A REPRESENTATION OF THE LAGRANGE INTERPOLATION POLYNOMIAL

Mircea Ivan

Department of Mathematics, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania [mircea.ivan@math.utcluj.ro]

2000 Mathematics Subject Classification. 41A05

Keywords and phrases. Interpolation, divided difference.

Let $\mathcal{Z} = \{z_0, \ldots, z_m\}$ be a list of complex numbers (should not be confused with the same symbol denoting sets) and let $\{\mathcal{Z}_0, \ldots, \mathcal{Z}_n\}$ be a partition of \mathcal{Z} . We write the Lagrange-Hermite interpolating operator $L[\mathcal{Z}]$ in terms of the operators $L[\mathcal{Z}_i]$. We also give a closed form of the power series $\sum_{k=1}^{\infty} \frac{z^k}{(k+t_0)\dots(k+t_n)}$, where t_i are positive numbers, $n \geq 1$, and $|z| \leq 1$, in terms of the divided difference of Lerch and Digamma function.

REFERENCES

- N. E. Nörlund, Leçons sur les séries d'interpolation, Gauthier-Villars et C^{ie}, Paris, 1926.
- [2] E. Waring, Problems concerning interpolations, Philosophical Transactions of the Royal Society of London 69 (1779), pp. 59–67.
- [3] C. Hermite, Sur la formule d'interpolation de Lagrange, J. Reine Angew. Math. 84 (1878), pp. 70–79.