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1. INTRODUCTION

Fixed point theorems for nonself contraction multifunctions have been dis-
cussed in the literature, among many others, by Assad [1], Assad and Kirk [2],
Ciri¢ and Ume [3]. Ttoh [7] extended these results to a more general class of
contraction multifunctions while Rhoades obtained a generalization of Itoh’s
fixed point theorem (see [7]) for the case of a multivalued operator F' defined
on a subset K of a metrically convex metric space X. Common fixed point
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theorems for a sequences { F},} of non-self multivalued operators in metrically
convex metric space have been also proved by Huang and Cho [6]. All these
results use a kind of boundary condition with respect to the multivalued op-
erator F' and the subset K of the metric space X, namely F(0K) C K, where
0K denotes the boundary of K. In a recent paper [4], one of the present au-
thors proved some fixed point theorems for the non-self multivalued operators
on a metrically convex metric space, satisfying slightly stronger condition than
Rhoades [8], but under a weaker boundary condition than that in the above
mentioned papers.

The purpose of the present paper is to prove some common fixed point the-
orems for a sequence of non-self multivalued operators on a metrically convex
metric space satisfying certain contraction type conditions and under a weaker
boundary condition. Our results extend some theorems of Dhage [4] (to a se-
quence of multivalued operators) and include the result of Huang and Cho [6]
under a slightly stronger contraction condition.

2. MAIN RESULTS

Let (X,d) denote a metric space and let CB(X) denote the class of all
non-empty closed and bounded subsets of X.

Definition 2.1. A metric space (X,d) is said to be metrically convez if for
any x,y € X with x # y, there is a z € X, © # z, y # z such that

d(z,2) +d(z,y) = d(z,y).
We need the following lemma in the sequel.

Lemma 2.1. (Assad and Kirk [2]) If K is a non-empty closed convex subset
of a complete and metrically conver metric space (X,d), then for any x € K
and y ¢ K, there exists a point z € 0K (the boundary of K) such that

d($, Z) + d(Z, y) = d(l’, y)
For any A, B € CB(X) denote:

D(A,B) = inf{d(a,d)|a € A,bec B},
d(A,B) = sup{d(a,b)|ac Abe B}
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and

H(A, B) = max { sggD(a, B), 22£D(A, b)}

The following properties of the functional § are well-known (see for example
Fisher [5] and Petrusel [11]) :

(i) 6(A,B) =0 if and only if A = B = {z*}

(ii) 6(A,B) = §(B, A) and

(iii) 0(A, B) < 6(A,C) +6(C, B)

for A,B,C € CB(X).

We need the following lemma in the sequel.

Lemma 2.2. Fisher [5] Let {Ay,} and {B,} be two sequences in CB(X) con-
verging in CB(X) to the sets A and respectively B. Then

lim 6(Ap, Bn) = 6(A, B).

IfT: X — CB(X) is amultivalued operator, then Frp := {z € X|z € T(x)}
denotes the fixed point set T', while (SF)r := {z € X| {z} = T(z)} is the
strict fixed point set of T'.

Now we prove our first main result.

Theorem 2.1. Let (X,d) be a complete and metrically convex metric space,
K a non-empty, closed, convex and bounded subset of X. Let {F,}2°; be a
sequence of multivalued operators of K into CB(X) satisfying for i # j,

6(Fi(z), Fji(y)) < amax{d(z,y), D(z, Fi(z)), D(y, Fj(y))}
for all x,y € K, where « > 0, >0 and 2a+ 30 < 1.

If Fo(x) N K # 0 for each x € OK and each n € N, then Fr, = (SF)p, =
{z}, for each n € N. Moreover, for each n € N, F,, is continuous in z with

(2.1)

respect to the Hausdorff-Pompeiu metric on X.

