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1. Introduction

Fixed point theorems for nonself contraction multifunctions have been dis-
cussed in the literature, among many others, by Assad [1], Assad and Kirk [2],
Ćirić and Ume [3]. Itoh [7] extended these results to a more general class of
contraction multifunctions while Rhoades obtained a generalization of Itoh’s
fixed point theorem (see [7]) for the case of a multivalued operator F defined
on a subset K of a metrically convex metric space X. Common fixed point
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theorems for a sequences {Fn} of non-self multivalued operators in metrically
convex metric space have been also proved by Huang and Cho [6]. All these
results use a kind of boundary condition with respect to the multivalued op-
erator F and the subset K of the metric space X, namely F (∂K) ⊂ K, where
∂K denotes the boundary of K. In a recent paper [4], one of the present au-
thors proved some fixed point theorems for the non-self multivalued operators
on a metrically convex metric space, satisfying slightly stronger condition than
Rhoades [8], but under a weaker boundary condition than that in the above
mentioned papers.

The purpose of the present paper is to prove some common fixed point the-
orems for a sequence of non-self multivalued operators on a metrically convex
metric space satisfying certain contraction type conditions and under a weaker
boundary condition. Our results extend some theorems of Dhage [4] (to a se-
quence of multivalued operators) and include the result of Huang and Cho [6]
under a slightly stronger contraction condition.

2. Main Results

Let (X, d) denote a metric space and let CB(X) denote the class of all
non-empty closed and bounded subsets of X.

Definition 2.1. A metric space (X, d) is said to be metrically convex if for
any x, y ∈ X with x 6= y, there is a z ∈ X, x 6= z, y 6= z such that

d(x, z) + d(z, y) = d(x, y).

We need the following lemma in the sequel.

Lemma 2.1. (Assad and Kirk [2]) If K is a non-empty closed convex subset
of a complete and metrically convex metric space (X, d), then for any x ∈ K

and y /∈ K, there exists a point z ∈ ∂K (the boundary of K) such that

d(x, z) + d(z, y) = d(x, y).

For any A,B ∈ CB(X) denote:

D(A,B) = inf{d(a, d) | a ∈ A, b ∈ B},

δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}
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and
H(A,B) = max

{
sup
a∈A

D(a,B), sup
b∈B

D(A, b)
}

.

The following properties of the functional δ are well-known (see for example
Fisher [5] and Petruşel [11]) :

(i) δ(A,B) = 0 if and only if A = B = {x∗}
(ii) δ(A,B) = δ(B,A) and
(iii) δ(A,B) ≤ δ(A,C) + δ(C,B)
for A,B, C ∈ CB(X).

We need the following lemma in the sequel.

Lemma 2.2. Fisher [5] Let {An} and {Bn} be two sequences in CB(X) con-
verging in CB(X) to the sets A and respectively B. Then

lim
n→∞

δ(An, Bn) = δ(A,B).

If T : X → CB(X) is a multivalued operator, then FT := {x ∈ X| x ∈ T (x)}
denotes the fixed point set T , while (SF )T := {x ∈ X| {x} = T (x)} is the
strict fixed point set of T .

Now we prove our first main result.

Theorem 2.1. Let (X, d) be a complete and metrically convex metric space,
K a non-empty, closed, convex and bounded subset of X. Let {Fn}∞n=1 be a
sequence of multivalued operators of K into CB(X) satisfying for i 6= j,

δ(Fi(x), Fj(y)) ≤ α max{d(x, y), D(x, Fi(x)), D(y, Fj(y))}
+β[D(x, Fj(y) + D(y, Fi(x)]

(2.1)

for all x, y ∈ K, where α ≥ 0, β ≥ 0 and 2α + 3β < 1.

If Fn(x) ∩K 6= ∅ for each x ∈ ∂K and each n ∈ N, then FFn = (SF )Fn =
{z}, for each n ∈ N . Moreover, for each n ∈ N, Fn is continuous in z with
respect to the Hausdorff-Pompeiu metric on X.

