of Mathematics
Dnyanopasak Mahavidyalaya, Jintur-431 509
Maharashtra, India
${ }^{3}$ Department of Applied Mathematics
Babeş-Bolyai University
3400, Cluj-Napoca, Romania
e-mail: petrusel@math.ubbcluj.ro

Abstract

In this paper some common fixed point theorems for sequences of nonself multivalued operators defined on a closed subset of a metrically convex metric space are proved. Our results extend some fixed point theorems of Dhage [4] to a sequence of nonself multimaps and include the fixed point result of Huang and Cho [6]. 2000 Mathematics Subject Classification: 47H10, 54H25. Key Words and Phrases: metrically convex metric space, multivalued operator, common fixed point.

1. Introduction

Fixed point theorems for nonself contraction multifunctions have been discussed in the literature, among many others, by Assad [1], Assad and Kirk [2], Ćirić and Ume [3]. Itoh [7] extended these results to a more general class of contraction multifunctions while Rhoades obtained a generalization of Itoh's fixed point theorem (see [7]) for the case of a multivalued operator F defined on a subset K of a metrically convex metric space X. Common fixed point
theorems for a sequences $\left\{F_{n}\right\}$ of non-self multivalued operators in metrically convex metric space have been also proved by Huang and Cho [6]. All these results use a kind of boundary condition with respect to the multivalued operator F and the subset K of the metric space X, namely $F(\partial K) \subset K$, where ∂K denotes the boundary of K. In a recent paper [4], one of the present authors proved some fixed point theorems for the non-self multivalued operators on a metrically convex metric space, satisfying slightly stronger condition than Rhoades [8], but under a weaker boundary condition than that in the above mentioned papers.

The purpose of the present paper is to prove some common fixed point theorems for a sequence of non-self multivalued operators on a metrically convex metric space satisfying certain contraction type conditions and under a weaker boundary condition. Our results extend some theorems of Dhage [4] (to a sequence of multivalued operators) and include the result of Huang and Cho [6] under a slightly stronger contraction condition.

2. Main Results

Let (X, d) denote a metric space and let $C B(X)$ denote the class of all non-empty closed and bounded subsets of X.

Definition 2.1. A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$, there is a $z \in X, x \neq z, y \neq z$ such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

We need the following lemma in the sequel.
Lemma 2.1. (Assad and Kirk [2]) If K is a non-empty closed convex subset of a complete and metrically convex metric space (X, d), then for any $x \in K$ and $y \notin K$, there exists a point $z \in \partial K$ (the boundary of K) such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

For any $A, B \in C B(X)$ denote:

$$
\begin{aligned}
D(A, B) & =\inf \{d(a, d) \mid a \in A, b \in B\} \\
\delta(A, B) & =\sup \{d(a, b) \mid a \in A, b \in B\}
\end{aligned}
$$

and

$$
H(A, B)=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(A, b)\right\}
$$

The following properties of the functional δ are well-known (see for example Fisher [5] and Petruşel [11]) :
(i) $\delta(A, B)=0$ if and only if $A=B=\left\{x^{*}\right\}$
(ii) $\delta(A, B)=\delta(B, A)$ and
(iii) $\delta(A, B) \leq \delta(A, C)+\delta(C, B)$
for $A, B, C \in C B(X)$.
We need the following lemma in the sequel.
Lemma 2.2. Fisher [5] Let $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ be two sequences in $C B(X)$ converging in $C B(X)$ to the sets A and respectively B. Then

$$
\lim _{n \rightarrow \infty} \delta\left(A_{n}, B_{n}\right)=\delta(A, B)
$$

If $T: X \rightarrow C B(X)$ is a multivalued operator, then $F_{T}:=\{x \in X \mid x \in T(x)\}$ denotes the fixed point set T, while $(S F)_{T}:=\{x \in X \mid\{x\}=T(x)\}$ is the strict fixed point set of T.

Now we prove our first main result.
Theorem 2.1. Let (X, d) be a complete and metrically convex metric space, K a non-empty, closed, convex and bounded subset of X. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a sequence of multivalued operators of K into $C B(X)$ satisfying for $i \neq j$,

$$
\begin{align*}
\delta\left(F_{i}(x), F_{j}(y)\right) \leq & \alpha \max \left\{d(x, y), D\left(x, F_{i}(x)\right), D\left(y, F_{j}(y)\right)\right\} \tag{2.1}\\
& +\beta\left[D \left(x, F_{j}(y)+D\left(y, F_{i}(x)\right]\right.\right.
\end{align*}
$$

for all $x, y \in K$, where $\alpha \geq 0, \beta \geq 0$ and $2 \alpha+3 \beta<1$.
If $F_{n}(x) \cap K \neq \emptyset$ for each $x \in \partial K$ and each $n \in N$, then $F_{F_{n}}=(S F)_{F_{n}}=$ $\{z\}$, for each $n \in N$. Moreover, for each $n \in \mathbb{N}$, F_{n} is continuous in z with respect to the Hausdorff-Pompeiu metric on X.

