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1. Introduction

In this paper, we shall prove existence results, for the following evolution
equation with nonlocal conditions, of the form

y′(t) = Ay(t) + F (t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . ,m (1)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m (2)

y(0) + g(y) = y0, (3)
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where A : D(A) ⊂ E → E is nondensely defined closed linear operator,
F : J × E −→ E is continuous, g : C(J ′, E) −→ E, (J ′ = J\{t1, . . . , tm}),
Ik : E → D(A), k = 1, . . . ,m, ∆y|t=tk = y(t+k )−y(t−k ), y(t+k ) = lim

h→0+
y(tk +h)

and y(t−k ) = lim
h→0+

y(tk−h) represent the right and left limits of y(t) at t = tk,

y0 ∈ E, and E is a Banach space with norm | · |.
As indicated in [4], [5], [8] and the references therein, the nonlocal condition

y(0)+ g(y) = y0 can be applied in physics with better effect than the classical
initial condition y(0) = y0. For example, in [8], the author used

g(y) =
p∑

i=1

ciy(ti), (4)

where ci, i = 1, . . . , p are given constants and 0 < t1 < t2 < · · · ≤ T, to
describe the diffusion phenomenon of a small amount of gas in a transparent
tube. In this case, equation (4) allows the additional measurements at ti, i =
1, . . . , p.

The theory of impulsive differential equations has been emerging as an im-
portant area of investigation in recent years, because all the structure of its
emergence has deep physical background and realistic mathematical model.
The theory of impulsive differential equations appears as a natural description
of several real processes subject to certain perturbations whose duration is
negligible in comparison with the duration of the process. It has seen con-
siderable development in the last decade; see the monographs of Bainov and
Simeonov [2], Lakshmikantham, et al. [11], and Samoilenko and Perestyuk
[14] where numerous properties of their solutions are studied, and detailed
bibliographies are given.

When operator A generates a C0 semigroup, or equivalently, when a closed
linear operator A satisfies

(i) D(A) = E, (D means domain),
(ii) the Hille-Yosida condition that is, there exists M ≥ 0 and τ ∈ R such

that (τ,∞) ⊂ ρ(A), sup{(λI − τ)n|(λI −A)−n| : λ > τ n ∈ N} ≤M,

where ρ(A) is the resolvent operator set of A and I is the identity operator,
then the equation (1) with nonlocal conditions have been studied extensively.
Existence, uniqueness, and regularity, among other thinks, are derived. See
[3]–[5], [8], [12], [13].
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However, as indicated in [7], we sometimes need to deal with nondensely
defined operators. For example, when we look at a one-dimensional heat equa-

tion with Dirichlet conditions on [0, 1] and consider A =
∂2

∂x2
in C([0, 1],R) in

order to measure the solutions in the sup-norm, then domain

D(A) = {φ ∈ C2([0, 1],R) : φ(0) = φ(1) = 0}

is not dense in C([0, 1],R) with the sup-norm. See [7] for more examples and
remarks concerning the nondensely defined operators.

Our purpose here is to extend the results of densely defined impulsive evo-
lution equations with nonlocal conditions. We use the Schaefers fixed point
theorem to derive the existence of integral solutions (when the operator is
nondensely defined).

The plan of this paper is as follows: In section 2, we state some facts about
integrated semigroups and integral solutions that will be used later. In section
3, we prove the existence of integral solutions for the problem (1)-(3) when
A is not necessarily densely defined but satisfies the Hille-Yosida condition.
Finally in section 4 we prove the existence of integral solutions for the problem
(1), (2), (4)

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
that are used throughout this paper.
C(J,E) is the Banach space of continuous functions from J to E normed

by

‖y‖∞ = sup{|y(t)| : t ∈ J}.

and B(E) denotes the Banach space of bounded linear operators from E into
E, with norm

‖N‖B(E) = sup{|Ny| : |y| = 1}.

Definition 2.1. ([1]). Let E be a Banach space. An integrated semigroup is
a family of operators (S(t))t≥0 of bounded linear operators S(t) on E with the
following properties:

(i) S(0) = 0;
(ii) t→ S(t) is strongly continuous;
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(iii) S(s)S(t) =
∫ s

0
(S(t+ r)− S(r))dr, for all t, s ≥ 0.