Proof. Let x ∈ K be arbitrary and define a sequence {xn} ⊂ K as follows.
Let x0 = x and take a point x1 ∈ F1(x0) ∩ K if F1(x0) ∩ K 6= ∅, otherwise
choose a point x2 ∈ ∂K such that

d(x0, x1) + d(x1, y1) = d(x0, y1)

for some y1 ∈ Fx0 ⊂ X\K.
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Similarly choose a point x2 ∈ F2(x1)∩K if F2(x1)∩K 6= 0, otherwise choose
a point x2 ∈ ∂K, such that

d(x1, x2) + d(x2, y2) = d(x1, y2)

for some y2 ∈ F2(x1) ⊂ X\K.

Continuing in this way, choose xn ∈ Fn(xn−1) ∩ K if Fn(xn−1) ∩ K 6= ∅,
otherwise select xn ∈ ∂K such that

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn)

for some yn ∈ Fn(xn−1) ⊂ X\K. Denote by

P = {xn ∈ {xn} | xn ∈ Fn(xn−1), n ∈ N}

and

Q = {xn ∈ {xn} | xn ∈ ∂K, xn ∈ Fn(xn−1), n ∈ N}.

Clearly

{xn} = P ∪Q ⊂ K.

Then for any two consecutive terms xn, xn−1 of the sequence {xn}, there are
only the following three possibilities:

(i) xn, xn−1 ∈ P,

(ii) xn ∈ P, xn+1 ∈ Q,

(iii) xn ∈ Q and xn+1 ∈ P.

We will prove that {xn} is a Cauchy sequence in K.
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Case I: Suppose that xn, xn+1 ∈ P. Then by(2.1), we have,

d(xn, xn+1) ≤ δ(Fn(xn−1), Fn+1(xn))

≤ α max{d(xn−1, xn), D(xn−1, Fn(xn−1)), D(xn, Fn+1(xn))}

+β[D(xn−1, Fn+1(xn)) + D(xn, Fn(xn−1))]

≤ α max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}

+β[d(xn−1, xn+1) + d(xn, xn)]

≤ α max{d(xn−1, xn), d(xn, xn+1)}

+β[d(xn−1, xn) + d(xn, xn+1)]

= max{αd(xn−1, xn) + β[d(xn−1, xn) + d(xn, xn+1)],

αd(xn, xn+1) + β[d(xn−1, xn) + d(xn, xn+1)]}

= max{(α + β)d(xn−1, xn) + βd(xn, xn+1),

βd(xn−1, xn) + (α + β)d(xn, xn+1)},

i.e.,

d(xn, xn+1) ≤ kd(xn−1, xn), (2.2)

where

k = max
{

α + β

1− β
,

β

1− (α + β)

}
< 1

since 2α + 3β < 1.

Case II: Let xn ∈ P and xn+1 ∈ Q. Then

d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1)

for some yn+1 ∈ Fn+1(xn) ⊂ X\K.

Clearly {
d(xn, xn+1) ≤ d(xn, yn+1),
d(xn, yn+1) ≤ δ(Fn(xn−1), Fn+1(xn)).

(2.3)

Now following the arguments similar to that in Case I,

d(xn, yn+1) ≤ kd(xn−1, xn), (2.4)

where again

k = max
{

α + β

1− β
,

β

1− (α + β)

}
< 1.
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From (2.3) and(2.4), it follows that

d(xn, xn+1) ≤ kd(xn−1, xn).

Case III: Suppose that xn ∈ Q and xn+1 ∈ P. We note that then xn−1 ∈ P.

