Fixed Point Theory, Volume 4, No. 2, 2003, 237-240 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.htm

A NOTE ON A ČIRIČ'S FIXED POINT THEOREM

MIRCEA BALAJ AND SORIN MUREŞAN

Department of Mathematics, Oradea University 3700 Oradea, Romania

e-mail: mbalaj@uoradea.ro, e-mail: smuresan@uoradea.ro

Abstract. In this paper we give a new proof for a fixed point theorem due to Čirič.Our method permits the localization of the fixed point into a certain closed ball.
2000 Mathematics Subject Classification: 54H25, 54E50.

Key Words and Phrases: complete metric space, fixed point, Banach's principle.

Generally, if a mapping defined on a complete metric space with values into itself admits a fixed point, then the fixed point is obtained by the successive approximations method. We will use other method closed that used by Darbo in [3], to prove a fixed point theorem due to Čirič. Our method has the advantage that it permits the localization of the fixed point into a certain closed ball.

For a set Y in a metric space (X, d) we shall denote by $\delta(Y)$ and \overline{Y} the diameter of Y and its closure, respectively. The closed ball with radius r and the center x will be denoted by $\overline{B}(x, r)$.

The following lemma will play a crucial role:

Lemma 1. Let (X, d) be a complete metric space, Y a nonempty closed bounded subset of X and $f: Y \to Y$ a mapping. Put $Y_0 := Y, Y_1 := \overline{f(Y_0)}, ...,$ $Y_n := \overline{f(Y_{n-1})}, ...$ If $\delta(Y_n) \to 0$ for $n \to \infty$, then f has a unique fixed point.

Proof. Let us observe that each set Y_n is nonempty, closed and $Y_n \supseteq Y_{n+1}$. Since X is complete and $\lim_{n\to\infty} \delta(Y_n) = 0$, it follows that the set $\bigcap_{n\geq 0} Y_n$ consists of a single point. Let it this be x_0 . Since $x_0 \in Y_n$ for each $n \ge 0$ it follows that $f(x_0) \in Y_n$ for each $n \ge 1$. By $Y_1 \subseteq Y_0$ we infer $f(x_0) \in Y_0$, hence

²³⁷

 $f(x_0) \in \bigcap_{n \ge 0} Y_n$. Thus $f(x_0) = x_0$. The uniqueness of the fixed point can be easily established by way of contradiction.

Using the previous lemma we give a new proof for the following well-known fixed point theorem due to Čirič [1]:

Theorem 2. Let (X, d) be a complete metric space, $f : X \to X$ a mapping satisfying the condition

$$+\alpha_{4}(x, y) d(x, f(y)) + \alpha_{5}(x, y) d(y, f(x)), \qquad (1)$$

for all $x, y \in X$, where $\alpha_i : X \times X \to [0, \infty)$, $i = \overline{1, 5}$ and $\sum_{i=1}^{5} \alpha_i(x, y) \leq \alpha$ for each $x, y \in X$ and some $\alpha \in [0, 1)$. Then f has a unique fixed point.

Proof. Let $a \in X$ arbitrarily chosen. Supposing that we are unlucky, that is $f(a) \neq a$, let us put k = d(a, f(a)) and $r = \frac{2+\alpha}{2(1-\alpha)}k$. Clearly for all $x, y \in X$ we have

$$[2 + \alpha_2 (x, y) + \alpha_3 (x, y) + \alpha_4 (x, y) + \alpha_5 (x, y)]k \le \le 2[1 - \alpha_1 (x, y) - \alpha_2 (x, y) - \alpha_3 (x, y) - \alpha_4 (x, y) - \alpha_5 (x, y)]r.$$
(2)

We shall prove that

$$f\left(\overline{B}\left(a,r\right)\right) \subseteq \overline{B}\left(a,r\right). \tag{3}$$

For this purpose we use a symmetric form of (1) which is obtained evaluating also d(f(y), f(x)) and adding

$$d(f(x), f(y)) \le \alpha_1(x, y)d(x, y) + \frac{\alpha_2(x, y) + \alpha_3(x, y)}{2} [d(x, f(x)) + d(y, f(y))] + \frac{\alpha_4(x, y) + \alpha_5(x, y)}{2} [d(x, f(y)) + d(y, f(x))].$$
(4)

Consider an element $x \in \overline{B}(a, r)$ and estimate d(a, f(x)) taking into account (4) and (2). For sake of simplicity we denote by $\alpha_i := \alpha_i(a, x), i = \overline{1, 5}$. $d(a, f(x)) \leq d(a, f(a)) + d(f(a), f(x)) \leq$

$$\leq d(a, f(a)) + \alpha_1 d(a, x) + \frac{\alpha_2 + \alpha_3}{2} \left[d(a, f(a)) + d(x, a) + d(a, f(x)) \right] + \alpha_1 d(a, x) + \alpha_1 d(a, x) + \alpha_2 d(a, x)$$