Proof. Let $x \in K$ be arbitrary and define a sequence $\left\{x_{n}\right\} \subset K$ as follows. Let $x_{0}=x$ and take a point $x_{1} \in F_{1}\left(x_{0}\right) \cap K$ if $F_{1}\left(x_{0}\right) \cap K \neq \emptyset$, otherwise choose a point $x_{2} \in \partial K$ such that

$$
d\left(x_{0}, x_{1}\right)+d\left(x_{1}, y_{1}\right)=d\left(x_{0}, y_{1}\right)
$$

for some $y_{1} \in F x_{0} \subset X \backslash K$.

Similarly choose a point $x_{2} \in F_{2}\left(x_{1}\right) \cap K$ if $F_{2}\left(x_{1}\right) \cap K \neq 0$, otherwise choose a point $x_{2} \in \partial K$, such that

$$
d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{2}\right)=d\left(x_{1}, y_{2}\right)
$$

for some $y_{2} \in F_{2}\left(x_{1}\right) \subset X \backslash K$.
Continuing in this way, choose $x_{n} \in F_{n}\left(x_{n-1}\right) \cap K$ if $F_{n}\left(x_{n-1}\right) \cap K \neq \emptyset$, otherwise select $x_{n} \in \partial K$ such that

$$
d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, y_{n}\right)=d\left(x_{n-1}, y_{n}\right)
$$

for some $y_{n} \in F_{n}\left(x_{n-1}\right) \subset X \backslash K$. Denote by

$$
P=\left\{x_{n} \in\left\{x_{n}\right\} \mid x_{n} \in F_{n}\left(x_{n-1}\right), n \in N\right\}
$$

and

$$
Q=\left\{x_{n} \in\left\{x_{n}\right\} \mid x_{n} \in \partial K, x_{n} \in F_{n}\left(x_{n-1}\right), n \in N\right\}
$$

Clearly

$$
\left\{x_{n}\right\}=P \cup Q \subset K
$$

Then for any two consecutive terms x_{n}, x_{n-1} of the sequence $\left\{x_{n}\right\}$, there are only the following three possibilities:
(i) $x_{n}, x_{n-1} \in P$,
(ii) $x_{n} \in P, x_{n+1} \in Q$,
(iii) $x_{n} \in Q$ and $x_{n+1} \in P$.

We will prove that $\left\{x_{n}\right\}$ is a Cauchy sequence in K.

Case I: Suppose that $x_{n}, x_{n+1} \in P$. Then by (2.1), we have,

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) \leq & \delta\left(F_{n}\left(x_{n-1}\right), F_{n+1}\left(x_{n}\right)\right) \\
\leq & \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), D\left(x_{n-1}, F_{n}\left(x_{n-1}\right)\right), D\left(x_{n}, F_{n+1}\left(x_{n}\right)\right)\right\} \\
& +\beta\left[D\left(x_{n-1}, F_{n+1}\left(x_{n}\right)\right)+D\left(x_{n}, F_{n}\left(x_{n-1}\right)\right)\right] \\
\leq & \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +\beta\left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)\right] \\
\leq & \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +\beta\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] \\
= & \max \left\{\alpha d\left(x_{n-1}, x_{n}\right)+\beta\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right],\right. \\
& \left.\alpha d\left(x_{n}, x_{n+1}\right)+\beta\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right\} \\
= & \max \left\{(\alpha+\beta) d\left(x_{n-1}, x_{n}\right)+\beta d\left(x_{n}, x_{n+1}\right),\right. \\
& \left.\beta d\left(x_{n-1}, x_{n}\right)+(\alpha+\beta) d\left(x_{n}, x_{n+1}\right)\right\},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right), \tag{2.2}
\end{equation*}
$$

where

$$
k=\max \left\{\frac{\alpha+\beta}{1-\beta}, \frac{\beta}{1-(\alpha+\beta)}\right\}<1
$$

since $2 \alpha+3 \beta<1$.
Case II: Let $x_{n} \in P$ and $x_{n+1} \in Q$. Then

$$
d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, y_{n+1}\right)=d\left(x_{n}, y_{n+1}\right)
$$

for some $y_{n+1} \in F_{n+1}\left(x_{n}\right) \subset X \backslash K$.
Clearly

$$
\left\{\begin{array}{l}
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, y_{n+1}\right), \tag{2.3}\\
d\left(x_{n}, y_{n+1}\right) \leq \delta\left(F_{n}\left(x_{n-1}\right), F_{n+1}\left(x_{n}\right)\right) .
\end{array}\right.
$$

Now following the arguments similar to that in Case I,

$$
\begin{equation*}
d\left(x_{n}, y_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right), \tag{2.4}
\end{equation*}
$$

where again

$$
k=\max \left\{\frac{\alpha+\beta}{1-\beta}, \frac{\beta}{1-(\alpha+\beta)}\right\}<1
$$

From (2.3) and(2.4), it follows that

$$
d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right) .
$$

Case III: Suppose that $x_{n} \in Q$ and $x_{n+1} \in P$. We note that then $x_{n-1} \in P$. By definition of $\left\{x_{n}\right\}$, there is a point $y_{n} \in F_{n}\left(x_{n-1}\right)$ such that

$$
\begin{equation*}
d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, y_{n}\right)=d\left(x_{n-1}, y_{n}\right) . \tag{2.5}
\end{equation*}
$$

