GENERAL GAMMA APPROXIMATING OPERATORS

Vasile Miheşan

Department of Mathematics, University of Cluj Napoca, Romania [vasile.mihesan@math.utcluj.ro]

2000 Mathematics Subject Classification. 41A36

Keywords and phrases. Generalized Euler's gamma distribution, generalized gamma transform, positive linear operator.

The most general form of the gamma distribution is the generalized gamma distribution (GG). It was introduced by Stacy [1], in order to combine the power of two distribution: the gamma distribution and the Weibull distribution.

The generalized gamma distribution is a three-parameter distribution, with the probability density function (p.d.f.) given by

$$GG(t;\alpha,\beta,\gamma) = \frac{\gamma\beta^{\alpha\gamma}}{\Gamma(\alpha)} t^{\gamma\alpha-1} e^{-(\beta t)^{\gamma}}$$
(1)

for t > 0, where $\alpha > 0$ and $\gamma > 0$ are shape parameter and $\beta > 0$ is rate parameter.

By using the generalized gamma distribution (1) we shall define a general linear gamma transform $\Gamma_{\alpha,\beta,\gamma}^{(a)}$, $a \in \mathbb{R}$ from which we obtain as special cases the generalized first kind transform. For different value of α, β, γ and a we obtain generalization of several gamma type operators studied in literature.

REFERENCES

 E.W. Stacy, A generalization of gamma distribution, Ann. Math. Statist., 33, 1962, pp. 1187-1192.