238

 $\begin{aligned} &+\frac{\alpha_4 + \alpha_5}{2} \left[d\left(a, f(x) + d\left(x, a\right) + d\left(a, f\left(x\right)\right) \right] \right]. \\ \text{Hence} \\ &d\left(a, f\left(x\right)\right) &\leq \frac{1}{1 - \frac{\alpha_2 + \alpha_3}{2} - \frac{\alpha_4 + \alpha_5}{2}} \left[\left(1 + \frac{\alpha_2 + \alpha_3}{2} + \frac{\alpha_4 + \alpha_5}{2} \right) d\left(a, f\left(a\right)\right) + \\ &+ \left(\alpha_1 + \frac{\alpha_2 + \alpha_3}{2} + \frac{\alpha_4 + \alpha_5}{2} \right) d\left(a, x\right) \right] = \\ &= \frac{1}{2 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5} \left[(2 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) k + \\ &+ (2\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) d\left(a, x\right) \right] \leq \\ &\leq \frac{2 \left(1 - \alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5 \right) r + \left(2\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 \right) r}{2} \end{aligned}$

$$\leq \frac{2(1 - \alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5)r + (2\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5)r}{2 - \alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5} = r.$$

Thus, (3) is proved. Taking $Y_0 = \overline{B}(a,r)$, $Y_n = \overline{f(Y_{n-1})}$, $n \ge 1$, from (1) we get $\delta(Y_n) \le \alpha \delta(Y_{n-1})$ and, since $\alpha \in [0,1)$, $\delta(Y_n) \to 0$, for $n \to \infty$. By Proposition 1 the restriction $f|_{\overline{B}(a,r)}$ has a fixed point. The uniqueness of the fixed point follows easily from (1).

Remark 1. Under the hypothesis of Theorem 2 the following inequality

$$\delta(X) \le \frac{2+\alpha}{1-\alpha} \sup \left\{ d\left(x, f\left(x\right)\right) : x \in X \right\}$$

holds.

Indeed, if x_0 is the fixed point of f let us observe that $x_0 \in \bigcap_{x \in X} \overline{B}(x, r_x)$, where $r_x = \frac{2+\alpha}{2(1-\alpha)} d(x, f(x))$. Then

$$d(x,y) \le d(x,x_0) + d(x_0,y) \le \frac{2+\alpha}{1-\alpha} \sup \{d(x,f(x)) : x \in X\},\$$

for any $x, y \in X$. Consequently, if the metric space X is unbounded, then $\sup \{d(x, f(x)) : x \in X\} = \infty.$

Remark 2. The radius of the ball $\overline{B}(a,r)$ where the fixed point must be sought is:

- $r = \frac{1}{1-\alpha}d(a, f(a))$ for the Banach's contraction principle $(\alpha_1 = \alpha \in [0, 1), \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0);$
- $r = \frac{1+\alpha}{1-2\alpha}d(a, f(a))$ for the Kannan's fixed point theorem [5] $(\alpha_1 = \alpha_4 = \alpha_5 = 0, \alpha_2 = \alpha_3 = \alpha \in [0, \frac{1}{2}));$

- $r = \frac{1+\beta}{1-2\alpha\beta}d(a, f(a))$ for the Čirič-Reich-Rus fixed point theorem [6] $(\alpha_1 = \alpha, \alpha_2 = \alpha_3 = \beta, \alpha_4 = \alpha_5 = 0, \alpha + 2\beta \in [0, 1)).$
- $r = \frac{2+\alpha}{2(1-\alpha)}d(a, f(a))$ for the Hardy and Rogers fixed point theorem [4] $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \text{ are positive constants such that } \alpha := \sum_{i=1}^5 \alpha_i \in [0, 1).$

Acknowledegment. The authors would like to thank professor I. A. Rus for his helpful suggestions and comments.

References

- L. B. Čirič, Generalized contractions and fixed-point theorems, Publ. L'Inst. Math., 12, 26(1971), 19-26.
- [2] L. B. Čirič, On a family of contractive maps and fixed points, Publ. L'Inst. Math., 17(1974), 45-51.
- [3] G. Darbo, Punti uniti in transformazioni a codomenio noncompacto, Rend. Sem. Mat. Univ. Padova, 24(1955), 84-92.
- [4] G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16(1973), 201-206.
- [5] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60(1968), 71-76.
- [6] I. A. Rus, *Metrical fixed point theorems*, University of Cluj-Napoca, Department of Mathematics, 1979.
- [7] I.A. Rus, Generalized contractions, Presa Universitară Clujeană, 2001.

240