We have successively:

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, y_{n}\right)+d\left(y_{n}, x_{n+1}\right) \leq \\
& \leq d\left(x_{n}, y_{n}\right)+\delta\left(F_{n}\left(x_{n-1}\right), F_{n+1}\left(x_{n}\right)\right) \leq d\left(x_{n}, y_{n}\right)+ \\
& +\alpha \max \left\{d\left(x_{n-1}, x_{n}\right), D\left(x_{n-1}, F_{n}\left(x_{n-1}\right)\right), D\left(x_{n}, F_{n+1}\left(x_{n-1}\right)\right)\right\} \\
& +\beta\left[D\left(x_{n-1}, F_{n+1}\left(x_{n}\right)+D\left(x_{n}, F_{n}\left(x_{n-1}\right)\right)\right]=d\left(x_{n}, y_{n}\right)+\right. \\
& +\alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, y_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}+ \\
& +\beta\left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right)\right] \leq d\left(x_{n}, y_{n}\right)+ \\
& +\alpha \max \left\{d\left(x_{n-1}, y_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}+ \\
& +\beta\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right)\right]=d\left(x_{n-1}, y_{n}\right)+ \\
& +\alpha \max \left\{d\left(x_{n-1}, y_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}+\beta\left[d\left(x_{n-1}, y_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] .
\end{aligned}
$$

From (2.4) of Case II applied to $n-1$, we have

$$
\begin{equation*}
d\left(x_{n-1}, y_{n}\right) \leq k d\left(x_{n-2}, x_{n-1}\right) \tag{2.6}
\end{equation*}
$$

and hence

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) \leq & k d\left(x_{n-2}, x_{n-1}\right)+\alpha \max \left\{k d\left(x_{n-2}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +\beta\left[k d\left(x_{n-2}, x_{n-1}\right)+d\left(x_{n}, x_{n+1}\right)\right] \\
= & \max \left\{(1+\alpha+\beta) k d\left(x_{n-2}, x_{n-1}\right)+\beta d\left(x_{n}, x_{n+1}\right),\right. \\
& \left.(1+\beta) k d\left(x_{n-2}, x_{n-1}\right)+(\alpha+\beta) d\left(x_{n}, x_{n+1}\right)\right\} .
\end{aligned}
$$

This further implies that

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leq \max \left\{\frac{(1+\alpha+\beta) k}{1-\beta}, \frac{(1+\beta) k}{1-(\alpha+\beta)}\right\} d\left(x_{n-2}, x_{n-1}\right) \tag{2.7}\\
& =q d\left(x_{n-2}, x_{n-1}\right),
\end{align*}
$$

where

$$
\begin{aligned}
q & =\max \left\{\frac{(1+\alpha+\beta) k}{1-\beta}, \frac{(1+\beta) k}{1-(\alpha+\beta)}\right\} \\
& =k \max \left\{\frac{1+\alpha+\beta}{1-\beta}, \frac{1+\beta}{1-(\alpha+\beta)}\right\} \\
& =k\left(\frac{1+\beta}{1-(\alpha+\beta)}\right)<1
\end{aligned}
$$

Now for any $n \in N$, we have

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n+1}\right) & \leq q d\left(x_{2 n-2}, x_{2 n-1}\right) \\
& \leq q^{n} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Since n is arbitrary, one has

$$
d\left(x_{n} \cdot x_{n+1}\right) \leq q^{n} d\left(x_{0}, x_{1}\right)
$$

Then for any positive integer p,

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq \sum_{i=1}^{n+p+1} d\left(x_{i}, x_{i+1}\right) \\
& \leq \sum_{i=1}^{n+p+1} q^{i} d\left(x_{0}, x_{1}\right) \\
& =q^{n} \frac{\left(1-q^{n+p-1}\right)}{1-q} d\left(x_{0}, x_{1}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. Since K is closed, it is complete and there is a point $z \in K$ such that $\lim x_{n}=z$ exists. We show that z is a fixed point of F_{n}. Without loss of generality, we may assume that $x_{n+1} \in F_{n+1}\left(x_{n}\right)$ for some $n \in N$. Then,

$$
\begin{aligned}
\delta\left(z, F_{j}(z)\right) \leq & \delta\left(z, x_{n+1}\right)+\delta\left(x_{n+1}, F_{j}(z)\right) \\
= & \delta\left(z, x_{n+1}\right)+\delta\left(F_{j}(z), F_{n+1}\left(x_{n}\right)\right) \\
= & \delta\left(z, x_{n+1}\right)+\alpha \max \left\{d\left(z, x_{n}\right), D\left(z, F_{j}(z)\right), D\left(x_{n}, F_{n+1}\left(x_{n}\right)\right)\right\} \\
& +\beta\left[D\left(z, F_{n+1}\left(x_{n}\right)\right)+D\left(x_{n}, F_{j}(z)\right)\right] \\
\leq & \delta\left(z, x_{n+1}\right)+\alpha \max \left\{d\left(z, x_{n}\right), \delta\left(z, F_{j}(z)\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +\beta\left[d\left(z, x_{n+1}\right)+\delta\left(x_{n}, F_{j}(z)\right)\right] .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in above inequality yields that

$$
\begin{aligned}
\delta\left(z, F_{j}(z)\right) & \leq 0+\alpha \max \left\{0, \delta\left(z, F_{j}(z), 0, \beta \delta\left(z, F_{j}(z)\right)\right\}\right. \\
& =\alpha \delta\left(z, F_{j}(z)\right),
\end{aligned}
$$

which implies that $\delta\left(z, F_{j}(z)\right)=0$ since $\alpha<1$, i.e., $F_{j}(z)=\{z\}$ for each $j \in N$.