Definition 2.2. ([10]). An operator A is called a generator of an integrated
semigroup if there exists ω ∈ R such that (ω,∞) ⊂ ρ(A) (ρ(A), is the resolvent
set of A) and there exists a strongly continuous exponentially bounded family
(S(t))t≥0 of bounded operators such that S(0) = 0 and R(λ,A) := (λI−A)−1 =

λ

∫ ∞

0
e−λtS(t)dt exists for all λ with λ > ω.

Proposition 2.1. ([1]). Let A be the generator of an integrated semigroup
(S(t))t≥0. Then for all x ∈ E and t ≥ 0,∫ t

0
S(s)xds ∈ D(A) and S(t)x = A

∫ t

0
S(s)xds+ tx.

Definition 2.3. ([10]).

(i) An integrated semigroup (S(t))t≥0 is called locally Lipschitz continuous
if, for all τ > 0 there exists a constant L such that

|S(t)− S(s)| ≤ L|t− s|, t, s ∈ [0, τ ].

(ii) An integrated semigroup (S(t))t≥0 is called non degenerate if S(t)x =
0, for all t ≥ 0 implies that x = 0.

Definition 2.4. We say that the linear operator A satisfies the Hille-Yosida
condition if there exists M ≥ 0 and ω ∈ R such that (ω,∞) ⊂ ρ(A) and

sup{(λ− ω)n|(λI −A)−n| : n ∈ N, λ > ω} ≤M.

Theorem 2.1. ([10]). The following assertions are equivalent:

(i) A is the generator of a non degenerate,locally Lipschitz continuous
integrated semigroup ;

(ii) A satisfies the Hille-Yosida condition.

If A is the generator of an integrated semigroup (S(t))t≥0 which is locally
Lipschitz, then from [1], S(·)x is continuously differentiable if and only if
x ∈ D(A) and (S′(t))t≥0 is a C0 semigroup on D(A).



DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS 189

In order to define the solution of (1)–(3) we shall consider the following
space

Ω = {y : [0, T ] → E : yk ∈ C(Jk, E), k = 0, . . . ,m and there exist y(t−k )

and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)}

which is a Banach space with the norm

‖y‖Ω = max{‖yk‖Jk
, k = 0, . . . ,m},

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m.

Definition 2.5. Given F ∈ L1(J × E,E) and y0 ∈ E we say that y : J → E

is an integral solution of (1)-(3) if

(i) y ∈ Ω,

(ii)
∫ t

0
y(s)ds ∈ D(A) for t ∈ J,

(iii) y(t) = y0 − g(y) + A

∫ t

0
y(s)ds +

∫ t

0
F (s, y(s))ds +

∑
0<tk<t

Ik(y(t−k )),

t ∈ J.

From (ii) it follows that y(t) ∈ D(A), ∀ t ≥ 0. Also from (iii) it follows
that y0 − g(y) ∈ D(A). So, if we assume that y0 ∈ D(A), we conclude that
g(y) ∈ D(A).

Here and hereafter we assume that

(H1) A satisfies the Hille-Yosida condition.

Let Bλ = λR(λ,A), then for all x ∈ D(A), Bλx→ x as λ→∞.

Lemma 2.1. If y is an integral solution of (1)-(3), then it is given by

y(t) = S′(t)[y0 − g(y)] +
d

dt

∫ t

0
S(t− s)F (s, y(s))ds

+
∑

0<tk<t

S′(t− tk)Ik(y(t−k )), for t ∈ J.
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Proof. Let y be a solution of the problem (1)-(3). Define w(s) = S(t−s)y(s).
Then we have

w′(s) = −S′(t− s)y(s) + S(t− s)y′(s)
= −AS(t− s)y(s)− y(s) + S(t− s)y′(s)
= S(t− s)[y′(s)−Ay(s)]− y(s)
= S(t− s)F (s, y(s))− y(s).

(5)

Consider tk < t, k = 1, . . . ,m. Then integrating the previous equation we
have ∫ t

0
w′(s)ds =

∫ t

0
S(t− s)F (s, y(s))ds−

∫ t

0
y(s)ds.