Proof. Let x € K be arbitrary and define a sequence {z,} C K as follows.
Let o = x and take a point 1 € Fi(z9) N K if Fi(zo) N K # 0, otherwise
choose a point z9 € K such that

d(xo, 1) + d(x1,91) = d(z0,91)
for some y; € Fag C X\K.
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Similarly choose a point zo € Fy(z1)NK if Fy(x1)NK # 0, otherwise choose
a point x5 € 0K, such that

d(z1,x2) + d(x2,y2) = d(x1,Y2)

for some yo € Fy(z1) C X\ K.
Continuing in this way, choose x,, € F,(zn—1) N K if F,(zy,—1) N K # 0,
otherwise select x,, € 0K such that

d(.Tn,l, xn) + d(ZUnv yn) = d(ZUnflv yn)

for some y,, € Fy,(z,—1) C X\K. Denote by

P={x, €{zn} | xn € F(xp_1),n € N}

and

Q = {zxn, €{zn} |z € OK, 2y, € F(xp—1),n € N}.

Clearly

{zp,}=PUQ CK.

Then for any two consecutive terms x,, x,—1 of the sequence {z,}, there are
only the following three possibilities:

(i) zp, xp-1 € P,

(ii) zp, € P, zp41 € Q,

(iii) z, € Q and zp41 € P.

We will prove that {z,} is a Cauchy sequence in K.
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Case I: Suppose that x,, x,+1 € P. Then by(2.1), we have,

d(zn, tnt1) < 6(Fn(wn-1), Fnii(an))
< amax{d(zn_1,2n), D(xpn_1, Fn(tn-1)), D(xn, Frt1(xn))}
+B[D(@n-1, Fni1(zn)) + D(@n, Fr(zn-1))]
amax{d(xn_1,2n), d(Tn_1,Tpn), d(Tn, Tni1)}
+0[d(zp—1, Tnt1) + d(zp, 24)]
< amax{d(zp_1,2n),d(Tn, Tni1)}
+0d(xn—1,n) + d(Xn, Tni1)]
= max{ad(x,—1,%n) + Bld(xn_1, ) + d(zpn, Tpt1)],
ad(zn, Tni1) + Bld(@n-1,2n) + d(@n, Tni1)]}
= max{(a+ B)d(xn-1,2n) + Bd(Tn, Tpni1),
Bd(zn—1,2n) + (o + B)d(xn, Tni1)},

IN

ie.,
d(l’n, wn—s—l) < kd(l‘n_l, xn)a (22)
where
B a+p B
k_max{l—ﬂ’l—(a—i—ﬂ)} <1

since 2a 4 30 < 1.
Case II: Let z,, € P and 2,41 € . Then

d(l‘nv xn—i—l) + d(xn—i-l: yn-l-l) = d(l‘nv yn+1)

for some yn41 € Fryi1(z,) C X\K.

Clearly
d(.’L’n, $n+1) S d(:lf»,“ yn+1)7 (23)
d(x'rla yn—i—l) < (5(Fn(.’L'n_1), Fn+1($n)).
Now following the arguments similar to that in Case I,
d(Tp, Yn+1) < kd(zp—1, ), (2.4)

where again

B a+ g 164
k_max{l—ﬁ’l—(a+ﬁ)}<1'
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From (2.3) and(2.4), it follows that
d(ﬂjna xn—&—l) < kd(ﬂfn—la l'n)‘

Case III: Suppose that x, € ) and z,11 € P. We note that then x,_; € P.
By definition of {x,}, there is a point y,, € F,,(z,—1) such that

d(xn—la xn) + d(:nn, yn) = d($n_1, yn)' (2'5)

We have successively:

d(Zn, Tny1) < d(@ns Yn) + d(Yn, Tnt1) <

< d(@n, yn) + 0(Fn(2n-1), Foy1(2n)) < d(@n, yn)+
+amax{d(zn_1,2n), D(xn-1, Fo(tn-1)), D(xn, Fnt1(xn-1))}
+B[D(xn—1, Fnt1(xn) + D(@n, Fn(2n-1))] = d(Tn, yn)+
+amax{d(zn—1,%n), d(Tn-1,Yn), d(Tpn, Tni1)}+
+Bld(zn—1,Tn+1) + d(@n, yn)] < d(@n, yn)+
+amax{d(zn_1,Yn), d(Tn, Tnt1) }+

