Fixed Point Theory, Volume 4, No. 2, 2003, 143-158 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.htm

SOME COMMON FIXED POINT THEOREMS FOR SEQUENCES OF NONSELF MULTIVALUED OPERATORS IN METRICALLY CONVEX METRIC SPACES

B. C. DHAGE¹, U. P. DOLHARE² AND ADRIAN PETRUŞEL³

¹Kasubai, Gurukul Colony, Ahmedpur-413 515 Dist: Latur, Maharashtra, India e-mail: bcd20012001yahoo.co.in

²Department of Mathematics Dnyanopasak Mahavidyalaya, Jintur-431 509 Maharashtra, India

³Department of Applied Mathematics Babeş-Bolyai University 3400, Cluj-Napoca, Romania e-mail: petrusel@math.ubbcluj.ro

Abstract. In this paper some common fixed point theorems for sequences of nonself multivalued operators defined on a closed subset of a metrically convex metric space are proved. Our results extend some fixed point theorems of Dhage [4] to a sequence of nonself multimaps and include the fixed point result of Huang and Cho [6].

2000 Mathematics Subject Classification: 47H10, 54H25.

Key Words and Phrases: metrically convex metric space, multivalued operator, common fixed point.

1. INTRODUCTION

Fixed point theorems for nonself contraction multifunctions have been discussed in the literature, among many others, by Assad [1], Assad and Kirk [2], Ćirić and Ume [3]. Itoh [7] extended these results to a more general class of contraction multifunctions while Rhoades obtained a generalization of Itoh's fixed point theorem (see [7]) for the case of a multivalued operator F defined on a subset K of a metrically convex metric space X. Common fixed point

theorems for a sequences $\{F_n\}$ of non-self multivalued operators in metrically convex metric space have been also proved by Huang and Cho [6]. All these results use a kind of boundary condition with respect to the multivalued operator F and the subset K of the metric space X, namely $F(\partial K) \subset K$, where ∂K denotes the boundary of K. In a recent paper [4], one of the present authors proved some fixed point theorems for the non-self multivalued operators on a metrically convex metric space, satisfying slightly stronger condition than Rhoades [8], but under a weaker boundary condition than that in the above mentioned papers.

The purpose of the present paper is to prove some common fixed point theorems for a sequence of non-self multivalued operators on a metrically convex metric space satisfying certain contraction type conditions and under a weaker boundary condition. Our results extend some theorems of Dhage [4] (to a sequence of multivalued operators) and include the result of Huang and Cho [6] under a slightly stronger contraction condition.

2. Main Results

Let (X, d) denote a metric space and let CB(X) denote the class of all non-empty closed and bounded subsets of X.

Definition 2.1. A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$, there is a $z \in X$, $x \neq z$, $y \neq z$ such that

$$d(x,z) + d(z,y) = d(x,y).$$

We need the following lemma in the sequel.

Lemma 2.1. (Assad and Kirk [2]) If K is a non-empty closed convex subset of a complete and metrically convex metric space (X, d), then for any $x \in K$ and $y \notin K$, there exists a point $z \in \partial K$ (the boundary of K) such that

$$d(x,z) + d(z,y) = d(x,y).$$

For any $A, B \in CB(X)$ denote:

$$D(A,B) = \inf\{d(a,d) \mid a \in A, b \in B\},\$$

$$\delta(A,B) = \sup\{d(a,b) \mid a \in A, b \in B\}$$

and

$$H(A,B) = \max\left\{\sup_{a \in A} D(a,B), \sup_{b \in B} D(A,b)\right\}.$$

The following properties of the functional δ are well-known (see for example Fisher [5] and Petruşel [11]) :

(i) $\delta(A, B) = 0$ if and only if $A = B = \{x^*\}$ (ii) $\delta(A, B) = \delta(B, A)$ and (iii) $\delta(A, B) \leq \delta(A, C) + \delta(C, B)$ for $A, B, C \in CB(X)$.

We need the following lemma in the sequel.

Lemma 2.2. Fisher [5] Let $\{A_n\}$ and $\{B_n\}$ be two sequences in CB(X) converging in CB(X) to the sets A and respectively B. Then

$$\lim_{n \to \infty} \delta(A_n, B_n) = \delta(A, B).$$

If $T: X \to CB(X)$ is a multivalued operator, then $F_T := \{x \in X | x \in T(x)\}$ denotes the fixed point set T, while $(SF)_T := \{x \in X | \{x\} = T(x)\}$ is the strict fixed point set of T.

Now we prove our first main result.