By definition of {xn}, there is a point yn ∈ Fn(xn−1) such that

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn). (2.5)

We have successively:
d(xn, xn+1) ≤ d(xn, yn) + d(yn, xn+1) ≤
≤ d(xn, yn) + δ(Fn(xn−1), Fn+1(xn)) ≤ d(xn, yn)+
+α max{d(xn−1, xn), D(xn−1, Fn(xn−1)), D(xn, Fn+1(xn−1))}
+β[D(xn−1, Fn+1(xn) + D(xn, Fn(xn−1))] = d(xn, yn)+
+α max{d(xn−1, xn), d(xn−1, yn), d(xn, xn+1)}+
+β[d(xn−1, xn+1) + d(xn, yn)] ≤ d(xn, yn)+
+α max{d(xn−1, yn), d(xn, xn+1)}+
+β[d(xn−1, xn) + d(xn, xn+1) + d(xn, yn)] = d(xn−1, yn)+
+α max{d(xn−1, yn), d(xn, xn+1)}+ β[d(xn−1, yn) + d(xn, xn+1)].
From (2.4) of Case II applied to n− 1, we have

d(xn−1, yn) ≤ kd(xn−2, xn−1) (2.6)

and hence

d(xn, xn+1) ≤ kd(xn−2, xn−1) + α max{kd(xn−2, xn−1), d(xn, xn+1)}

+β[kd(xn−2, xn−1) + d(xn, xn+1)]

= max{(1 + α + β)kd(xn−2, xn−1) + βd(xn, xn+1),

(1 + β)kd(xn−2, xn−1) + (α + β)d(xn, xn+1)}.

This further implies that

d(xn, xn+1) ≤ max
{

(1+α+β)k
1−β , (1+β)k

1−(α+β)

}
d(xn−2, xn−1)

= qd(xn−2, xn−1),
(2.7)
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where

q = max
{

(1 + α + β)k
1− β

,
(1 + β)k

1− (α + β)

}
= k max

{
1 + α + β

1− β
,

1 + β

1− (α + β)

}
= k

(
1 + β

1− (α + β)

)
< 1.

Now for any n ∈ N, we have

d(x2n, x2n+1) ≤ qd(x2n−2, x2n−1)

≤ qnd(x0, x1).

Since n is arbitrary, one has

d(xn.xn+1) ≤ qnd(x0, x1).

Then for any positive integer p,

d(xn, xn+p) ≤
n+p+1∑

i=1

d(xi, xi+1)

≤
n+p+1∑

i=1

qid(x0, x1)

= qn (1− qn+p−1)
1− q

d(x0, x1) → 0 as n →∞.

This shows that {xn} is a Cauchy sequence in K. Since K is closed, it is
complete and there is a point z ∈ K such that lim xn = z exists. We show
that z is a fixed point of Fn. Without loss of generality, we may assume that
xn+1 ∈ Fn+1(xn) for some n ∈ N. Then,

δ(z, Fj(z)) ≤ δ(z, xn+1) + δ(xn+1, Fj(z))

= δ(z, xn+1) + δ(Fj(z), Fn+1(xn))

= δ(z, xn+1) + α max{d(z, xn), D(z, Fj(z)), D(xn, Fn+1(xn))}

+β[D(z, Fn+1(xn)) + D(xn, Fj(z))]

≤ δ(z, xn+1) + α max{d(z, xn), δ(z, Fj(z)), d(xn, xn+1)}

+β[d(z, xn+1) + δ(xn, Fj(z))].
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Taking limit as n →∞ in above inequality yields that

δ(z, Fj(z)) ≤ 0 + α max{0, δ(z, Fj(z), 0, βδ(z, Fj(z))}

= αδ(z, Fj(z)),

which implies that δ(z, Fj(z)) = 0 since α < 1, i.e., Fj(z) = {z} for each
j ∈ N.

To prove uniqueness, let z∗ (6= z) be another common fixed point of {Fn}.
Then by(2.1) we get

d(z, z∗) ≤ δ(Fi(z), Fj(z∗))

≤ α max{d(z, z∗), D(z, Fi(z), D(z∗, Fj(z∗))}

+β[d(z, Fj(z∗)) + D(z∗, Fi(z))]

= (α + 2β)d(z, z∗),

which is a contradiction since α + 2β ≤ 2α + 3β < 1. Hence z = z∗.

