ON SOME QUADRATURE FORMULAS ON THE REAL LINE WITH THE HIGHEST DEGREE OF ACCURANCY AND ITS APPLICATIONS

Ioan Gavrea

Department of Mathematics, Technical University of Cluj-Napoca, Romania [Ioan.Gavrea@math.utcluj.ro]

2000 Mathematics Subject Classification. 41A55, 42C05

Keywords and phrases. Orthogonal polynomials, quasi-orthogonal polynomials, zeros, inequalities

In this talk we consider quadrature formulas of the form

(1)
$$\int_{a}^{b} f(x)w(x)dx = \sum_{k=0}^{n} A_{k}f(x_{k}) + R_{n}(f)$$

where x_k , k = 0, 1, ..., n are distinct points on [a, b].

The quadrature formula (1) has the degree of exactness $m, m \in \mathbb{N}$, if and only if $R_n(e_i) = 0, i = 0, 1, \ldots, m$ and $R_n(e_{m+1}) \neq 0$.

It is well known that, for n fixed $m \leq 2n + 1$.

We study the quadrature formulas (1) for which the degree of exactness m verifies the inequality

$$m \ge 2n - 2.$$

We study the quasi-orthogonality of orthogonal polynomials and we give some results on the location on their zeros. We are interested on the case when the quadrature formulas (1) have the positive weights $(A_k > 0, k = 0, 1, ..., n)$. Using quadrature formulas with one or two prescribed nodes we obtain some interesting inequalities.