
Approximating Solutions of Differential Equations

Semi-analitical solutions
By a semi-analitical method we understand the method when an exact solution ()y x is approximated by

another function (x), We present two methods: Picard Iteration Method and Taylor Series Method.

Iteration method
Let consider the following IVP

which is equivalent with the following Volterra integral equation

Starting from this integral equation we can construct the Picard sequence (succesive approximation
sequence)

for a starting function choosen. The -th interate will be the approximating solution. n
Example 1.

The Picard sequence has the following form in this case is

Let's calculate the Picard sequence for
> restart:
> f:=(x,y)->y;

:= f (),x y y

> y[0]:=x->1;
:= y

0
1

> n:=5;
:= n 5

>
> for i from 1 to n do
y[i]:=unapply(simplify((1+int(f(s,y[i-1](s)),s=0..x))),x)
od;

:= y
1

x 1 x

 1

 := y
2

x  1 x
1
2

x2

 := y
3

x   1 x
1
2

x2 1
6

x3

 := y
4

x    1 x
1
2

x2 1
6

x3 1
24

x4

 := y
5

x     1 x
1
2

x2 1
6

x3 1
24

x4 1
120

x5

Therefore the -th iterate is an approximation of exact solution. n
Let's calculate the exact solution
> diff_eq:=diff(yy(x),x)=yy(x);

 := diff_eq 
d
d
x

()yy x ()yy x

> in_c:=yy(0)=1;
:= in_c ()yy 0 1

> y_ex:=unapply(rhs(dsolve({diff_eq,in_c},yy(x))),x);
:= y_ex exp

> plot([y_ex(x),y[n](x)],x=0..5,color=[red,blue]);

In the graph we can see the difference between the exact solution y_ex(x) and the n-th interate, y[n](x).

Taylor Series Method

This method consist in finding an approximating solution as a Taylor expansion around the point

thus we need to find the values of the derivatives of the unkown function in y , for this we will use the
differential equation.
We denote by

, j .. 0 n

 2

> restart;
The procedure derivs computes the derivatives of the function (f ,)x ()y x with respect to x in whichiti is
made the substitution y ' (x) = (f ,)x ()y x and it has the inputs the function f and the derivation order . n
> derivs:=proc(f,n)
option remember;
if n=1 then f(x,y(x))
else
 subs(diff(y(x),x)=f(x,y(x)),diff(derivs(f,n-1),x))
fi;
end:
The procedure coef computes the values of the coefficients , j=0..n. The inputs for this procedure are the

function

a
j

f , the order of the Taylor polynomial, the point n x
0 and the value . y0

> coef:=proc(f,n,x0,y0)
 local d;
if n=0 then y0
else
 d:=unapply(derivs(f,n),x):
 subs(y(x0)=y0,d(x0))
fi;
end:
Let's apply this method for the IVP for Example1
> f:=(x,y)->y;

:= f (),x y y

> x0:=0;y0:=1;
:= x0 0

:= y0 1

> n:=5;
:= n 5

> for j from 0 to n do
 a[j]:=1/j!*coef(f,j,x0,y0)
od;

:= a
0

1

:= a
1

1

 := a
2

1
2

 := a
3

1
6

 := a
4

1
24

 := a
5

1
120

 3

> y1:=sum('a[j]*(x-x0)^j','j'=0..n);

 := y1     1 x
1
2

x2 1
6

x3 1
24

x4 1
120

x5

> y_app:=unapply(y1,x);

 := y_app x     1 x
1
2

x2 1
6

x3 1
24

x4 1
120

x5

Therefore the y_app is an approximation of the exact solution.
Let's calculate the exact solution
> d_eq:=diff(yy(x),x)=yy(x);

 := d_eq 
d
d
x

()yy x ()yy x

> in_c:=yy(0)=1;
:= in_c ()yy 0 1

> y_ex:=unapply(rhs(dsolve({d_eq,in_c},yy(x))),x);
:= y_ex exp

> plot([y_ex(x),y_app(x)],x=0..5,color=[red,blue]);

Numerical methods

A numerical method approximate the value of exact solution y(x) in the points from the

interval [a;b] with

, k .. 0 n

Euler method

In Euler method are calculated using the formula

where h is the step

Let's apply this method for our Example 1 on interval [0;5]. First we calculate the exact solution