Finally we prove the continuity of Fn for each n ∈ N. Let {zn} be any
sequence in K converging to the unique common fixed point z of {Fn}∞n=1. To
conclude, it, is enough to prove that limn H(Fj(zn), Fjz) = 1 for each i ∈ N.

We know that

(∗) H(Fj(zn), Fj(z)) ≤ δ(Fi(zn), Fi(z)).

Now for any i 6= j,

δ(Fi(zn), Fi(z)) = δ(Fi(zn), Fj(z))

≤ α max{d(zn, z), D(zn, Fi(zn), D(z, Fj(z))}

+β[D(zn, Fj(z)) + D(z, Fi(zn))]

≤ α max{d(zn, z), δ(zn, Fi(zn)), 0}

+β[δ(zn, Fj(z)) + δ(z, Fi(zn))].

Taking limit as n →∞, we get

lim
n

δ(Fi(zn), Fi(z)) ≤ α max{0, lim
n

δ(Fi(zn), Fi(z)), 0}

+β[0 + lim
n

δ(Fi(zn), Fi(z))]

= (α + β) lim
n

δ(Fi(zn), Fi(z)),
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which is possible only when limn δ(Fi(zn), Fi(z)) = 0.

From (∗) it follows that lim
n→∞

H(Fi(zn), Fi(z)) = 0. This completes the proof.
�

Remark 2.1. With respect to condition (2.1), the following implications hold:
i) (2.1) and (x ∈ FFi ∩ FFj , i 6= j) ⇒ Fi(x) = Fj(x) = {x}.
ii) (2.1) and (x ∈ FFi, y ∈ FFj , i 6= j) ⇒ δ(Fi(x), Fj(y)) ≤

α max{d(x, y), D(x, Fi(x)), D(y, Fj(y))}+ β[D(x, Fj(y) + D(y, Fi(x)] ≤
≤ (α + 2β) · δ(Fi(x), Fj(y)).
Hence δ(Fi(x), Fj(y)) = 0 and so Fi(x) = Fi(y) = {z}. In conclusion

z = x = y.
iii) (2.1) and (x ∈ FFi , y = x) ⇒ δ(Fi(x), Fj(x)) ≤ (α + β) ·

δ(Fi(x), Fj(x)).
Hence δ(Fi(x), Fj(x)) = 0 and so Fi(x) = Fj(x) = {z}. In conclusion

z = x = y.

Theorem 2.2. Let (X, d) be a metrically convex complete space, K a non-
empty, closed, convex and bounded subset of X. Let {Fn}∞n=1 be a sequence of
mappings from K into CB(X) satisfying for i 6= j,

δ(Fi(x), Fj(y)) ≤ αd(x, y) + β max
{

1
2 [D(x, Fi(x)) + D(y, Fj(y))],

1
2 [D(x, Fj(y)) + D(y, Fi(x))]

} (2.8)

for all x, y ∈ K, where α ≥ 0 and β ≥ 0 satisfying α2 + α + α · β + 3β
2 < 1.

If Fn(K)∩K 6= ∅ for each x ∈ ∂K and n ∈ N, then FFn = (SF )Fn = {x∗},
for each n ∈ N . Moreover, for each n ∈ N, Fn is continuous in x∗ with respect
to the Hausdorff-Pompeiu metric.

Proof. Let x ∈ K be arbitrary and define a sequence {xn} ⊂ K as in the
previous proof. So {xn} = P ∪Q, where

P = {xn ∈ {xn} | xn ∈ Fn(xn−1), n ∈ N}

and

Q = {xn ∈ {xn} | xn ∈ ∂K, xn ∈ Fn(xn−1), n ∈ N}.