+B[d(zn-1,2n) + d(Tn, Tpt1) + d(@n, yn)] = d(@n—1,Yn)+
+amax{d(zn—1,Yn), d(@n, Tny1)} + Bld(@n-1,yn) + d(Tn, Tni1)]-
From (2.4) of Case II applied to n — 1, we have

d('fn—lv yn) < kd(xn—% xn—l) (26)
and hence

d(xn, Tnt1) < kd(zp—2,2n—1)+ amax{kd(xn—2,Tn-1),d(Tn,Tn+1)}
+0[kd(xn—2,Tn—1) + d(Tpn, Tni1)]
= max{(1+a+ B)kd(xp—2,2n-1) + Bd(Tn, Tni1),
(1+ B)kd(zn-2,2n-1) + (a + B)d(zn, Tny1)}

This further implies that

d(Tp, Tnt1) < max { (1+1aj%ﬁ)k7 1(_1(2@2) }d(an, Tn—1)

= qd((L’n_Q, xn—1)7

(2.7)
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where

B (1+a+Rk (1+8)k
¢ - max{ 1-3 ’1—(a+ﬂ)}
= k:max{1+a+ﬁ 1+5 }
1-8 '1—(a+p)

k<1_1(;:i5)> <1

Now for any n € N, we have

IN

qd($2n—27 x?n—l)

q"d(zg,z1).

d(z2n, Ton+1)

IN

Since n is arbitrary, one has
d(xp.Tnt1) < ¢"d(xo,x1).

Then for any positive integer p,

ntptl
d(Tn, Tnip) <Y d(wi,miga)

n+p+1

> gld(xo, 1)

=1
o (1 =gt
1—g¢q

IN

d(xo,z1) — 0 asn — oo.

This shows that {z,} is a Cauchy sequence in K. Since K is closed, it is
complete and there is a point z € K such that limx, = z exists. We show
that z is a fixed point of F,,. Without loss of generality, we may assume that
Tnt1 € Fyyi1(xy,) for some n € N. Then,

5o F5(2) < 62 mnsn) + 6@ns1, Fy(2))
= 0(z,2n41) + 0(Fj(2), Frar(2n))
= 5z, ns1) + amax{d(z, 20), Dz, Fy(2)), D(en, Fati (50))}
+6[D(z, Fnyr(xn)) + D(wn, Fj(2))]
< (2, 2p41) + amax{d(z,z,),0(2, Fj(2)),d(zn, Tni1)}

+0[d(z, 2p41) + 0(2n, Fj(2))].
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Taking limit as n — oo in above inequality yields that
d(z, Fj(z)) < 04 amax{0,0(z, F;(2),0,80(z, F;(z))}
= OZ(S(Z, FJ(Z))a
which implies that §(z, Fj(z)) = 0 since o < 1, i.e., Fj(z) = {z} for each
j € N.
To prove uniqueness, let z* (# z) be another common fixed point of {F,}.
Then by(2.1) we get

d(z,z")

IN

0(Fi(2), Fj(27))

amax{d(z,z*), D(z, Fi(z), D(z*, Fj(2"))}
+0[d(z, Fj(2")) + D(2", Fi(2))]

= (a+2B)d(z,2"),

which is a contradiction since a 4+ 23 < 2a + 36 < 1. Hence z = z*.
Finally we prove the continuity of F,, for each n € N. Let {z,} be any

IN

sequence in K converging to the unique common fixed point z of {F,,}>2 . To
conclude, it, is enough to prove that lim,, H(F}(zy), Fjz) = 1 for each i € N.
We know that

(%) H(Fj(zn), Fj(2)) < 6(Fi(zn), Fi(2)).

Now for any i # j,

0(Fi(zn), Fi(2))

0(Fi(zn), Fj(2))

< amax{d(zn, 2), D(2n, Fi(zn), D(2, Fj(2))}
+B[D(2n, Fj(2)) + D(2, Fi(2n))]
< amax{d(zn, 2),0(2n, Fi(zn)),0}

+B10(zn, Fj(2)) 4 6(2, Fi(zn))]-
Taking limit as n — oo, we get
liTan5(Fi(zn),E(z)) < amaX{O,liyé(Fi(zn),Fi(z)),O}
10+ lim(Fi(z0). Fi(2)]
= (a+ B I 3(F(z0), Fi(2),
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which is possible only when lim,, §(F;(zy), Fi(2)) = 0.
From (x) it follows that lim H(F;(zy), Fi(2)) = 0. This completes the proof.
(]