To prove uniqueness, let $z^{*}(\neq z)$ be another common fixed point of $\left\{F_{n}\right\}$. Then by(2.1) we get

$$
\begin{aligned}
d\left(z, z^{*}\right) \leq & \delta\left(F_{i}(z), F_{j}\left(z^{*}\right)\right) \\
\leq & \alpha \max \left\{d\left(z, z^{*}\right), D\left(z, F_{i}(z), D\left(z^{*}, F_{j}\left(z^{*}\right)\right)\right\}\right. \\
& +\beta\left[d\left(z, F_{j}\left(z^{*}\right)\right)+D\left(z^{*}, F_{i}(z)\right)\right] \\
= & (\alpha+2 \beta) d\left(z, z^{*}\right),
\end{aligned}
$$

which is a contradiction since $\alpha+2 \beta \leq 2 \alpha+3 \beta<1$. Hence $\mathrm{z}=z^{*}$.
Finally we prove the continuity of F_{n} for each $n \in N$. Let $\left\{z_{n}\right\}$ be any sequence in K converging to the unique common fixed point z of $\left\{F_{n}\right\}_{n=1}^{\infty}$. To conclude, it, is enough to prove that $\lim _{n} H\left(F_{j}\left(z_{n}\right), F_{j} z\right)=1$ for each $i \in N$. We know that

$$
\begin{equation*}
H\left(F_{j}\left(z_{n}\right), F_{j}(z)\right) \leq \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right) \tag{*}
\end{equation*}
$$

Now for any $i \neq j$,

$$
\begin{aligned}
\delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)= & \delta\left(F_{i}\left(z_{n}\right), F_{j}(z)\right) \\
\leq & \alpha \max \left\{d\left(z_{n}, z\right), D\left(z_{n}, F_{i}\left(z_{n}\right), D\left(z, F_{j}(z)\right)\right\}\right. \\
& +\beta\left[D\left(z_{n}, F_{j}(z)\right)+D\left(z, F_{i}\left(z_{n}\right)\right)\right] \\
\leq & \alpha \max \left\{d\left(z_{n}, z\right), \delta\left(z_{n}, F_{i}\left(z_{n}\right)\right), 0\right\} \\
& +\beta\left[\delta\left(z_{n}, F_{j}(z)\right)+\delta\left(z, F_{i}\left(z_{n}\right)\right)\right] .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right) \leq & \alpha \max \left\{0, \lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right), 0\right\} \\
& +\beta\left[0+\lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)\right] \\
= & (\alpha+\beta) \lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right),
\end{aligned}
$$

which is possible only when $\lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)=0$.
From $(*)$ it follows that $\lim _{n \rightarrow \infty} H\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)=0$. This completes the proof.

Remark 2.1. With respect to condition (2.1), the following implications hold:
i) (2.1) and $\left(x \in F_{F_{i}} \cap F_{F_{j}}, i \neq j\right) \Rightarrow F_{i}(x)=F_{j}(x)=\{x\}$.
ii) (2.1) and $\left(x \in F_{F_{i}}, y \in F_{F_{j}}, i \neq j\right) \Rightarrow \delta\left(F_{i}(x), F_{j}(y)\right) \leq$
$\alpha \max \left\{d(x, y), D\left(x, F_{i}(x)\right), D\left(y, F_{j}(y)\right)\right\}+\beta\left[D\left(x, F_{j}(y)+D\left(y, F_{i}(x)\right] \leq\right.\right.$ $\leq(\alpha+2 \beta) \cdot \delta\left(F_{i}(x), F_{j}(y)\right)$.
Hence $\delta\left(F_{i}(x), F_{j}(y)\right)=0$ and so $F_{i}(x)=F_{i}(y)=\{z\}$. In conclusion $z=x=y$.
iii) (2.1) and $\left(x \in F_{F_{i}}, y=x\right) \Rightarrow \delta\left(F_{i}(x), F_{j}(x)\right) \leq(\alpha+\beta)$. $\delta\left(F_{i}(x), F_{j}(x)\right)$.

Hence $\delta\left(F_{i}(x), F_{j}(x)\right)=0$ and so $F_{i}(x)=F_{j}(x)=\{z\}$. In conclusion $z=x=y$.