Theorem 2.1. Let (X, d) be a complete and metrically convex metric space, K a non-empty, closed, convex and bounded subset of X. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of multivalued operators of K into CB(X) satisfying for $i \neq j$,

$$\delta(F_i(x), F_j(y)) \leq \alpha \max\{d(x, y), D(x, F_i(x)), D(y, F_j(y))\} + \beta[D(x, F_i(y) + D(y, F_i(x))]$$
(2.1)

for all $x, y \in K$, where $\alpha \ge 0$, $\beta \ge 0$ and $2\alpha + 3\beta < 1$.

If $F_n(x) \cap K \neq \emptyset$ for each $x \in \partial K$ and each $n \in N$, then $F_{F_n} = (SF)_{F_n} = \{z\}$, for each $n \in N$. Moreover, for each $n \in \mathbb{N}$, F_n is continuous in z with respect to the Hausdorff-Pompeiu metric on X.

Proof. Let $x \in K$ be arbitrary and define a sequence $\{x_n\} \subset K$ as follows. Let $x_0 = x$ and take a point $x_1 \in F_1(x_0) \cap K$ if $F_1(x_0) \cap K \neq \emptyset$, otherwise choose a point $x_2 \in \partial K$ such that

$$d(x_0, x_1) + d(x_1, y_1) = d(x_0, y_1)$$

for some $y_1 \in Fx_0 \subset X \setminus K$.

Similarly choose a point $x_2 \in F_2(x_1) \cap K$ if $F_2(x_1) \cap K \neq 0$, otherwise choose a point $x_2 \in \partial K$, such that

$$d(x_1, x_2) + d(x_2, y_2) = d(x_1, y_2)$$

for some $y_2 \in F_2(x_1) \subset X \setminus K$.

Continuing in this way, choose $x_n \in F_n(x_{n-1}) \cap K$ if $F_n(x_{n-1}) \cap K \neq \emptyset$, otherwise select $x_n \in \partial K$ such that

$$d(x_{n-1}, x_n) + d(x_n, y_n) = d(x_{n-1}, y_n)$$

for some $y_n \in F_n(x_{n-1}) \subset X \setminus K$. Denote by

$$P = \{x_n \in \{x_n\} \mid x_n \in F_n(x_{n-1}), n \in N\}$$

and

$$Q = \{x_n \in \{x_n\} \mid x_n \in \partial K, x_n \in F_n(x_{n-1}), n \in N\}.$$

Clearly

$$\{x_n\} = P \cup Q \subset K.$$

Then for any two consecutive terms x_n , x_{n-1} of the sequence $\{x_n\}$, there are only the following three possibilities:

- (i) $x_n, x_{n-1} \in P$, (ii) $x_n \in P, x_{n+1} \in Q$, (iii) $x_n \in Q$ and $x_{n+1} \in P$.
- We will prove that $\{x_n\}$ is a Cauchy sequence in K.

Case I: Suppose that $x_n, x_{n+1} \in P$. Then by(2.1), we have,

$$\begin{aligned} d(x_n, x_{n+1}) &\leq \delta(F_n(x_{n-1}), F_{n+1}(x_n)) \\ &\leq \alpha \max\{d(x_{n-1}, x_n), D(x_{n-1}, F_n(x_{n-1})), D(x_n, F_{n+1}(x_n))\} \\ &+ \beta[D(x_{n-1}, F_{n+1}(x_n)) + D(x_n, F_n(x_{n-1}))] \\ &\leq \alpha \max\{d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1})\} \\ &+ \beta[d(x_{n-1}, x_{n+1}) + d(x_n, x_n)] \\ &\leq \alpha \max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\} \\ &+ \beta[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] \\ &= \max\{\alpha d(x_{n-1}, x_n) + \beta[d(x_{n-1}, x_n) + d(x_n, x_{n+1})]\} \\ &= \max\{\alpha d(x_n, x_{n+1}) + \beta[d(x_{n-1}, x_n) + d(x_n, x_{n+1})]\} \\ &= \max\{(\alpha + \beta)d(x_{n-1}, x_n) + \beta d(x_n, x_{n+1}), \\ &\beta d(x_{n-1}, x_n) + (\alpha + \beta)d(x_n, x_{n+1})\}, \end{aligned}$$

i.e.,

$$d(x_n, x_{n+1}) \le k d(x_{n-1}, x_n), \tag{2.2}$$

where

$$k = \max\left\{\frac{\alpha + \beta}{1 - \beta}, \frac{\beta}{1 - (\alpha + \beta)}\right\} < 1$$

since $2\alpha + 3\beta < 1$.

Case II: Let $x_n \in P$ and $x_{n+1} \in Q$. Then

$$d(x_n, x_{n+1}) + d(x_{n+1}, y_{n+1}) = d(x_n, y_{n+1})$$

for some $y_{n+1} \in F_{n+1}(x_n) \subset X \setminus K$.