For k = 1

w(t−1 )− w(0) + w(t)− w(t+1 ) =
∫ t

0
S(t− s)F (s, y(s))ds−

∫ t

0
y(s)ds

or∫ t

0
y(s) = S(t)y(0) +

∫ t

0
S(t− s)F (s, y(s))ds+ w(t+1 )− w(t−1 )

= S(t)(y0 − g(y)) +
∫ t

0
S(t− s)F (s, y(s))ds+ S(t− t1)I1(y(t−1 ))

Now for k = 2, . . . ,m we have that∫ t1

0
w′(s)ds+

∫ t2

t1

w′(s)ds+ . . .+
∫ t

tk

w′(s)ds

=
∫ t

0
S(t− s)F (s, y(s))ds−

∫ t

0
y(s)ds⇔

w(t−1 )− w(0) + w(t−2 )− w(t+1 ) + . . .+ w(t+k )− w(t)

=
∫ t

0
S(t− s)F (s, y(s))ds−

∫ t

0
y(s)ds⇔

∫ t

0
y(s)ds = w(0) +

∑
0<tk<t

[w(t+k )− w(t−k )] +
∫ t

0
S(t− s)F (s, y(s))ds

= S(t)(y0 − g(y)) +
∑

0<tk<t

S(t− tk)Ik(y(t−k ))

+
∫ t

0
S(t− s)F (s, y(s))ds.
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By differentiating the above equation we have that

y(t) = S′(t)(y0− g(y))+
∑

0<tk<t

S′(t− tk)I(y(t−k ))+
d

dt

∫ t

0
S(t− s)F (s, y(s))ds,

which proves the lemma.

3. Existence result

In this section we are concerned with the existence of solutions for problem
(1)–(3).

Let Ω′ be the set of all functions that belong in Ω and have values in D(A).
Let us list the following hypotheses:

(H2) For each t ∈ J, the function F (t, ·) is continuous and for each y, the
function F (·, y) is measurable.

(H3) The operator S′(t) is compact in D(A) whenever t > 0.
(H4) There exists a continuous function m : [0, T ] → R+ and a continuous

nondecreasing function ψ : [0,∞) → [0,∞) such that

|F (t, x)| ≤ m(t)ψ(|x|), t ∈ J, x ∈ E.

(H5) g : Ω′ → D(A) is completely continuous (i.e., continuous and takes
a bounded set into a compact set) and there exists G > 0 such that
|g(y)| ≤ G, for all y ∈ Ω.

(H6) Ik : E → D(A) and there exist constants dk, k = 1, . . . ,m such that

‖Ik(y)‖D(A)
≤ dk, y ∈ E.

(H7) y0 ∈ D(A) and∫ T

0
max(ω,Mm(s))ds <

∫ ∞

c

ds

s+ ψ(s)
,

where c = M

(
|y0|+G+

m∑
k=1

e−ωtkdk

)
and M and ω are from the

Hille-Yosida condition

The following Leray–Schauder alternative, known also as Schaefer’s fixed
point theorem is crucial in the proof of our main results.
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Theorem 3.1. ([6]) Let S be a Banach space and K : S → S be a completely
continuous map. If the set

Φ = {x ∈ S : x = σNx, for some 0 < σ < 1}.

is bounded then K has a fixed point.

Now, we are able to state and prove our main theorem in this section.

Theorem 3.2. Assume that assumptions (H1)-(H7) hold. Then the problem
(1)-(3) has at least one integral solution on J.

Proof. Consider the operator N : Ω′ −→ Ω′ defined by

N(y)(t) = S′(t)[y0 − g(y)] +
d

dt

∫ t

0
S(t− s)F (s, y(s))ds

+
∑

0<tk<t

S′(t− tk)Ik(y(t−k )), t ∈ J.

Step 1. N is continuous

Let {yn} be a sequence in Ω′ with lim
n→∞

yn = y in Ω′. By the continuity
of F with respect to the second argument, we deduce that for each s ∈ J,

F (s, yn(s)) converges to F (s, y(s)) in E, and we have that

|N(yn)(t)−Ny(t)| ≤ MeωT

[
|g(yn)− g(y)|+

∫ T

0
e−ωs|F (s, yn(s))

− F (s, y(s))|ds+
m∑

k=1

e−ωtk‖Ik(yn(t−k ))− Ik(y(t−k ))‖
D(A)

]
The sequence {yn} is bounded in Ω′, then by assumption (H5), and using
Lebesgue’s dominated convergence theorem and the continuity of g we obtain
that

lim
n→∞

N(yn) = N(y) in Ω′,

which implies that the mapping N is continuous on Ω′.