 4

> restart;
> d_eq:=diff(yy(x),x)=yy(x);

 := d_eq 
d
d
x

()yy x ()yy x

> in_c:=yy(0)=1;
:= in_c ()yy 0 1

> y_ex:=unapply(rhs(dsolve({d_eq,in_c},yy(x))),x);
:= y_ex exp

> x0:=0;y0:=1;a:=0;b:=5;n:=10;

:= x0 0

:= y0 1

:= a 0

:= b 5

:= n 10

> f:=(x,y)->y;
:= f (),x y y

> h:=evalf((b-a)/n);
:= h 0.5000000000

> x[0]:=x0;y[0]:=y0;
:= x

0
0

:= y
0

1

> for k from 0 to n-1 do
 x[k+1]:=evalf(x[k]+h):
 y[k+1]:=evalf(y[k]+h*f(x[k],y[k])):
od:
> exact_val:=[x[j], y_ex(x[j])]$j=0..n;
exact_val [],0 1 [],0.5000000000 1.648721271 [],1.000000000 2.718281828, , :=

[],1.500000000 4.481689070 [],2.000000000 7.389056099, ,
[],2.500000000 12.18249396 [],3.000000000 20.08553692, ,
[],3.500000000 33.11545196 [],4.000000000 54.59815003, ,
[],4.500000000 90.01713130 [],5.000000000 148.4131591,

,

> app_val:=[x[j], y[j]]$j=0..n;;
app_val [],0 1 [],0.5000000000 1.500000000 [],1.000000000 2.250000000, , :=

[],1.500000000 3.375000000 [],2.000000000 5.062500000, ,
[],2.500000000 7.593750000 [],3.000000000 11.39062500, ,
[],3.500000000 17.08593750 [],4.000000000 25.62890625, ,
[],4.500000000 38.44335937 [],5.000000000 57.66503905,

,

 5

> plot([[exact_val],[app_val]],style=point,symbol=[circle,cross]);

Exercise: Try to increase , for example take n n 100 .

Runge-Kutta Method

We will implement Runge-Kutta method of order 4. The sequence is calculated using the formula

where

> restart;
> d_eq:=diff(yy(x),x)=yy(x);

 := d_eq 
d
d
x

()yy x ()yy x

> in_c:=yy(0)=1;
:= in_c ()yy 0 1

> y_ex:=unapply(rhs(dsolve({d_eq,in_c},yy(x))),x);
:= y_ex exp

> x0:=0;y0:=1;a:=0;b:=5;n:=10;

:= x0 0

:= y0 1

:= a 0

:= b 5

 6

:= n 10

> f:=(x,y)->y;
:= f (),x y y

> h:=evalf((b-a)/n);
:= h 0.5000000000

> x[0]:=x0;y[0]:=y0;
:= x

0
0

:= y
0

1

> for k from 0 to n-1 do
 x[k+1]:=evalf(x[k]+h):
 K1:=f(x[k],y[k]):
 K2:=f(x[k]+h/2,y[k]+h/2*K1):
 K3:=f(x[k]+h/2,y[k]+h/2*K2/2):
 K4:=f(x[k]+h,y[k]+h*K3):
 y[k+1]:=evalf(y[k]+h*(1/6*K1+2/6*K2+2/6*K3+1/6*K4)):
od:
> exact_val:=[x[j], y_ex(x[j])]$j=0..n;
exact_val [],0 1 [],0.5000000000 1.648721271 [],1.000000000 2.718281828, , :=

[],1.500000000 4.481689070 [],2.000000000 7.389056099, ,
[],2.500000000 12.18249396 [],3.000000000 20.08553692, ,
[],3.500000000 33.11545196 [],4.000000000 54.59815003, ,
[],4.500000000 90.01713130 [],5.000000000 148.4131591,

,

> app_val:=[x[j], y[j]]$j=0..n;;
app_val [],0 1 [],0.5000000000 1.615885416 [],1.000000000 2.611085679, , :=

[],1.500000000 4.219215270 [],2.000000000 6.817768424, ,
[],2.500000000 11.01673257 [],3.000000000 17.80177750, ,
[],3.500000000 28.76563266 [],4.000000000 46.48196631, ,
[],4.500000000 75.10953149 [],5.000000000 121.3683966,

,

> plot([[exact_val],[app_val]],style=point,symbol=[circle,cross]);

