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One of the most important uses of standard orthogonal polynomials
on the real line is in the theory of quadratures, especially in the con-
struction of quadrature formulae of maximum, or nearly maximum,
algebraic degree of exactness for integrals involving a positive mea-
sure (cf. [4, Chapter 5]). In this lecture we consider applications of
multiple orthogonal polynomials in some special type of quadratures.
Otherwise, multiple orthogonal polynomials are intimately related to
Hermite-Padé approximants and, because of that, they are known
as Hermite-Padé polynomials. A nice survey on these polynomials,
as well as some their applications to various fields of mathematics
(number theory, special functions, etc.) and in the study of their
analytic, asymptotic properties, was given by Aptekarev [1].

Multiple orthogonal polynomials are a generalization of standard
orthogonal polynomials in the sense that they satisfy r orthogonality
conditions.

Let m ≥ 1 be an integer and let wj, j = 1, . . . ,m, be weight
functions on the real line so that the support of each wj is a subset of
an interval Ej. Let n⃗ = (n1, n2, . . . , nm) be a vector of m nonnegative
integers, which is called a multi-index with the length |n⃗| = n1 +
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n2 + · · · + nm. Here, we consider only the so-called type II multiple
orthogonal polynomials πn⃗(t) of degree |n⃗|. Such a monic polynomial
is defined by the m orthogonality relations∫

Ej

πn⃗(t)t
ℓwj(t) dt = 0, 0 ≤ ℓ ≤ nj − 1, j = 1, . . . ,m.

If the polynomial πn⃗ (t) is unique, then n⃗ is a normal multi-index.
When all multi-indices are normal, we have a complete system. One
important complete system is the AT system, in which all weight
functions are supported on the same interval E (= E1 = E2 = · · · =
Em) and the following |n⃗| functions: w1(t), tw1(t), . . ., t

n1−1w1(t),
w2(t), tw2(t), . . ., t

n2−1w2(t), . . ., wm(t), twm(t), . . ., t
nm−1wm(t) form

a Chebyshev system on E for each multi-index n⃗. In 2001 Van Assche
and E. Coussement [6] proved that for an AT system, the type II
multiple orthogonal polynomial has exactly |n⃗| zeros on E. These
multiple orthogonal polynomials can be applied to some kinds of
quadratures. We consider two applications.

1. In 1994 Borges [3] considered a problem that arises in evalu-
ation of computer graphics illumination models. Starting with that
problem, he examined the problem of numerically evaluating a set of
m definite integrals taken with respect to distinct weight functions
but related by a common integrand and interval of integration. Here,
we show a direct connection with multiple orthogonal polynomias (see
[5]).

2. Second application is related to a generalization of the Birkhoff-
Young quadratures [2] for analytic functions in the complex plane.
We will give a characterization of such generalized quadratures in
terms of multiple orthogonal polynomials and prove the existence
and uniqueness of these quadratures.
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