Remark 2.1. With respect to condition (2.1), the following implications hold:
i) (2.1) and (x € Fp, N Fr;, i # j) = Fi(z) = Fj(z) = {r}.
i) (2.1) and (v € Fg,, y € Fr;, i # j) = 0(Fi(x), Fj(y)) <
amas{d(z,y), Dz, Fi(x)), D(y, F5(9))} + BID(x, Fy(y) + D(y, Fi(x)] <
< (a+28) - 3(Fi(x), Fy(y)).
Hence 0(Fi(z), Fj(y)) = 0 and so Fi(z) = Fi(y) = {z}. In conclusion
z=x=y.
iii) (2.1) and (x € Fr,y = z) = §(F(z),Fj(z)) < (a+ p) -
5(Fi (@), Fy()).
Hence §(Fi(z), Fj(xz)) = 0 and so Fi(x) = Fj(x) = {z}. In conclusion

z=x=1.

Theorem 2.2. Let (X,d) be a metrically conver complete space, K a non-
empty, closed, conver and bounded subset of X. Let {F,}2° be a sequence of
mappings from K into CB(X) satisfying for i # j,

8(Fi(2), Fy(y)) < ad(,y)+ fmax{3[D(z, Fi(x)) + Dly, F;(y))],
LD(, Fy(y)) + Dly. Fi()))}

for all x,y € K, where « > 0 and 3 >0 satisfyingaz—i—a—i—a-ﬁ—i—% < 1.

If F,(K)NK # 0 for each x € 0K and n € N, then Fp, = (SF)p, = {z*},

for eachm € N. Moreover, for eachn € N, F,, is continuous in x* with respect

(2.8)

to the Hausdorff-Pompeiu metric.

Proof. Let z € K be arbitrary and define a sequence {z,} C K as in the
previous proof. So {z,} = P U Q, where

P ={x, e {zp} | xn € F(xp—1),n € N}
and
Q= {z, €{zn} | 2 € OK,xy, € F(xp—1),n € N}.

We show that {z,} is a Cauchy sequence. Now for any two consecutive
terms Xy, Tp4+1 € {x,}, there are following three cases:
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Case I: Suppose that x,, x,+1 € P. Then by (2.9) we get

d(xnaxn-i—l)

< 5(F (xn 1)Fn+1<xn

< @d($n 173311 + B max {% xn 1, F xn 1))+D(xnaFn+1($n))]a
LD @n-t, Fut1(wa-1)) + D(@n, Faln))] |

< O[d(l’n 1, Tn +ﬁmax{% Tn—1,Tn +d($na$n+1)]
s max[d(zp—1, Tni1) + d(zn, xn)]}

< ad(mn—h xn) + ,Bmax {%[d(xn—h xn) + d($n, xn—&-l)]?
Hd(@n-1,@0) + d(@ns nt1)] |

< ad(-fnfb xn) + gd(l‘nfl, xn) + gd(l’n, -rnJrl)

<Tj§ > d(Tn—1,Tn)-
(2.9)

Case II: Suppose that x,, € P and x,+1 € Q. Then there is a point y, 1 €
Foii1(xy) € X\K such that
d(Tn, Tny1) + A(Tni1, Ynt1) = d(Tn, Ynt1),

which further implies that

d(@n, ynt1) < d(Tn, Yns1)

and

d(Tn, Yn+1) < O(Fn(n-1), Fny1(2n))- (2.10)
Now
Ad(@n, Ynt1) < S(Fn(Tn-1), Fay1(2n)) < ad(@n—1,25)+
Bmax { 4D @a-1, Fa(@a1)) + D(an, Forr (@), 31D @01, For (a0)+

D0, Fa(@n1))] } < ad(@n1,)+
+Amax { §[d(@n—1,20) + d(2n, 2ns1): [ATn-1, Yns1) + d(wn, 20)] |
= ad(rp—_1,Ty) + f max {%[d(azn,l, Tn)+

(@0, Tni)], 3d(@n-1,20) + d(wn, yos1)] | = ad(wn-1, 0)+
+§d(l’n_1, $n> + gd(xna Z/n—i—l) =k- d(x’fL—lv xn)a
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where
o+ g
1 —

k= < 1.