Theorem 2.2. Let (X, d) be a metrically convex complete space, K a nonempty, closed, convex and bounded subset of X. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a sequence of mappings from K into $C B(X)$ satisfying for $i \neq j$,

$$
\begin{align*}
\delta\left(F_{i}(x), F_{j}(y)\right) \leq & \alpha d(x, y)+\beta \max \left\{\frac{1}{2}\left[D\left(x, F_{i}(x)\right)+D\left(y, F_{j}(y)\right)\right],\right. \\
& \left.\frac{1}{2}\left[D\left(x, F_{j}(y)\right)+D\left(y, F_{i}(x)\right)\right]\right\} \tag{2.8}
\end{align*}
$$

for all $x, y \in K$, where $\alpha \geq 0$ and $\beta \geq 0$ satisfying $\alpha^{2}+\alpha+\alpha \cdot \beta+\frac{3 \beta}{2}<1$.
If $F_{n}(K) \cap K \neq \emptyset$ for each $x \in \partial K$ and $n \in N$, then $F_{F_{n}}=(S F)_{F_{n}}=\left\{x^{*}\right\}$, for each $n \in N$. Moreover, for each $n \in \mathbb{N}, F_{n}$ is continuous in x^{*} with respect to the Hausdorff-Pompeiu metric.

Proof. Let $x \in K$ be arbitrary and define a sequence $\left\{x_{n}\right\} \subset K$ as in the previous proof. So $\left\{x_{n}\right\}=P \cup Q$, where

$$
P=\left\{x_{n} \in\left\{x_{n}\right\} \mid x_{n} \in F_{n}\left(x_{n-1}\right), n \in N\right\}
$$

and

$$
Q=\left\{x_{n} \in\left\{x_{n}\right\} \mid x_{n} \in \partial K, x_{n} \in F_{n}\left(x_{n-1}\right), n \in N\right\} .
$$

We show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Now for any two consecutive terms $x_{n}, x_{n+1} \in\left\{x_{n}\right\}$, there are following three cases:

Case I: Suppose that $x_{n}, x_{n+1} \in P$. Then by (2.9) we get

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right) \\
\leq & \delta\left(F_{n}\left(x_{n-1}\right) F_{n+1}\left(x_{n}\right)\right) \\
\leq & \alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac{1}{2}\left[D\left(x_{n-1}, F_{n}\left(x_{n-1}\right)\right)+D\left(x_{n}, F_{n+1}\left(x_{n}\right)\right)\right]\right. \\
& \left.\frac{1}{2}\left[D\left(x_{n-1}, F_{n+1}\left(x_{n-1}\right)\right)+D\left(x_{n}, F_{n}\left(x_{n}\right)\right)\right]\right\} \\
\leq & \alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right. \\
& \left.\frac{1}{2} \max \left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)\right]\right\} \\
\leq & \alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right. \\
& \left.\frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right\} \\
\leq & \alpha d\left(x_{n-1}, x_{n}\right)+\frac{\beta}{2} d\left(x_{n-1}, x_{n}\right)+\frac{\beta}{2} d\left(x_{n}, x_{n+1}\right) \\
= & \left(\frac{\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) d\left(x_{n-1}, x_{n}\right) \tag{2.9}
\end{align*}
$$

Case II: Suppose that $x_{n} \in P$ and $x_{n+1} \in Q$. Then there is a point $y_{n+1} \in$ $F_{n+1}\left(x_{n}\right) \subset X \backslash K$ such that

$$
d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, y_{n+1}\right)=d\left(x_{n}, y_{n+1}\right)
$$

which further implies that

$$
d\left(x_{n}, y_{n+1}\right) \leq d\left(x_{n}, y_{n+1}\right)
$$

and

$$
\begin{equation*}
d\left(x_{n}, y_{n+1}\right) \leq \delta\left(F_{n}\left(x_{n-1}\right), F_{n+1}\left(x_{n}\right)\right) \tag{2.10}
\end{equation*}
$$

Now

$$
\begin{aligned}
& d\left(x_{n}, y_{n+1}\right) \leq \delta\left(F_{n}\left(x_{n-1}\right), F_{n+1}\left(x_{n}\right)\right) \leq \alpha d\left(x_{n-1}, x_{n}\right)+ \\
& \beta \max \left\{\frac{1}{2}\left[D\left(x_{n-1}, F_{n}\left(x_{n-1}\right)\right)+D\left(x_{n}, F_{n+1}\left(x_{n}\right)\right)\right], \frac{1}{2}\left[D\left(x_{n-1}, F_{n+1}\left(x_{n}\right)\right)+\right.\right. \\
& \left.\left.+D\left(x_{n}, F_{n}\left(x_{n-1}\right)\right)\right]\right\} \leq \alpha d\left(x_{n-1}, x_{n}\right)+ \\
& +\beta \max \left\{\frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right], \frac{1}{2}\left[d\left(x_{n-1}, y_{n+1}\right)+d\left(x_{n}, x_{n}\right)\right]\right\} \\
& =\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac { 1 } { 2 } \left[d\left(x_{n-1}, x_{n}\right)+\right.\right. \\
& \left.\left.+d\left(x_{n}, x_{n+1}\right)\right], \frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, y_{n+1}\right)\right]\right\}=\alpha d\left(x_{n-1}, x_{n}\right)+ \\
& +\frac{\beta}{2} d\left(x_{n-1}, x_{n}\right)+\frac{\beta}{2} d\left(x_{n}, y_{n+1}\right)=k \cdot d\left(x_{n-1}, x_{n}\right),
\end{aligned}
$$

where

$$
k=\frac{\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}<1
$$

From (3) it follows that

$$
d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right)
$$

Case III: Suppose that $x_{n} \in Q$ and $x_{n+1} \in P$. Note that $x_{n-1} \in P$. Then there is a point $y_{n} \in F_{n}\left(x_{n-1}\right) \subset X \backslash K$ such that

$$
d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, y_{n}\right)=d\left(x_{n-1}, y_{n}\right)
$$

which further implies that

$$
\begin{equation*}
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n-1}, y_{n}\right) \tag{2.11}
\end{equation*}
$$