We show that {xn} is a Cauchy sequence. Now for any two consecutive
terms xn, xn+1 ∈ {xn}, there are following three cases:
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Case I: Suppose that xn, xn+1 ∈ P. Then by (2.9) we get

d(xn, xn+1)
≤ δ(Fn(xn−1)Fn+1(xn))

≤ αd(xn−1, xn) + β max
{

1
2 [D(xn−1, Fn(xn−1)) + D(xn, Fn+1(xn))],

1
2 [D(xn−1, Fn+1(xn−1)) + D(xn, Fn(xn))]

}
≤ αd(xn−1, xn) + β max

{
1
2 [d(xn−1, xn) + d(xn, xn+1)]

1
2 max[d(xn−1, xn+1) + d(xn, xn)]

}
≤ αd(xn−1, xn) + β max

{
1
2 [d(xn−1, xn) + d(xn, xn+1)],

1
2 [d(xn−1, xn) + d(xn, xn+1)]

}
≤ αd(xn−1, xn) + β

2 d(xn−1, xn) + β
2 d(xn, xn+1)

=
(

α+β
2

1−β
2

)
d(xn−1, xn).

(2.9)
Case II: Suppose that xn ∈ P and xn+1 ∈ Q. Then there is a point yn+1 ∈

Fn+1(xn) ⊂ X\K such that

d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1),

which further implies that

d(xn, yn+1) ≤ d(xn, yn+1)

and

d(xn, yn+1) ≤ δ(Fn(xn−1), Fn+1(xn)). (2.10)

Now
d(xn, yn+1) ≤ δ(Fn(xn−1), Fn+1(xn)) ≤ αd(xn−1, xn)+
β max

{
1
2 [D(xn−1, Fn(xn−1)) + D(xn, Fn+1(xn))], 1

2 [D(xn−1, Fn+1(xn))+

+D(xn, Fn(xn−1))]
}
≤ αd(xn−1, xn)+

+β max
{

1
2 [d(xn−1, xn) + d(xn, xn+1)], 1

2 [d(xn−1, yn+1) + d(xn, xn)]
}

= αd(xn−1, xn) + β max
{

1
2 [d(xn−1, xn)+

+d(xn, xn+1)], 1
2 [d(xn−1, xn) + d(xn, yn+1)]

}
= αd(xn−1, xn)+

+β
2 d(xn−1, xn) + β

2 d(xn, yn+1) = k · d(xn−1, xn),
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where

k =
α + β

2

1− β
2

< 1.

From (3) it follows that

d(xn, xn+1) ≤ kd(xn−1, xn).

Case III: Suppose that xn ∈ Q and xn+1 ∈ P. Note that xn−1 ∈ P. Then
there is a point yn ∈ Fn(xn−1) ⊂ X\K such that

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn),

which further implies that

d(xn, yn) ≤ d(xn−1, yn). (2.11)

Now

d(xn, xn+1)
≤ d(xn, yn) + d(yn, xn+1)
= d(xn, yn) + δ(Fn(xn−1), Fn+1(xn))

≤ d(xn, yn) + αd(xn−1, xn) + β max
{

1
2 [D(xn−1, Fn(xn−1))

+D(xn, Fn+1(xn))], 1
2 [D(xn−1, Fn+1(xn)) + D(xn, Fn(xn−1))]

}
= d(xn, yn) + αd(xn−1, xn) + β max

{
1
2 [d(xn−1, yn) + d(xn, xn+1)],

1
2 [d(xn−1, xn+1) + d(xn, yn)]

}
≤ d(xn−1, yn) + αd(xn−1, xn) + β max

{
1
2 [d(xn−1, yn) + d(xn, xn+1)],

1
2 [d(xn−1, xn) + d(xn, xn+1) + d(xn, yn)]

}
= d(xn−1, yn) + αd(xn−1, xn) + β max

{
1
2 [d(xn−1, yn) + d(xn, xn+1)],

1
2 [d(xn−1, yn) + d(xn, xn+1)]

}
= d(xn−1, yn) + αd(xn−1, xn) + β

2 d(xn−1, yn) + β
2 d(xn, xn+1)

= kd(xn−2, xn−1) + kαd(xn−2, xn−1) + β
2 kd(xn−2, xn−1)

+β
2 d(xn, xn+1).