Step 2. N maps bounded sets into compact sets

Firstly we will prove that {Ny(t) : y ∈ B} is relatively compact in E, where
B be a bounded set in Ω′ let t ∈ J is fixed.
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If t = 0, then {Ny(0) : y ∈ B} = {y0 − g(y) : y ∈ B} is relatively compact
since we assumed that g is completely continuous.

If t ∈ (0, T ], choose ε such that 0 < ε < t. Then

N(y)(t) = S′(t)[y0 − g(y)] + lim
λ→∞

∫ t

0
S′(t− s)BλF (s, y(s))ds

+
∑

0<tk<t

S′(t− tk)Ik(y(t−k ))

= S′(t)[y0 − g(y)] + S′(ε) lim
λ→∞

∫ t−ε

0
S′(t− ε− s)BλF (s, y(s))ds

+ lim
λ→∞

∫ t

t−ε
S′(t− s)BλF (s, y(s))ds+

∑
0<tk<t

S′(t− tk)Ik(y(t−k )).

Since S′(t) is compact, we deduce that there exists a compact set W1 such
that

S′(ε) lim
λ→∞

∫ t−ε

0
S′(t− ε− s)BλF (s, y(s))ds ∈W1,

for y ∈ B. Furthermore by (H4) there exists a positive constant b1 such that

∣∣∣∣ lim
λ→∞

∫ t

t−ε
S′(t− s)BλF (s, y(s))ds

∣∣∣∣ ≤ b1ε, for y ∈ B.

Moreover, by (H5) and since S′(t) is compact the set

S′(t)[y0 − g(y)] +
∑

0<tk<t

S′(t− tk)Ik(y(t−k )) : y ∈ B


is relatively compact. We conclude that {Ny(t) : y ∈ B} is totally bounded
and therefore, it is relatively compact in E.
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Finally, let us show that NB is equicontinuous. For every 0 < τ0 < τ ≤ T

and y ∈ B,

|Ny(τ)−Ny(τ0)| = |(S′(τ)− S′(τ0))[y0 − g(y)]|

+
∣∣∣∣ lim
λ→∞

∫ τ0

0
[S′(τ − s)− S′(τ0 − s)]BλF (s, y(s))ds

∣∣∣∣
+
∣∣∣∣ lim
λ→∞

∫ τ

τ0

S′(τ − s)BλF (s, y(s))ds
∣∣∣∣

+

∣∣∣∣∣∣
∑

0<tk<τ0

[S′(τ − tk)− S′(τ0 − tk)]Ik(y(t−k ))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

τ0≤tk<τ

S′(τ − tk)Ik(y(t−k ))

∣∣∣∣∣∣
≤

∣∣[S′(τ)− S′(τ0)][y0 − g(y)]
∣∣

+
∣∣∣∣[S′(τ − τ0)− I] lim

λ→∞

∫ τ0

0
S′(τ0 − s)BλF (s, y(s))ds

∣∣∣∣
+MeωT

∫ τ

τ0

e−ωsm(s)ψ(|y(s)|)ds

+
∑

0<tk<τ0

‖S′(τ − tk)− S′(τ0 − tk)‖B(E)dk

+MeωT
∑

τ0≤tk<τ

e−ωtkdk.

The right-hand side tends to zero as τ → τ0, since S′(t) is strongly continu-
ous and the compactness of S′(t), t > 0 implies the continuity in the uniform
operator topology. Thus, NB is equicontinuous.

The equicontinuity for τ0 = 0 is obvious. As a consequence of the above
steps and the Arzelá-Ascoli theorem we deduce that N maps K into precom-
pact sets sets in D(A).

Step 3 The set

Φ = {x ∈ Ω′ : x = σNx, for some 0 < σ < 1}
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is bounded

For y ∈ Φ, there exists σ ∈ (0, 1) such that y = σNy, that is

y(t) = σS′(t)[y0 − g(y)] + σ
d

dt

∫ t

0
S(t− s)F (s, y(s))ds

+ σ
∑

0<tk<t

S′(t− tk)Ik(y(t−k )), t ∈ J

Using assumptions (H5)-(H7), we get

e−ωt|y(t)| ≤M

[
|y0|+G+

∫ t

0
e−ωsm(s)ψ(|y(s)|)ds+

m∑
k=1

e−ωtkdk

]
. (6)

Let v(t) denote the right hand side of the above inequality, then

v′(t) = Me−ωtm(t)ψ(|y(t)|), for t ∈ J

and

v(0) = M

(
y0 +G+

m∑
k=1

e−ωtkdk

)
.