Now

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right) \\
\leq & d\left(x_{n}, y_{n}\right)+d\left(y_{n}, x_{n+1}\right) \\
= & d\left(x_{n}, y_{n}\right)+\delta\left(F_{n}\left(x_{n-1}\right), F_{n+1}\left(x_{n}\right)\right) \\
\leq & d\left(x_{n}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac { 1 } { 2 } \left[D\left(x_{n-1}, F_{n}\left(x_{n-1}\right)\right)\right.\right. \\
& \left.\left.+D\left(x_{n}, F_{n+1}\left(x_{n}\right)\right)\right], \frac{1}{2}\left[D\left(x_{n-1}, F_{n+1}\left(x_{n}\right)\right)+D\left(x_{n}, F_{n}\left(x_{n-1}\right)\right)\right]\right\} \\
= & d\left(x_{n}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac{1}{2}\left[d\left(x_{n-1}, y_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right. \\
& \left.\frac{1}{2}\left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right)\right]\right\} \\
\leq & d\left(x_{n-1}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac{1}{2}\left[d\left(x_{n-1}, y_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right],\right. \\
& \left.\frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, y_{n}\right)\right]\right\} \\
= & d\left(x_{n-1}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\beta \max \left\{\frac{1}{2}\left[d\left(x_{n-1}, y_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right],\right. \\
& \left.\frac{1}{2}\left[d\left(x_{n-1}, y_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right\} \\
= & d\left(x_{n-1}, y_{n}\right)+\alpha d\left(x_{n-1}, x_{n}\right)+\frac{\beta}{2} d\left(x_{n-1}, y_{n}\right)+\frac{\beta}{2} d\left(x_{n}, x_{n+1}\right) \\
= & k d\left(x_{n-2}, x_{n-1}\right)+k \alpha d\left(x_{n-2}, x_{n-1}\right)+\frac{\beta}{2} k d\left(x_{n-2}, x_{n-1}\right) \\
& +\frac{\beta}{2} d\left(x_{n}, x_{n+1}\right) . \tag{2.12}
\end{align*}
$$

It follows that $d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{k+k \alpha+k \frac{\beta}{2}}{1-\frac{\beta}{2}}\right) d\left(x_{n-2}, x_{n-1}\right)$
$=k\left(\frac{1+\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) d\left(x_{n-2}, x_{n-1}\right)$
$=q d\left(x_{n-2}, x_{n-1}\right)$, where

$$
q=k\left(\frac{1+\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right)=\left(\frac{\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right)\left(\frac{1+\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right)<1 .
$$

Thus in all three cases one has

$$
d\left(x_{n}, x_{n+1}\right) \leq q d\left(x_{n-2}, x_{n+1}\right)
$$

Therefore

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n+1}\right) & \leq q d\left(x_{2 n-2}, x_{2 n-1}\right) \\
& \leq q^{n} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

for all $n \in N$. Since n is arbitrary, we have

$$
d\left(x_{n}, x_{n+1}\right) \leq q^{n} d\left(x_{0}, x_{1}\right)
$$

This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. As K is closed, it is complete and there is a point $z \in K$ such that $\lim _{n} x_{n}=z$.

We show that z is a fixed point of F_{n}. Without loss of generality, we may assume that $x_{n+1} \in F_{n+1}\left(x_{n}\right)$. Then

$$
\begin{aligned}
& \delta\left(z_{n}, F_{j}(z)\right) \\
\leq & \delta\left(z, x_{n+1}\right)+\delta\left(x_{n+1}, F_{j}(z)\right) \\
= & \delta\left(z, x_{n+1}\right)+\delta\left(F_{n+1}\left(x_{n}\right), F_{j}(z)\right) \\
\leq & d\left(z, x_{n+1}\right)+\alpha d\left(x_{n}, z\right)+\beta \max \left\{\frac{1}{2}\left[D\left(x_{n}, F_{n+1}\left(x_{n}\right)\right)+D\left(z, F_{j}(z)\right)\right],\right. \\
& \left.\frac{1}{2}\left[D\left(x_{n}, F_{j}(z)\right)+D\left(z, F_{n+1}\left(x_{n}\right)\right)\right]\right\} \\
= & d\left(z, x_{n+1}\right)+\alpha d\left(x_{n}, z\right)+\beta \max \left\{\frac{1}{2}\left[d\left(x_{n}, x_{n+1}\right)+\delta\left(z, F_{j}(z)\right)\right],\right. \\
& \left.\left.\frac{1}{2}\left[\delta\left(x_{n}, F_{j}(z)\right)+d\left(z, x_{n+1}\right)\right)\right]\right\} .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\delta\left(z, F_{j}(z)\right) & \leq 0+\beta \max \left\{\frac{1}{2}\left[0+\delta\left(z, F_{j}(z)\right)\right], \frac{1}{2}\left[\delta\left(z, F_{j}(z)\right)+0\right]\right\} \\
& =\frac{\beta}{2} \delta\left(z, F_{j}(z)\right)
\end{aligned}
$$

which is possible only when $F_{j}(z)=\{z\}$ for $j \in N$. Again the uniqueness of z follows from the condition (2.9). Finally we prove the continuity of F_{n} for
each $n \in N$. Let $\left\{z_{n}\right\}$ be any sequence in K converging to the unique common fixed point z of $\left\{F_{n}\right\}_{n=1}^{\infty}$.