Clearly

$$d(x_n, x_{n+1}) \le d(x_n, y_{n+1}), d(x_n, y_{n+1}) \le \delta(F_n(x_{n-1}), F_{n+1}(x_n)).$$
(2.3)

Now following the arguments similar to that in Case I,

$$d(x_n, y_{n+1}) \le k d(x_{n-1}, x_n), \tag{2.4}$$

where again

$$k = \max\left\{\frac{\alpha+\beta}{1-\beta}, \frac{\beta}{1-(\alpha+\beta)}\right\} < 1.$$

From (2.3) and (2.4), it follows that

$$d(x_n, x_{n+1}) \le k d(x_{n-1}, x_n).$$

Case III: Suppose that $x_n \in Q$ and $x_{n+1} \in P$. We note that then $x_{n-1} \in P$. By definition of $\{x_n\}$, there is a point $y_n \in F_n(x_{n-1})$ such that

$$d(x_{n-1}, x_n) + d(x_n, y_n) = d(x_{n-1}, y_n).$$
(2.5)

We have successively:

$$\begin{split} &d(x_n, x_{n+1}) \leq d(x_n, y_n) + d(y_n, x_{n+1}) \leq \\ &\leq d(x_n, y_n) + \delta(F_n(x_{n-1}), F_{n+1}(x_n)) \leq d(x_n, y_n) + \\ &+ \alpha \max\{d(x_{n-1}, x_n), D(x_{n-1}, F_n(x_{n-1})), D(x_n, F_{n+1}(x_{n-1}))\} \\ &+ \beta[D(x_{n-1}, F_{n+1}(x_n) + D(x_n, F_n(x_{n-1}))] = d(x_n, y_n) + \\ &+ \alpha \max\{d(x_{n-1}, x_n), d(x_{n-1}, y_n), d(x_n, x_{n+1})\} + \\ &+ \beta[d(x_{n-1}, x_{n+1}) + d(x_n, y_n)] \leq d(x_n, y_n) + \\ &+ \alpha \max\{d(x_{n-1}, y_n), d(x_n, x_{n+1})\} + \\ &+ \beta[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] + \\ &+ \alpha \max\{d(x_{n-1}, y_n), d(x_n, x_{n+1})\} + \\ &+ \beta[d(x_{n-1}, y_n), d(x_n, x_{n+1})] + \beta[d(x_{n-1}, y_n) + d(x_n, x_{n+1})]. \end{split}$$

$$d(x_{n-1}, y_n) \le k d(x_{n-2}, x_{n-1}) \tag{2.6}$$

and hence

$$d(x_n, x_{n+1}) \leq kd(x_{n-2}, x_{n-1}) + \alpha \max\{kd(x_{n-2}, x_{n-1}), d(x_n, x_{n+1})\} + \beta[kd(x_{n-2}, x_{n-1}) + d(x_n, x_{n+1})]$$

=
$$\max\{(1 + \alpha + \beta)kd(x_{n-2}, x_{n-1}) + \beta d(x_n, x_{n+1}), (1 + \beta)kd(x_{n-2}, x_{n-1}) + (\alpha + \beta)d(x_n, x_{n+1})\}.$$

This further implies that

$$d(x_n, x_{n+1}) \leq \max\left\{\frac{(1+\alpha+\beta)k}{1-\beta}, \frac{(1+\beta)k}{1-(\alpha+\beta)}\right\} d(x_{n-2}, x_{n-1}) = qd(x_{n-2}, x_{n-1}),$$
(2.7)

where

$$q = \max\left\{\frac{(1+\alpha+\beta)k}{1-\beta}, \frac{(1+\beta)k}{1-(\alpha+\beta)}\right\}$$
$$= k \max\left\{\frac{1+\alpha+\beta}{1-\beta}, \frac{1+\beta}{1-(\alpha+\beta)}\right\}$$
$$= k\left(\frac{1+\beta}{1-(\alpha+\beta)}\right) < 1.$$

Now for any $n \in N$, we have

$$d(x_{2n}, x_{2n+1}) \leq qd(x_{2n-2}, x_{2n-1})$$

$$\leq q^n d(x_0, x_1).$$

Since n is arbitrary, one has

$$d(x_n.x_{n+1}) \le q^n d(x_0, x_1).$$

Then for any positive integer p,

$$d(x_n, x_{n+p}) \leq \sum_{i=1}^{n+p+1} d(x_i, x_{i+1})$$

$$\leq \sum_{i=1}^{n+p+1} q^i d(x_0, x_1)$$

$$= q^n \frac{(1-q^{n+p-1})}{1-q} d(x_0, x_1) \to 0 \text{ as } n \to \infty.$$

This shows that $\{x_n\}$ is a Cauchy sequence in K. Since K is closed, it is complete and there is a point $z \in K$ such that $\lim x_n = z$ exists. We show that z is a fixed point of F_n . Without loss of generality, we may assume that $x_{n+1} \in F_{n+1}(x_n)$ for some $n \in N$. Then,