ISR

From (3) it follows that
d(l’n, xn+1) < kd(l‘n_l, xn)

Case III: Suppose that x, € @ and z,4+1 € P. Note that x,_1 € P. Then
there is a point y,, € F,,(x,—1) C X\K such that

d(xnflv xn) + d(xm yn) = d(xnfla yn)a
which further implies that

d(Tpn,yn) < d(Tp—1,Yn)- (2.11)
Now
d(l’n, xn—&-l)
d(xna yn) + d(yn, xn+1)
= d(xna yn) + 6( (l‘n 1) Fn+1 (xn))
d(xpn, yn) + ad(xp—1, ) + F max {%[D(xn_l, Fo(zp-1))

+D(n, Frg1(20))], %[D($n—17 +1(2n)) + D(2n, Fn(xn—l))]}

(Tn, Yn) + @d(zp_1,x,) + [ max {%[d(xnfl, Yn) + d(Tn, Tni1)],
Y[ d(@n-1, 2041) + d(zn, ynn}

(xn—h yn) + ad(xn—ly xn + B max

| I
.

IN
9

—

% d xn 1vyn + d(xnw/ljn-i-l)}
%[d<xn lyxn) + d($na xn+1 + d xn yn) }

(Tn—1,yn) + ad(xpn_1, 2y —|—ﬁmax{§ Tn—1,Yn) + d(Tp, Tpi1)],
%[d('rnfb yn) + d(ﬂ?n, xn+1)]}

(xnfla yn) + Oéd(:En,b xn) + gd(l‘nfla yn) + gd(l'n» xn+1)
kd(xn—% -Tn—l) + kad(xn—% xn—l) + gkd(fEn—Za 5Un—1)
+§d(mn, Tpt1)-

Il
o
—

U

(2.12)
It follows that d(zy, zp+1) < <W>d($n—2,$n—1)

1+a+2
:k( Jlr ;2>d(xn2,l‘n1)
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— qd(Tp2, 70 1), where

_ (Lot 8 (et 8\ (ltat g |
7= 5 )T \1_¢ 5 )"
2 2 2

Thus in all three cases one has

d(l‘n, xn—&—l) S qd(xn—% xn-‘,—l)-

Therefore

IN

d(z2n, Tont1) qd(z2n—2, Tan—1)

IA

q"d(wo,71)
for all n € N. Since n is arbitrary, we have
d(zp, Tnt1) < ¢"d(xo,x1).

This shows that {z,} is a Cauchy sequence in K. As K is closed, it is
complete and there is a point z € K such that lim, z,, = z.

We show that z is a fixed point of F,,. Without loss of generality, we may
assume that z,41 € Fj,41(zy). Then

(2, Fy (=)

< (2, Zp41) + 0(znt1, Fj(2))

= 0(z,2pt1) + 0(Fnti(zn), Fj(2))

S d(z 1) + 0d(an, 2) + fmax { 1D (n, Fusa () + D(z, Fi(2))),

S D0, F5(2)) + D(z, Fuga ()]}
(2, 2p11) + ad(n, 7) + Bmax {%[d(zn, nin) + 6(2, F3(2))],

S16(n, F(2)) + d(z,mne)] -

Taking limit as n — oo, we get

5 F5(2) < 04 fmax {110+ (2, ()], 51602, Fy(2) + 01}

5,
= o (),

)
which is possible only when Fj(z) = {z} for j € N. Again the uniqueness of
9).

z follows from the condition (2.9). Finally we prove the continuity of F,, for
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each n € N. Let {z,} be any sequence in K converging to the unique common
fixed point z of {F},}5°
Now for any i # 7,
6(Fj(zn), Fi(2))
= O(Fi(zn), Fj(2))

ad(zn,2) + Fmas { S [D(en, Fi(en)) + Dz, ()],

IN

3 1D(en Ei(2)) + D(z, i)l |
< ad(zm, 2) + Bmax {%[5(%,3(%)) +0), %[5(%1? () +8(z. Fi(z)] 1
Taking limit as n — oo,

lim 6(Fy(zn), F(2)) < 5 im6(Fi(zn), F5(2)),

\-/ M‘Q

which is possible only when lim,, 6 (F;(z,
d(Fi(zn), Fi(z)), we have lim,, H(F;(zy), F;
z for each ¢ € N. This completes the proof. [

, Fi(2)) = 0. Since H(Fi(zy), Fi(2)) <
i(z)) = 0 and so F; is continuous at

Now we will prove two results concerning the fixed point of sequence of
non-self maps on the subsets of a metrically convex metric space satisfying
a contraction condition more general than (2.1) and (2.9) and under certain
compactness type condition.