Now for any $i \neq j$,

$$
\begin{aligned}
& \delta\left(F_{j}\left(z_{n}\right), F_{i}(z)\right) \\
= & \delta\left(F_{i}\left(z_{n}\right), F_{j}(z)\right) \\
\leq & \alpha d\left(z_{n}, z\right)+\beta \max \left\{\frac{1}{2}\left[D\left(z_{n}, F_{i}\left(z_{n}\right)\right)+D\left(z, F_{j}(z)\right)\right]\right. \\
& \left.\frac{1}{2}\left[D\left(z_{n}, F_{j}(z)\right)+D\left(z, F_{i}\left(z_{n}\right)\right)\right]\right\} \\
\leq & \alpha d\left(z_{n}, z\right)+\beta \max \left\{\frac{1}{2}\left[\delta\left(z_{n}, F_{i}\left(z_{n}\right)\right)+0\right], \frac{1}{2}\left[\delta\left(z_{n}, F_{j}(z)+\delta\left(z, F_{i}\left(z_{n}\right)\right)\right]\right\}\right.
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$,

$$
\lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{j}(z)\right) \leq \frac{\beta}{2} \lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{j}(z)\right)
$$

which is possible only when $\lim _{n} \delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)=0$. Since $H\left(F_{i}\left(z_{n}\right), F_{i}(z)\right) \leq$ $\delta\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)$, we have $\lim _{n} H\left(F_{i}\left(z_{n}\right), F_{i}(z)\right)=0$ and so F_{i} is continuous at z for each $i \in N$. This completes the proof.

Now we will prove two results concerning the fixed point of sequence of non-self maps on the subsets of a metrically convex metric space satisfying a contraction condition more general than (2.1) and (2.9) and under certain compactness type condition.

Theorem 2.3. Let (X, d) be a metrically convex metric space, K a compact convex subset of X. Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a sequence of continuous multivalued operators from K into $C B(X)$ satisfying for $i \neq j$,

$$
\begin{align*}
\delta\left(F_{i}(x), F_{j}(y)\right)< & \alpha \max \left\{d(x, y), D\left(x, F_{i}(x)\right), D\left(y, F_{j}(y)\right)\right\} \\
& +\beta\left[D\left(x, F_{j}(y)\right)+D\left(y, F_{i}(x)\right)\right] \tag{2.13}
\end{align*}
$$

for all $x, y \in K$ with right hand side not zero, where $\alpha>0, \beta>0$ and $2 \alpha+3 \beta \leq 1$.

If $F_{n}\left(x_{n}\right) \cap K \neq \emptyset$ for each $x \in \partial K$ and $n \in N$, then $F_{F_{n}}=(S F)_{F_{n}}=\left\{x^{*}\right\}$, for each $n \in N$.

Proof. First we note that if the sequence $\left\{F_{n}\right\}$ of multivalued operators have a common fixed point, then from (2.14) it follows that the common fixed point is unique.

As F is continuous and K is compact so both sides of the inequality (2.14) are bounded on K. Now there are two cases:

Case I: Suppose that there exist some $x, y \in K$ such that the right hand side of (2.14) is zero. Then $z=x=y$ is a common fixed point of $\left\{F_{n}\right\}$ and so it is unique.

Case II: Now we assume that the right hand of the inequality (2.14) is positive on K. If $2 \alpha+3 \beta<1$, the desired conclusion follows from Theorem 2.1. Therefore we prove the result only in the case when $2 \alpha+3 \beta=1$.

Denote by

$$
\begin{aligned}
M(x, y) & =\alpha \max \left\{d(x, y), D\left(x, F_{i}(x)\right), D\left(y, F_{j}(y)\right)\right\} \\
& +\beta\left[D\left(x, F_{j}(y)\right)+D\left(y, F_{i}(x)\right)\right]
\end{aligned}
$$

Define a function $T: K \times K \rightarrow R^{+}$by

$$
\begin{equation*}
T(x, y)=\frac{\delta\left(F_{i}(x), F_{j}(y)\right)}{M(x, y)}, \quad x, y \in K \tag{2.14}
\end{equation*}
$$