(2.12)

It follows that d(xn, xn+1) ≤
(

k+kα+k β
2

1−β
2

)
d(xn−2, xn−1)

= k

(
1+α+β

2

1−β
2

)
d(xn−2, xn−1)
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= qd(xn−2, xn−1), where

q = k

(
1 + α + β

2

1− β
2

)
=

(
α + β

2

1− β
2

)(
1 + α + β

2

1− β
2

)
< 1.

Thus in all three cases one has

d(xn, xn+1) ≤ qd(xn−2, xn+1).

Therefore

d(x2n, x2n+1) ≤ qd(x2n−2, x2n−1)

≤ qnd(x0, x1)

for all n ∈ N. Since n is arbitrary, we have

d(xn, xn+1) ≤ qnd(x0, x1).

This shows that {xn} is a Cauchy sequence in K. As K is closed, it is
complete and there is a point z ∈ K such that limn xn = z.

We show that z is a fixed point of Fn. Without loss of generality, we may
assume that xn+1 ∈ Fn+1(xn). Then

δ(zn, Fj(z))

≤ δ(z, xn+1) + δ(xn+1, Fj(z))

= δ(z, xn+1) + δ(Fn+1(xn), Fj(z))

≤ d(z, xn+1) + αd(xn, z) + β max
{1

2
[D(xn, Fn+1(xn)) + D(z, Fj(z))],

1
2
[D(xn, Fj(z)) + D(z, Fn+1(xn))]

}
= d(z, xn+1) + αd(xn, z) + β max

{1
2
[d(xn, xn+1) + δ(z, Fj(z))],

1
2
[δ(xn, Fj(z)) + d(z, xn+1))]

}
.

Taking limit as n →∞, we get

δ(z, Fj(z)) ≤ 0 + β max
{1

2
[0 + δ(z, Fj(z))],

1
2
[δ(z, Fj(z)) + 0]

}
=

β

2
δ(z, Fj(z)),

which is possible only when Fj(z) = {z} for j ∈ N. Again the uniqueness of
z follows from the condition (2.9). Finally we prove the continuity of Fn for
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each n ∈ N. Let {zn} be any sequence in K converging to the unique common
fixed point z of {Fn}∞n=1.

Now for any i 6= j,

δ(Fj(zn), Fi(z))

= δ(Fi(zn), Fj(z))

≤ αd(zn, z) + β max
{1

2
[D(zn, Fi(zn)) + D(z, Fj(z))],

1
2
[D(zn, Fj(z)) + D(z, Fi(zn))]

}
≤ αd(zn, z) + β max

{1
2
[δ(zn, Fi(zn)) + 0],

1
2
[δ(zn, Fj(z) + δ(z, Fi(zn))]

}
.

Taking limit as n →∞,

lim
n

δ(Fi(zn), Fj(z)) ≤ β

2
lim
n

δ(Fi(zn), Fj(z)),

which is possible only when limn δ(Fi(zn), Fi(z)) = 0. Since H(Fi(zn), Fi(z)) ≤
δ(Fi(zn), Fi(z)), we have limn H(Fi(zn), Fi(z)) = 0 and so Fi is continuous at
z for each i ∈ N. This completes the proof. �

Now we will prove two results concerning the fixed point of sequence of
non-self maps on the subsets of a metrically convex metric space satisfying
a contraction condition more general than (2.1) and (2.9) and under certain
compactness type condition.

Theorem 2.3. Let (X, d) be a metrically convex metric space, K a compact
convex subset of X. Let {Fn}∞n=1 be a sequence of continuous multivalued
operators from K into CB(X) satisfying for i 6= j,

δ(Fi(x), Fj(y)) < α max{d(x, y), D(x, Fi(x)), D(y, Fj(y))}
+β[D(x, Fj(y)) + D(y, Fi(x))]

(2.13)

for all x, y ∈ K with right hand side not zero, where α > 0, β > 0 and
2α + 3β ≤ 1.