$$\begin{split} \delta(z,F_{j}(z)) &\leq \delta(z,x_{n+1}) + \delta(x_{n+1},F_{j}(z)) \\ &= \delta(z,x_{n+1}) + \delta(F_{j}(z),F_{n+1}(x_{n})) \\ &= \delta(z,x_{n+1}) + \alpha \max\{d(z,x_{n}),D(z,F_{j}(z)),D(x_{n},F_{n+1}(x_{n}))\} \\ &+ \beta[D(z,F_{n+1}(x_{n})) + D(x_{n},F_{j}(z))] \\ &\leq \delta(z,x_{n+1}) + \alpha \max\{d(z,x_{n}),\delta(z,F_{j}(z)),d(x_{n},x_{n+1})\} \\ &+ \beta[d(z,x_{n+1}) + \delta(x_{n},F_{j}(z))]. \end{split}$$

Taking limit as $n \to \infty$ in above inequality yields that

$$\begin{split} \delta(z,F_j(z)) &\leq 0 + \alpha \max\{0,\delta(z,F_j(z),0,\beta\delta(z,F_j(z))\} \\ &= \alpha\delta(z,F_j(z)), \end{split}$$

which implies that $\delta(z, F_j(z)) = 0$ since $\alpha < 1$, i.e., $F_j(z) = \{z\}$ for each $j \in N$.

To prove uniqueness, let $z^* \ (\neq z)$ be another common fixed point of $\{F_n\}$. Then by(2.1) we get

$$\begin{aligned} d(z, z^*) &\leq \delta(F_i(z), F_j(z^*)) \\ &\leq \alpha \max\{d(z, z^*), D(z, F_i(z), D(z^*, F_j(z^*))\} \\ &+ \beta[d(z, F_j(z^*)) + D(z^*, F_i(z))] \\ &= (\alpha + 2\beta)d(z, z^*), \end{aligned}$$

which is a contradiction since $\alpha + 2\beta \leq 2\alpha + 3\beta < 1$. Hence $z = z^*$.

Finally we prove the continuity of F_n for each $n \in N$. Let $\{z_n\}$ be any sequence in K converging to the unique common fixed point z of $\{F_n\}_{n=1}^{\infty}$. To conclude, it, is enough to prove that $\lim_n H(F_j(z_n), F_j z) = 1$ for each $i \in N$. We know that

(*)
$$H(F_j(z_n), F_j(z)) \le \delta(F_i(z_n), F_i(z)).$$

Now for any $i \neq j$,

$$\begin{split} \delta(F_i(z_n), F_i(z)) &= \delta(F_i(z_n), F_j(z)) \\ &\leq \alpha \max\{d(z_n, z), D(z_n, F_i(z_n), D(z, F_j(z)))\} \\ &+ \beta [D(z_n, F_j(z)) + D(z, F_i(z_n))] \\ &\leq \alpha \max\{d(z_n, z), \delta(z_n, F_i(z_n)), 0\} \\ &+ \beta [\delta(z_n, F_j(z)) + \delta(z, F_i(z_n))]. \end{split}$$

Taking limit as $n \to \infty$, we get

$$\lim_{n} \delta(F_i(z_n), F_i(z)) \leq \alpha \max\{0, \lim_{n} \delta(F_i(z_n), F_i(z)), 0\} \\ +\beta[0 + \lim_{n} \delta(F_i(z_n), F_i(z))] \\ = (\alpha + \beta) \lim_{n} \delta(F_i(z_n), F_i(z)),$$

which is possible only when $\lim_{n \to \infty} \delta(F_i(z_n), F_i(z)) = 0$.

From (*) it follows that $\lim_{n \to \infty} H(F_i(z_n), F_i(z)) = 0$. This completes the proof.

Remark 2.1. With respect to condition (2.1), the following implications hold:

 $\begin{array}{ll} i) \ (2.1) \ and \ (x \in F_{F_i} \cap F_{F_j}, \ i \neq j) \Rightarrow F_i(x) = F_j(x) = \{x\}. \\ ii) \ (2.1) \ and \ (x \in F_{F_i}, \ y \in F_{F_j}, \ i \neq j) \Rightarrow \delta(F_i(x), F_j(y)) \leq \\ \alpha \max\{d(x,y), D(x, F_i(x)), D(y, F_j(y))\} + \beta[D(x, F_j(y) + D(y, F_i(x)] \leq \\ \leq (\alpha + 2\beta) \cdot \delta(F_i(x), F_j(y)). \\ Hence \ \delta(F_i(x), F_j(y)) = 0 \ and \ so \ F_i(x) = F_i(y) = \{z\}. \ In \ conclusion \\ z = x = y. \\ iii) \ (2.1) \ and \ (x \in F_{F_i}, y = x) \ \Rightarrow \ \delta(F_i(x), F_j(x)) \ \leq \ (\alpha + \beta) \cdot \\ \delta(F_i(x), F_j(x)). \end{array}$

Hence $\delta(F_i(x), F_j(x)) = 0$ and so $F_i(x) = F_j(x) = \{z\}$. In conclusion z = x = y.