Clearly the function T is well defined, since $M(x, y) \neq 0$ for all $x, y \in K$. Since each F_{n} is continuous, T is continuous and from compactness of K, it follows that T attains its maximum on $K \times K$ at some point say $(u, v) \in K^{2}$. Call the value c. From (2.14), we get $0<c<1$. By the definition of T we obtain

$$
\frac{\delta\left(F_{i}(x), F_{j}(y)\right)}{M(x, y)} \leq T(u, v)=c
$$

i.e.,

$$
\begin{align*}
\delta\left(F_{i}(x), F_{j}(y)\right) \leq & c M(x, y) \\
= & \alpha^{\prime} \max \left\{d(x, y), D\left(x, F_{i}(x)\right), D\left(y, F_{j}(y)\right)\right\} \tag{2.15}\\
& +\beta^{\prime}\left[D\left(x, F_{j}(y)\right)+D\left(y, F_{i}(x)\right)\right]
\end{align*}
$$

for all $x, y \in K$, where $\alpha^{\prime} \geq 0, \beta^{\prime} \geq 0$ satisfying $2 \alpha^{\prime}+3 \beta^{\prime}=c(2 \alpha+3 \beta)<1$. Since K is compact, it is closed and bounded. Thus all the conditions of Theorem 2.1 are satisfied and hence an application of it yields the desired result.

Theorem 2.4. Let (X, d) be a metrically convex metric space, K a compact convex subset of X. Let $\left\{F_{n}\right\}$ be a sequence of continuous multivalued operator
from K into $C B(X)$ satisfying for each $i \neq j$ the following condition:

$$
\begin{align*}
\delta\left(F_{i}(x), F_{j}(y)\right)< & \alpha d(x, y)+\beta \max \left\{\frac { 1 } { 2 } \left[D\left(x, F_{i}(x)+D\left(y, F_{j}(y)\right)\right]\right.\right. \\
& \frac{1}{2}\left[D\left(x, F_{j}(y)+D\left(y, F_{i}(x)\right)\right]\right\} \tag{2.16}
\end{align*}
$$

for all $x, y \in K$ with right hand side not zero, where $\alpha>0, \beta>0$ and $2 \alpha+\alpha \beta+\beta \leq 1$.

If $F_{n}(x) \cap K \neq \emptyset$ for each $x \in \partial K$ and $n \in N$, then $F_{F_{n}}=(S F)_{F_{n}}=\left\{x^{*}\right\}$, for each $n \in N$.

Proof. The proof is similar to the Theorem 2.3 with appropriate modifications. The result follows by an application of Theorem 2.2. The proof is complete.

Theorem 2.5. Let (X, d) be a metrically convex metric space, K a non-empty compact convex subset of X. Let $\left\{F_{n}\right\}$ be a sequence of continuous multivalued operator of K into $C B(X)$ satisfying for all $i \neq j$,

$$
\begin{align*}
H\left(F_{i}(x), F_{j}(y)\right)< & \alpha d(x, y)+h \max \left\{\frac{1}{2}\left[D\left(x, F_{i}(x)\right)+D\left(y, F_{j}(y)\right)\right]\right. \\
& \left.\frac{1}{2}\left[D\left(x, F_{j}(y)\right)+D\left(y, F_{i}(x)\right)\right]\right\} \tag{2.17}
\end{align*}
$$

for all $x, y \in K$ with right hand side not zero, where $\alpha \geq 0, h \geq 0$ and $\alpha+\frac{3}{2} h+\frac{\alpha h}{2}<1$,

If $F_{n}(x) \subset K$ for each $x \in \partial K$ and $n \in N$, then $\left\{F_{n}\right\}$ have a common fixed point $z \in K$.

Proof. The proof is similar to the Theorem 2.3 and now the desire conclusion follows by an application of Theorem 3.1 of Hung and Cho [6].

References

[1] N. A. Assad, Fixed point theorems for set-valued transformations on compact sets, Boll. U. M. I., 17(4), (1973), 1-7.
[2] N. A. Assad and W. A. Kirk, Fixed point theorem for set-valued mappings of contractive type, Pacific J. Math., 43(1972), 553-562.
[3] Lj. B. Ćirić, J. S. Ume, Common fixed point theorems for multi-valued non-self mappings, Publ. Math. Debrecen, 60(2002), 359-371.
[4] N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued mappings, Korean J. Math. Sci., 4(1997), 1-10.
[5] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolin., 18(1977), 247-248.
[6] B. Fisher, Common fixed point and contraction mappings satisfying a rational inequality, Math. Sem. Notes, 6(1978), 29-35.
[7] B. C. Dhage, A fixed point theorem for non-self multimaps in metrically convex metric space, Comment. Math. Univ. Carolin., 40(1999), 251-158.
[8] A. Muntean, Fixed point principles and applications to mathematical economics, Cluj University Press, Cluj-Napoca, 2002.
[9] N. Negoescu, Common fixed point problems for pairs of φ-contractive mappings, "Gh. Asachi" Publ. House, Iaşi, 1999, (in Romanian).
[10] B. E. Rhoades, A fixed point theorem for a multi-valued non-self mappings, Comment. Math. Univ. Carolin., 37(1996), 401-404.
[11] Adrian Petruşel, Operatorial inclusions, House of the Book of Science, Cluj-Napoca, 2002.
[12] I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
[13] I. A. Rus, A. Petruşel, G. Petruşel, Fixed point theory 1950-2000 : Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002.
[14] A. Sîntămărian, Common fixed point theorems for multivalued mappings, Semin. Fixed Point Theory Cluj-Napoca, 1(2000), 93-102.