From (6), we have that |y(t)| ≤ eωtv(t). Then

v′(t) ≤Me−ωtm(t)ψ(eωtv(t)), t ∈ J.

Accordingly, we have that

(eωtv(t))′ ≤ max{ω,Mm(t)}(eωtv(t) + ψ(eωtv(t))), t ∈ J,

which implies that∫ eωtv(t)

c

ds

s+ ψ(s)
≤
∫ T

0
max(ω,Mm(s))ds <

∫ ∞

c

ds

s+ ψ(s)
, t ∈ J

Using (H7) we deduce that there exists a positive constant α which depends
on T and the functions m,ψ such that y(t) ≤ α for all y ∈ Φ, which implies
that Φ is bounded.

Consequently, the mapping N is completely continuous and Theorem 3.1
implies that N has at least one fixed point, which gives rise to an integral
solution of the problem (1)-(3).
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4. A special case

In this section, we suppose that the nonlocal condition is given by

g(y) =
m+1∑
k=1

cky(ηk) (4∗)

where ck, k = 1, . . . ,m+ 1 are nonnegative constants and 0 ≤ η1 < t1 < η2 <

t2 < · · · < tm < ηm+1 ≤ T.

Lemma 4.1. Assume that

(H8) There exists a bounded operator B : E → E such that

B =

(
I +

m+1∑
k=1

ckS
′(ηk)

)−1

.

If y is an integral solution of (1), (2), (4∗) then it is given by

y(t) = S′(t)B

[
y0 −

m+1∑
k=2

ck

k−1∑
λ=1

S′(ηk − tj)Ij(y(t−j ))

−
m+1∑
k=1

ck

∫ ηk

0
S′(ηk − s)F (s, y(s))

]

+
d

dt

∫ t

0
S(t− s)F (s, y(s))ds+

∑
0<tk<t

S′(t− tk)Ik(y(t−k )), t ∈ J.

Proof. Let y be a solution of the problem (1), (2), (4∗). As in Lemma 2.1 we
conclude that∫ t

0
y(s)ds = w(0) +

∑
0<tk<t

S(t− tk)Ik(y(t−k )) +
∫ t

0
S(t− s)F (s, y(s))ds (7)

where w(0) = S(t)y(0) = S(t)

[
y0 −

m+1∑
k=1

cky(ηk)

]
.

It remains to find y(ηk). For that reason we use equation (5) and we integrate
it from 0 to ηk, k = 1, . . . ,m+ 1.
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For k = 1∫ η1

0
w′(s)ds =

∫ η1

0
S(t− s)F (s, y(s))ds−

∫ η1

0
y(s)ds⇔

w(η1)− w(0) =
∫ η1

0
S(t− s)F (s, y(s))ds−

∫ η1

0
y(s)ds⇔

S(t− η1)y(η1) = S(t)y(0) +
∫ η1

0
S(t− s)F (s, y(s))ds−

∫ η1

0
y(s)ds.

For k = 2, . . . ,m+ 1∫ ηk

0
w′(s)ds =

∫ ηk

0
S(t− s)F (s, y(s))ds−

∫ ηk

0
y(s)ds⇔∫ t1

0
w′(s)ds+

∫ t2

t1

w′(s)ds+ . . .+
∫ ηk

tk−1

w′(s)ds

=
∫ ηk

0
S(t− s)F (s, y(s))ds−

∫ ηk

0
y(s)ds ⇔

w(t−1 )− w(0) + w(t−2 )− w(t+1 ) + . . .+ w(ηk)− w(t+k−1)

=
∫ ηk

0
S(t− s)F (s, y(s))ds−

∫ ηk

0
y(s)ds.

After calculation we conclude that

S(t− ηk)y(ηk) = S(t)y(0) +
∑

0<tj<ηk

S(t− tj)Ij(y(t−j ))

+
∫ ηk

0
S(t− s)F (s, y(s))ds−

∫ ηk

0
y(s)ds.