Theorem 2.2. Let (X, d) be a metrically convex complete space, K a nonempty, closed, convex and bounded subset of X. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of mappings from K into CB(X) satisfying for $i \neq j$,

$$\delta(F_{i}(x), F_{j}(y)) \leq \alpha d(x, y) + \beta \max\left\{\frac{1}{2}[D(x, F_{i}(x)) + D(y, F_{j}(y))], \\ \frac{1}{2}[D(x, F_{j}(y)) + D(y, F_{i}(x))]\right\}$$
(2.8)

for all $x, y \in K$, where $\alpha \ge 0$ and $\beta \ge 0$ satisfying $\alpha^2 + \alpha + \alpha \cdot \beta + \frac{3\beta}{2} < 1$.

If $F_n(K) \cap K \neq \emptyset$ for each $x \in \partial K$ and $n \in N$, then $F_{F_n} = (SF)_{F_n} = \{x^*\}$, for each $n \in N$. Moreover, for each $n \in \mathbb{N}$, F_n is continuous in x^* with respect to the Hausdorff-Pompeiu metric.

Proof. Let $x \in K$ be arbitrary and define a sequence $\{x_n\} \subset K$ as in the previous proof. So $\{x_n\} = P \cup Q$, where

$$P = \{x_n \in \{x_n\} \mid x_n \in F_n(x_{n-1}), n \in N\}$$

and

$$Q = \{x_n \in \{x_n\} \mid x_n \in \partial K, x_n \in F_n(x_{n-1}), n \in N\}.$$

We show that $\{x_n\}$ is a Cauchy sequence. Now for any two consecutive terms $x_n, x_{n+1} \in \{x_n\}$, there are following three cases:

Case I: Suppose that $x_n, x_{n+1} \in P$. Then by (2.9) we get

``

$$d(x_{n}, x_{n+1}) \leq \delta(F_{n}(x_{n-1})F_{n+1}(x_{n})) \leq \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[D(x_{n-1}, F_{n}(x_{n-1})) + D(x_{n}, F_{n+1}(x_{n}))], \frac{1}{2}[D(x_{n-1}, F_{n+1}(x_{n-1})) + D(x_{n}, F_{n}(x_{n}))]\right\} \leq \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})] \frac{1}{2}\max[d(x_{n-1}, x_{n+1}) + d(x_{n}, x_{n})]\right\} \leq \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})], \frac{1}{2}[d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})]\right\} \leq \alpha d(x_{n-1}, x_{n}) + \frac{\beta}{2}d(x_{n-1}, x_{n}) + \frac{\beta}{2}d(x_{n}, x_{n+1}) = \left(\frac{\alpha + \frac{\beta}{2}}{1 - \frac{\beta}{2}}\right) d(x_{n-1}, x_{n}).$$

$$(2.9)$$

Case II: Suppose that $x_n \in P$ and $x_{n+1} \in Q$. Then there is a point $y_{n+1} \in Q$. $F_{n+1}(x_n) \subset X \setminus K$ such that

$$d(x_n, x_{n+1}) + d(x_{n+1}, y_{n+1}) = d(x_n, y_{n+1}),$$

which further implies that

$$d(x_n, y_{n+1}) \le d(x_n, y_{n+1})$$

and

$$d(x_n, y_{n+1}) \le \delta(F_n(x_{n-1}), F_{n+1}(x_n)).$$
(2.10)

Now

$$\begin{aligned} d(x_n, y_{n+1}) &\leq \delta(F_n(x_{n-1}), F_{n+1}(x_n)) \leq \alpha d(x_{n-1}, x_n) + \\ \beta \max\left\{\frac{1}{2}[D(x_{n-1}, F_n(x_{n-1})) + D(x_n, F_{n+1}(x_n))], \frac{1}{2}[D(x_{n-1}, F_{n+1}(x_n)) + \\ + D(x_n, F_n(x_{n-1}))]\right\} &\leq \alpha d(x_{n-1}, x_n) + \\ + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, x_n) + d(x_n, x_{n+1})], \frac{1}{2}[d(x_{n-1}, y_{n+1}) + d(x_n, x_n)]\right\} \\ &= \alpha d(x_{n-1}, x_n) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, x_n) + \\ + d(x_n, x_{n+1})], \frac{1}{2}[d(x_{n-1}, x_n) + d(x_n, y_{n+1})]\right\} \\ &= \alpha d(x_{n-1}, x_n) + \frac{\beta}{2} d(x_n, y_{n+1}) = k \cdot d(x_{n-1}, x_n), \end{aligned}$$

