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In recent paper of Acu, Gonska and Rasa ([1]) it was studied how
non-multiplicativ are some linear positive operators which reproduce
constant functions. Let Hn : C[a, b] → C[a, b] be such operators and
for x ∈ [a, b] we consider L(f) = Hn(f ; x). Denote by

Dn(f, g; x) := Hn(fg;x)−Hn(f ; x) ·Hn(g;x).

The following result was obtained in [1] (see Theorem 4 in [1]) for a
given x ∈ [a, b].

Theorem A If f, g ∈ C[a, b] and x ∈ [a, b] is fixed then it holds
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If we choose Hn = Bn-the Bernstein operator then the last estimate
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for f, g ∈ C[0, 1]. Our goal is to extend the result in Theorem A for
linear positive operators which reproduce linear functions. Instead of
ω̃- the least concave majorant of the usual modulus of continuity we
measure the non-multiplicativity of Hn in terms of the second order
modulus of continuity or the second order Ditizian-Totik modulus of
smoothness. Our first main result states the following:

Theorem 1. If f, g ∈ C[a, b], x ∈ [a, b] is fixed and Hn : C[a, b] →
C[a, b] is a positive linear operator reproducing linear functions, then
the following holds

|D(f, g;x)| ≤ 3
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(1.3)
and M(g) is defined analogously.
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