If we differentiate the above equation we have that

S′(t− ηk)y(ηk) = S′(t)y(0) +
∑

0<tj<ηk

S′(t− tj)Ij(y(t−j ))

+ lim
λ→∞

∫ ηk

0
S′(t− s)BλF (s, y(s))ds.

We rewrite the last relation as

S′(t− ηk)y(ηk) = S′(t− ηk)S′(ηk)y(0)

+ S′(t− ηk)
∑

0<tj<ηk

S′(ηk − tj)Ij(y(t−j ))

+ S′(t− ηk) lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds.
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From this we conclude that

y(ηk) = S′(ηk)y(0) +
∑

0<tj<ηk

S′(ηk − tj)Ij(y(t−j ))

+ lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds.

(8)

Equation (4∗), using (8), becomes

y(0) +
m+1∑
k=1

ck

S′(ηk)y(0) +
∑

0<tj<ηk

S′(ηk − tj)Ij(y(t−j ))

+ lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds

]
= y0

or

y(0)

(
I +

m+1∑
k=1

ckS
′(ηk)

)
= y0 −

m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds.

So

y(0) = By0 −B

m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−B
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds.

(9)

Now, equation (7) with the help of (9) becomes

∫ t

0
y(s)ds = S(t)

By0 −B
m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−B
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds

]

+
∑

0<tk<t

S(t− tk)Ik(y(t−k )) +
∫ t

0
S(t− s)F (s, y(s))ds,
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and if we differentiate the above equation we conclude that

y(t) = S′(t)

By0 −B
m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−B
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds

]

+
∑

0<tk<t

S′(t− tk)Ik(y(t−k )) +
d

dt

∫ t

0
S(t− s)F (s, y(s))ds.

The proof is completed.

Now, we are able to state and prove our main theorem in this section.

Theorem 4.1. Assume that assumptions (H1)-(H4), (H6), (H8) hold. Also
assume that

(H9) y0 ∈ D(A) and ∫ ∞

1

ds

s+ ψ(s)
= ∞.

(H10) The set

{
y0 −

m+1∑
k=1

cky(ηk)

}
is relatively compact.

Then the problem (1), (2), (4∗) has at least one integral solution on J.

Proof. Consider the operator N : Ω′ −→ Ω′ defined by

N(y) = S′(t)B

y0 −
m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))

]

+
d

dt

∫ t

0
S(t− s)F (s, y(s))ds

+
∑

0<tk<t

S′(t− tk)Ik(y(t−k )), t ∈ J.
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We claim that the set Φ is bounded. For y ∈ Φ there exists σ ∈ (0, 1) such
that y = σNy, that is

y(t) = σS′(t)B

y0 −
m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))

]

+ σ
d

dt

∫ t

0
S(t− s)F (s, y(s))ds

+ σ
∑

0<tk<t

S′(t− tk)Ik(y(t−k )), t ∈ J.

Using assumptions (H3), (H5) we get

e−ωt|y(t)| ≤ M‖B‖B(E)

|y0|+M

m+1∑
k=2

|ck|
k−1∑
µ=1

eω(ηk−tµ)dµ

+M
m+1∑
k=1

|ck|
∫ ηk

0
eω(ηk−s)m(s)ψ(|y(s)|)ds

]

+M
∫ t

0
e−ωsm(s)ψ(|y(s)|)ds+M

m∑
k=1

e−ωtkdk. (10)

Let v(t) denote the right hand side of the above inequality, then

v′(t) = Me−ωtm(t)ψ(|y(t)|), for t ∈ J,

and

v(0) = M‖B‖B(E)

|y0|+M
m+1∑
k=2

|ck|
k−1∑
µ=1

eω(ηk−tµ)dµ

+M
m+1∑
k=1

|ck|
∫ ηk

0
eω(ηk−s)m(s)ψ(|y(s)|)ds

]
+M

m∑
k=1

e−ωtkdk.

From (10), we have that |y(t)| ≤ eωtv(t). Then

v′(t) ≤Me−ωtm(t)ψ(eωtv(t)), t ∈ J.
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Accordingly, we have that

(eωtv(t))′ ≤ max{ω,Mm(t)}(eωtv(t) + ψ(eωtv(t))), t ∈ J,

which implies that∫ eωtv(t)

v(0)

ds

s+ ψ(s)
≤
∫ T

0
max(ω,Mm(s))ds < +∞, t ∈ J.

Using (H9) we deduce that there exists a positive constant α which depends
on T and the functions m,ψ such that y(t) ≤ α for all y ∈ Φ, which implies
that Φ is bounded.