where

$$k = \frac{\alpha + \frac{\beta}{2}}{1 - \frac{\beta}{2}} < 1.$$

From (3) it follows that

$$d(x_n, x_{n+1}) \le kd(x_{n-1}, x_n).$$

Case III: Suppose that $x_n \in Q$ and $x_{n+1} \in P$. Note that $x_{n-1} \in P$. Then there is a point $y_n \in F_n(x_{n-1}) \subset X \setminus K$ such that

$$d(x_{n-1}, x_n) + d(x_n, y_n) = d(x_{n-1}, y_n),$$

which further implies that

$$d(x_n, y_n) \le d(x_{n-1}, y_n).$$
(2.11)

Now

$$d(x_{n}, x_{n+1}) \leq d(x_{n}, y_{n}) + d(y_{n}, x_{n+1}) = d(x_{n}, y_{n}) + \delta(F_{n}(x_{n-1}), F_{n+1}(x_{n})) \leq d(x_{n}, y_{n}) + \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[D(x_{n-1}, F_{n}(x_{n-1})) + D(x_{n}, F_{n+1}(x_{n}))], \frac{1}{2}[D(x_{n-1}, F_{n+1}(x_{n})) + D(x_{n}, F_{n}(x_{n-1}))]\right\} = d(x_{n}, y_{n}) + \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, y_{n}) + d(x_{n}, x_{n+1})], \frac{1}{2}[d(x_{n-1}, x_{n+1}) + d(x_{n}, y_{n})]\right\} \leq d(x_{n-1}, y_{n}) + \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, y_{n}) + d(x_{n}, x_{n+1})], \frac{1}{2}[d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + d(x_{n}, y_{n})]\right\} = d(x_{n-1}, y_{n}) + \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, y_{n}) + d(x_{n}, x_{n+1})], \frac{1}{2}[d(x_{n-1}, y_{n}) + \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, y_{n}) + d(x_{n}, x_{n+1})], \frac{1}{2}[d(x_{n-1}, y_{n}) + \alpha d(x_{n-1}, x_{n}) + \beta \max\left\{\frac{1}{2}[d(x_{n-1}, y_{n}) + d(x_{n}, x_{n+1})], \frac{1}{2}[d(x_{n-2}, x_{n-1}) + \alpha d(x_{n-2}, x_{n-1}) + \frac{\beta}{2}d(x_{n-2}, x_{n-1}) + \frac{\beta}{2}d(x_{n}, x_{n+1})]\right\}$$

$$(2.12)$$

It follows that
$$d(x_n, x_{n+1}) \leq \left(\frac{k+k\alpha+k\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) d(x_{n-2}, x_{n-1})$$

= $k\left(\frac{1+\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) d(x_{n-2}, x_{n-1})$

 $= qd(x_{n-2}, x_{n-1}),$ where

$$q = k \left(\frac{1+\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) = \left(\frac{\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) \left(\frac{1+\alpha+\frac{\beta}{2}}{1-\frac{\beta}{2}}\right) < 1.$$

Thus in all three cases one has

$$d(x_n, x_{n+1}) \le q d(x_{n-2}, x_{n+1}).$$

Therefore

$$d(x_{2n}, x_{2n+1}) \leq qd(x_{2n-2}, x_{2n-1})$$

$$\leq q^n d(x_0, x_1)$$

for all $n \in N$. Since n is arbitrary, we have

$$d(x_n, x_{n+1}) \le q^n d(x_0, x_1).$$

This shows that $\{x_n\}$ is a Cauchy sequence in K. As K is closed, it is complete and there is a point $z \in K$ such that $\lim_n x_n = z$.

We show that z is a fixed point of F_n . Without loss of generality, we may assume that $x_{n+1} \in F_{n+1}(x_n)$. Then

$$\begin{split} \delta(z_n, F_j(z)) \\ &\leq \delta(z, x_{n+1}) + \delta(x_{n+1}, F_j(z)) \\ &= \delta(z, x_{n+1}) + \delta(F_{n+1}(x_n), F_j(z)) \\ &\leq d(z, x_{n+1}) + \alpha d(x_n, z) + \beta \max\left\{\frac{1}{2}[D(x_n, F_{n+1}(x_n)) + D(z, F_j(z))], \\ &\quad \frac{1}{2}[D(x_n, F_j(z)) + D(z, F_{n+1}(x_n))]\right\} \\ &= d(z, x_{n+1}) + \alpha d(x_n, z) + \beta \max\left\{\frac{1}{2}[d(x_n, x_{n+1}) + \delta(z, F_j(z))], \\ &\quad \frac{1}{2}[\delta(x_n, F_j(z)) + d(z, x_{n+1}))]\right\}. \end{split}$$