Theorem 2.3. Let (X,d) be a metrically convexr metric space, K a compact
convex subset of X. Let {F,}32, be a sequence of continuous multivalued
operators from K into CB(X) satisfying for i # j,

6(Fi(x), Fj(y)) < amax{d(z,y),D(z, Fi(z)), D(y, Fj(y))}
+B[D(z, Fj(y)) + D(y, Fi(x))]
for all x,y € K with right hand side not zero, where o > 0, 8 > 0 and
2a0+ 306 < 1.
If F(zp)NK # 0 for each x € OK andn € N, then Fr, = (SF)p, = {z*},
for each n € N.

(2.13)

Proof. First we note that if the sequence {F},} of multivalued operators have
a common fixed point, then from (2.14) it follows that the common fixed point

is unique.
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As F' is continuous and K is compact so both sides of the inequality (2.14)
are bounded on K. Now there are two cases:

Case I: Suppose that there exist some z,y € K such that the right hand
side of (2.14) is zero. Then z = x = y is a common fixed point of {F,,} and so
it is unique.

Case II: Now we assume that the right hand of the inequality (2.14) is
positive on K. If 2a + 38 < 1, the desired conclusion follows from Theorem
2.1. Therefore we prove the result only in the case when 2o + 33 = 1.

Denote by

M(i’,y) = amax{d(:E?y)’D(l'aFi(:E))?D(yaFj(y))}
+ B[D(z, Fj(y)) + D(y, Fi(2))].
Define a function T : K x K — R™ by

O(Fi(x), F5(y))

T(xay) - M(x,y) )

z,y € K. (2.14)

Clearly the function 7" is well defined, since M (z,y) # 0 for all z,y € K.
Since each F}, is continuous, T is continuous and from compactness of K, it
follows that T attains its maximum on K x K at some point say (u,v) € K2.
Call the value c. From (2.14), we get 0 < ¢ < 1. By the definition of T" we
obtain

S B0 g
M(z,y)
i.e.,

6(Fi(), F(y))

IN

cM(z,y)
= o' max{d(z,y), D(z, Fi(z)), D(y, Fj(y))},  (2.19)
+4'[D(x, Fj(y)) + D(y, Fi(z))]

for all z,y € K, where o > 0, #’ > 0 satisfying 2¢/ + 33" = c(2a + 38) < 1.
Since K is compact, it is closed and bounded. Thus all the conditions of
Theorem 2.1 are satisfied and hence an application of it yields the desired
result. OJ

Theorem 2.4. Let (X,d) be a metrically convexr metric space, K a compact
convez subset of X. Let {F,} be a sequence of continuous multivalued operator
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from K into CB(X) satisfying for each i # j the following condition:
8(Fi(@), Fy(y)) < ad(z,y)+ Bmax {3[D(w, Fi(x) + Dly, F;(y)],
LD (e, Fy(y) + Dy, Fi(x))] |
(2.16)
for all x,y € K with right hand side not zero, where o > 0, 8 > 0 and
20+af+ B <1

If F,(x) N K #£ 0 for each x € OK and n € N, then Fp, = (SF)p, = {z*},
for each n € N.

Proof.  The proof is similar to the Theorem 2.3 with appropriate modifi-
cations. The result follows by an application of Theorem 2.2. The proof is
complete. [J

Theorem 2.5. Let (X,d) be a metrically convex metric space, K a non-empty
compact convex subset of X. Let {F,,} be a sequence of continuous multivalued
operator of K into CB(X) satisfying for all i # j,

H(Fi(z), Fj(y)) < ad(z,y) + hmax {%[D(x, Fi(z)) + D(y, Fi(v))],

LD (e, Fy(y) + Dly, Fi())] }

(2.17)
for all x,y € K with right hand side not zero, where a > 0, h > 0 and
a+3h+ 9 <1,

If F,(z) C K for each x € 0K and n € N, then {F,} have a common fixed
point z € K.

Proof. The proof is similar to the Theorem 2.3 and now the desire conclusion
follows by an application of Theorem 3.1 of Hung and Cho [6]. O
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