It remains to prove that N is compact. Let {yn} be a sequence in Ω′ with
lim

n→∞
yn = y in Ω′. By the continuity of F with respect to the second argument,

we deduce that for each s ∈ J, F (s, yn(s)) converges to F (s, y(s)) in E, and
we have that

|N(yn)(t)−N(y)(t)|

≤ M2‖B‖B(E)

m+1∑
k=2

|ck|
k−1∑
µ=1

eω(ηk−tµ)‖Iµ(yn(t−µ ))− Iµ(y(t−µ ))‖
D(A)

+
m+1∑
k=1

|ck|eωηk

∫ ηk

0
e−ωs|F (s, yn(s))− F (s, y(s))|ds

]

+ MeωT

[∫ T

0
e−ωs|F (s, yn(s))− F (s, y(s))|ds

+
m∑

k=1

e−ωtk‖Ik(yn(t−k ))− Ik(y(t−k ))‖
D(A)

]
.

The sequence {yn} is bounded in Ω′, then by using Lebesgue dominated con-
vergence theorem we obtain that

lim
n→∞

N(yn) = N(y) in Ω′,

which implies that the mapping N is continuous on Ω′.
Next, we use Arzelá-Ascoli’s Theorem to prove that N maps every bounded

set into a compact set. Let B be a bounded set of Ω′ and let t ∈ J be fixed,
then we need to prove that {N(y)(t) : y ∈ B} is relatively compact in D(A).
If t = 0, then from hypothesis (H10) we have that {N(y)(0) : y ∈ B} =
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y0 −

m+1∑
k=1

cky(ηk) : y ∈ B

}
is relatively compact. If t ∈ (0, T ], choose ε such

that 0 < ε < t. Then

N(y)(t) = S′(t)B

y0 −
m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

−
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))

]

+S′(ε) lim
λ→∞

∫ t−ε

0
S′(t− ε− s)BλF (s, y(s))ds

+ lim
λ→∞

∫ t

t−ε
S′(t− s)BλF (s, y(s))ds+

∑
0<tk<t

S′(t− tk)Ik(y(t−k )).

Since S′(t) is compact, we deduce that there exists a compact set D1 such that

S′(ε) lim
λ→∞

∫ t−ε

0
S′(t− ε− s)BλF (s, y(s))ds ∈ D1,

for y ∈ B. Furthermore by (H3) there exists a positive constant b1 such that

∣∣∣∣ lim
λ→∞

∫ t

t−ε
S′(t− s)BλF (s, y(s))ds

∣∣∣∣ ≤ b1ε, for y ∈ B.

We conclude that {N(y)(t) : y ∈ B} is totally bounded and therefore, it is
relatively compact in D(A).
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Finally, let us show that NB is equicontinuous. For every 0 < τ0 < τ ≤ T

and y ∈ B, ∣∣N(y)(τ)−N(y)(τ0)
∣∣

≤

∣∣∣∣∣∣[S′(τ)− S′(τ0)]

By0 −B

m+1∑
k=2

ck

k−1∑
µ=1

S′(ηk − tµ)Iµ(y(t−µ ))

− B
m+1∑
k=1

ck lim
λ→∞

∫ ηk

0
S′(ηk − s)BλF (s, y(s))ds

]∣∣∣∣∣
+

∣∣∣∣[S′(τ − τ0)− I] lim
λ→∞

∫ τ0

0
S′(τ0 − s)BλF (s, y(s))ds

∣∣∣∣
+ MeωT lim

λ→∞

∫ τ

τ0

e−ωsm(s)ψ(|y(s)|)ds

+
∑

0<tk<τ0

‖S′(τ − tk)− S′(τ0 − tk)‖B(E)dk

+ MeωT
∑

τ0≤tk<τ

e−ωtkdk.

The right-hand side tends to zero as τ → τ0, since S′(t) is strongly continu-
ous and the compactness of S′(t), t > 0 implies the continuity in the uniform
operator topology. Thus, NB is equicontinuous.

As a consequence of the above steps and the Arzelá-Ascoli Theorem we
deduce that N maps K into precompact sets in D(A).

Consequently, the mapping N is compact and Theorem 3.1 implies that N
has at least one fixed point, which gives rise to an integral solution of the
problem (1), (2), (4∗).
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