Taking limit as $n \to \infty$, we get

$$\begin{split} \delta(z, F_j(z)) &\leq 0 + \beta \max\left\{\frac{1}{2}[0 + \delta(z, F_j(z))], \frac{1}{2}[\delta(z, F_j(z)) + 0]\right\} \\ &= \frac{\beta}{2}\delta(z, F_j(z)), \end{split}$$

which is possible only when $F_j(z) = \{z\}$ for $j \in N$. Again the uniqueness of z follows from the condition (2.9). Finally we prove the continuity of F_n for

each $n \in N$. Let $\{z_n\}$ be any sequence in K converging to the unique common fixed point z of $\{F_n\}_{n=1}^{\infty}$.

Now for any $i \neq j$,

$$\begin{split} \delta(F_j(z_n), F_i(z)) \\ &= \delta(F_i(z_n), F_j(z)) \\ &\leq \alpha d(z_n, z) + \beta \max\left\{\frac{1}{2}[D(z_n, F_i(z_n)) + D(z, F_j(z))], \\ &\quad \frac{1}{2}[D(z_n, F_j(z)) + D(z, F_i(z_n))]\right\} \\ &\leq \alpha d(z_n, z) + \beta \max\left\{\frac{1}{2}[\delta(z_n, F_i(z_n)) + 0], \frac{1}{2}[\delta(z_n, F_j(z) + \delta(z, F_i(z_n))]\right\}. \end{split}$$
Taking limit as $n \to \infty$,

$$\lim_{n} \delta(F_i(z_n), F_j(z)) \le \frac{\beta}{2} \lim_{n} \delta(F_i(z_n), F_j(z)),$$

which is possible only when $\lim_n \delta(F_i(z_n), F_i(z)) = 0$. Since $H(F_i(z_n), F_i(z)) \leq \delta(F_i(z_n), F_i(z))$, we have $\lim_n H(F_i(z_n), F_i(z)) = 0$ and so F_i is continuous at z for each $i \in N$. This completes the proof. \Box

Now we will prove two results concerning the fixed point of sequence of non-self maps on the subsets of a metrically convex metric space satisfying a contraction condition more general than (2.1) and (2.9) and under certain compactness type condition.

Theorem 2.3. Let (X, d) be a metrically convex metric space, K a compact convex subset of X. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of continuous multivalued operators from K into CB(X) satisfying for $i \neq j$,

$$\delta(F_i(x), F_j(y)) < \alpha \max\{d(x, y), D(x, F_i(x)), D(y, F_j(y))\} + \beta[D(x, F_j(y)) + D(y, F_i(x))]$$
(2.13)

for all $x, y \in K$ with right hand side not zero, where $\alpha > 0$, $\beta > 0$ and $2\alpha + 3\beta \leq 1$.

If $F_n(x_n) \cap K \neq \emptyset$ for each $x \in \partial K$ and $n \in N$, then $F_{F_n} = (SF)_{F_n} = \{x^*\}$, for each $n \in N$.

Proof. First we note that if the sequence $\{F_n\}$ of multivalued operators have a common fixed point, then from (2.14) it follows that the common fixed point is unique.

As F is continuous and K is compact so both sides of the inequality (2.14) are bounded on K. Now there are two cases:

Case I: Suppose that there exist some $x, y \in K$ such that the right hand side of (2.14) is zero. Then z = x = y is a common fixed point of $\{F_n\}$ and so it is unique.

Case II: Now we assume that the right hand of the inequality (2.14) is positive on K. If $2\alpha + 3\beta < 1$, the desired conclusion follows from Theorem 2.1. Therefore we prove the result only in the case when $2\alpha + 3\beta = 1$.