If Fn(xn)∩K 6= ∅ for each x ∈ ∂K and n ∈ N, then FFn = (SF )Fn = {x∗},
for each n ∈ N .

Proof. First we note that if the sequence {Fn} of multivalued operators have
a common fixed point, then from (2.14) it follows that the common fixed point
is unique.
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As F is continuous and K is compact so both sides of the inequality (2.14)
are bounded on K. Now there are two cases:

Case I: Suppose that there exist some x, y ∈ K such that the right hand
side of (2.14) is zero. Then z = x = y is a common fixed point of {Fn} and so
it is unique.

Case II: Now we assume that the right hand of the inequality (2.14) is
positive on K. If 2α + 3β < 1, the desired conclusion follows from Theorem
2.1. Therefore we prove the result only in the case when 2α + 3β = 1.

Denote by

M(x, y) = α max{d(x, y), D(x, Fi(x)), D(y, Fj(y))}

+ β[D(x, Fj(y)) + D(y, Fi(x))].

Define a function T : K ×K → R+ by

T (x, y) =
δ(Fi(x), Fj(y))

M(x, y)
, x, y ∈ K. (2.14)

Clearly the function T is well defined, since M(x, y) 6= 0 for all x, y ∈ K.

Since each Fn is continuous, T is continuous and from compactness of K, it
follows that T attains its maximum on K ×K at some point say (u, v) ∈ K2.

Call the value c. From (2.14), we get 0 < c < 1. By the definition of T we
obtain

δ(Fi(x), Fj(y))
M(x, y)

≤ T (u, v) = c,

i.e.,

δ(Fi(x), Fj(y)) ≤ cM(x, y)
= α′max{d(x, y), D(x, Fi(x)), D(y, Fj(y))},

+β′[D(x, Fj(y)) + D(y, Fi(x))]
(2.15)

for all x, y ∈ K, where α′ ≥ 0, β′ ≥ 0 satisfying 2α′ + 3β′ = c(2α + 3β) < 1.

Since K is compact, it is closed and bounded. Thus all the conditions of
Theorem 2.1 are satisfied and hence an application of it yields the desired
result. �

Theorem 2.4. Let (X, d) be a metrically convex metric space, K a compact
convex subset of X. Let {Fn} be a sequence of continuous multivalued operator
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from K into CB(X) satisfying for each i 6= j the following condition:

δ(Fi(x), Fj(y)) < αd(x, y) + β max
{

1
2 [D(x, Fi(x) + D(y, Fj(y))],

1
2 [D(x, Fj(y) + D(y, Fi(x))]

}
(2.16)

for all x, y ∈ K with right hand side not zero, where α > 0, β > 0 and
2α + αβ + β ≤ 1.

If Fn(x) ∩K 6= ∅ for each x ∈ ∂K and n ∈ N, then FFn = (SF )Fn = {x∗},
for each n ∈ N .

Proof. The proof is similar to the Theorem 2.3 with appropriate modifi-
cations. The result follows by an application of Theorem 2.2. The proof is
complete. �

Theorem 2.5. Let (X, d) be a metrically convex metric space, K a non-empty
compact convex subset of X. Let {Fn} be a sequence of continuous multivalued
operator of K into CB(X) satisfying for all i 6= j,

H(Fi(x), Fj(y)) < αd(x, y) + h max
{

1
2 [D(x, Fi(x)) + D(y, Fj(y))],

1
2 [D(x, Fj(y)) + D(y, Fi(x))]

}
(2.17)

for all x, y ∈ K with right hand side not zero, where α ≥ 0, h ≥ 0 and
α + 3

2h + αh
2 < 1,

If Fn(x) ⊂ K for each x ∈ ∂K and n ∈ N, then {Fn} have a common fixed
point z ∈ K.

Proof. The proof is similar to the Theorem 2.3 and now the desire conclusion
follows by an application of Theorem 3.1 of Hung and Cho [6]. �
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