Denote by

$$M(x,y) = \alpha \max\{d(x,y), D(x,F_i(x)), D(y,F_j(y))\} + \beta[D(x,F_j(y)) + D(y,F_i(x))].$$

Define a function $T: K \times K \to R^+$ by

$$T(x,y) = \frac{\delta(F_i(x), F_j(y))}{M(x,y)}, \quad x, y \in K.$$
 (2.14)

Clearly the function T is well defined, since $M(x, y) \neq 0$ for all $x, y \in K$. Since each F_n is continuous, T is continuous and from compactness of K, it follows that T attains its maximum on $K \times K$ at some point say $(u, v) \in K^2$. Call the value c. From (2.14), we get 0 < c < 1. By the definition of T we obtain

$$\frac{\delta(F_i(x), F_j(y))}{M(x, y)} \le T(u, v) = c$$

i.e.,

$$\delta(F_{i}(x), F_{j}(y)) \leq cM(x, y) = \alpha' \max\{d(x, y), D(x, F_{i}(x)), D(y, F_{j}(y))\}, \qquad (2.15) +\beta'[D(x, F_{i}(y)) + D(y, F_{i}(x))]$$

for all $x, y \in K$, where $\alpha' \ge 0$, $\beta' \ge 0$ satisfying $2\alpha' + 3\beta' = c(2\alpha + 3\beta) < 1$. Since K is compact, it is closed and bounded. Thus all the conditions of Theorem 2.1 are satisfied and hence an application of it yields the desired result. \Box

Theorem 2.4. Let (X, d) be a metrically convex metric space, K a compact convex subset of X. Let $\{F_n\}$ be a sequence of continuous multivalued operator from K into CB(X) satisfying for each $i \neq j$ the following condition:

$$\delta(F_{i}(x), F_{j}(y)) < \alpha d(x, y) + \beta \max\left\{\frac{1}{2}[D(x, F_{i}(x) + D(y, F_{j}(y))], \frac{1}{2}[D(x, F_{j}(y) + D(y, F_{i}(x))]\right\}$$
(2.16)

for all $x, y \in K$ with right hand side not zero, where $\alpha > 0$, $\beta > 0$ and $2\alpha + \alpha\beta + \beta \leq 1$.

If $F_n(x) \cap K \neq \emptyset$ for each $x \in \partial K$ and $n \in N$, then $F_{F_n} = (SF)_{F_n} = \{x^*\}$, for each $n \in N$.

Proof. The proof is similar to the Theorem 2.3 with appropriate modifications. The result follows by an application of Theorem 2.2. The proof is complete. \Box

Theorem 2.5. Let (X, d) be a metrically convex metric space, K a non-empty compact convex subset of X. Let $\{F_n\}$ be a sequence of continuous multivalued operator of K into CB(X) satisfying for all $i \neq j$,

$$H(F_{i}(x), F_{j}(y)) < \alpha d(x, y) + h \max\left\{\frac{1}{2}[D(x, F_{i}(x)) + D(y, F_{j}(y))], \frac{1}{2}[D(x, F_{j}(y)) + D(y, F_{i}(x))]\right\}$$
(2.17)

for all $x, y \in K$ with right hand side not zero, where $\alpha \ge 0$, $h \ge 0$ and $\alpha + \frac{3}{2}h + \frac{\alpha h}{2} < 1$,

If $F_n(x) \subset K$ for each $x \in \partial K$ and $n \in N$, then $\{F_n\}$ have a common fixed point $z \in K$.

Proof. The proof is similar to the Theorem 2.3 and now the desire conclusion follows by an application of Theorem 3.1 of Hung and Cho [6]. \Box

References

- N. A. Assad, Fixed point theorems for set-valued transformations on compact sets, Boll. U. M. I., 17(4), (1973), 1-7.
- [2] N. A. Assad and W. A. Kirk, Fixed point theorem for set-valued mappings of contractive type, Pacific J. Math., 43(1972), 553-562.
- [3] Lj. B. Ćirić, J. S. Ume, Common fixed point theorems for multi-valued non-self mappings, Publ. Math. Debrecen, 60(2002), 359-371.

- [4] N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued mappings, Korean J. Math. Sci., 4(1997), 1-10.
- [5] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolin., 18(1977), 247-248.
- B. Fisher, Common fixed point and contraction mappings satisfying a rational inequality, Math. Sem. Notes, 6(1978), 29-35.
- B. C. Dhage, A fixed point theorem for non-self multimaps in metrically convex metric space, Comment. Math. Univ. Carolin., 40(1999), 251-158.
- [8] A. Muntean, Fixed point principles and applications to mathematical economics, Cluj University Press, Cluj-Napoca, 2002.
- [9] N. Negoescu, Common fixed point problems for pairs of φ-contractive mappings, "Gh. Asachi" Publ. House, Iaşi, 1999, (in Romanian).
- [10] B. E. Rhoades, A fixed point theorem for a multi-valued non-self mappings, Comment. Math. Univ. Carolin., 37(1996), 401-404.
- [11] Adrian Petruşel, Operatorial inclusions, House of the Book of Science, Cluj-Napoca, 2002.
- [12] I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
- [13] I. A. Rus, A. Petruşel, G. Petruşel, Fixed point theory 1950-2000 : Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [14] A. Sîntămărian, Common fixed point theorems for multivalued mappings, Semin. Fixed Point Theory Cluj-Napoca, 1(2000), 93-102.