 7

The Second-Order Boundary Value Problem

> restart;with(DEtools):
The second-order boundary value problem (BVP) consists of the second-order ODE
 F(y(x), y'(x), y''(x), x) = 0
and appropriate conditions at the two ends of an interval [a, b]. Foe the second order differential equation we
can consider different types of boundary conditions, such as
- nonhomogeneous Dirichlet conditions would be
 y(a) = A, y(b) = B
- nonhomogeneous Neumann conditions would be
 y'(a) = , y'(b) =  
- nonhomogeneous Robin conditions would be
 y(a) + y'(a) = 

a


a

 y(b) + y'(b) = 
b


b

- most general linear boundary conditions for a second-order BVP would be
 y(a) + y'(a) + y(b) + y'(b) = a

11
a

12
b

11
b

12
B

1

 y(a) + y'(a) + y(b) + y'(b) = a
21

a
22

b
21

b
22

B
2

Not every BVP has a solution, and not every BVP that has a solution has a unique solution. Hence, a BVP
can have no solution, one solution, or an infinite number of solutions.

The Shooting Method
The basic idea behind the shooting method is to convert a boundary value problem (BVP) into an initial
value problem (IVP). It is easily motivated by an examination of a field of solutions that satisfy the left-hand
boundary condition. For example, let's consider the following BVP

  







d

d2

x2 ()y x 4 





d

d
x

()y x 4 ()y x 9 ex

 ()y 0 2
 ()y ()ln 2 0
The exact solution can be found using dsolve:

> d_eq:=diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=9*exp(x);

 := d_eq  







d

d2

x2 ()y x 4 





d

d
x

()y x 4 ()y x 9 ex

> bc:=y(0)=2,y(ln(2))=0;
:= bc ,()y 0 2 ()y ()ln 2 0

> y_sol:=unapply(rhs(dsolve({d_eq,bc},y(x))),x);

 := y_sol x  e
()2 x 9 e

()2 x
x

()ln 2
ex

 8

> plot(y_sol(x),x=0..ln(2));

> DEplot(d_eq, y(x), x=0..ln(2), [seq([y(0)=2,D(y)(0)=-k],k=1..20)],
arrows=none, linecolor=red);

Not every solution starting at (0, 2) passes through (ln(2), 0). In fact, only one solution passes through both
points. The other solutions have different slopes at x = 0. Just the one solution of the BVP passing through
both points has the "right" initial slope to rise from (0, 2) and fall to (ln(2), 0). Hence, the solution of the
BVP must be "launched" from the initial point with the correct slope in order for it to reach the target point at
the right end of the interval. The similarity to launching a projectile leads to the name Shooting Method for
the numeric solution of the BVP.

The shooting method is quite general. Here it will be demonstrated only for two second-order linear two-
point boundary value problems of the form

  







d

d2

x2 ()y x ()p x 





d

d
x

()y x ()q x ()y x ()f x

 ()y a r
 ()y b s
 The IVP that will be used as the basis for the shooting method is

  







d

d2

x2 ()y x ()p x 





d

d
x

()y x ()q x ()y x ()f x

 y(a) = r
 y'(a) = 
 where is the unknown parameter. Call the solution to this IVP  y . The goal is to find  such that
 (b) = y s

 9

> a:=0;b:=ln(2);
:= a 0

:= b ()ln 2

> ic1 := y(a)=2, D(y)(a)=alpha;

:= ic1 ,()y 0 2 ()()D y 0 

> y_alpha:=unapply(rhs(dsolve({d_eq,ic1},y(x))),x,alpha);

 := y_alpha (),x   e
()2 x

e
()2 x

x () 1 ex

Now, we have to find the value of such that  ()y_alpha ,()ln 2  0 .
> eq:=y_alpha(ln(2),alpha) = 0;

 := eq 
9
4

1
4

()ln 2 ()1  0

> alpha1:=solve(eq,alpha);

 :=  
9 (ln 2

()ln 2
)

Let's compare the exact solution and the approximating solution from the shooting method

> plot([y_sol(x),y_alpha(x,alpha1)],x=a..b,color=[red,blue]);

In this case, we found the exact slope for the shooting solution such that it coincides with the exact solution
of the BVP. Not always the algebraic equation in  is so simple (in this case is linear), in general, this
equation is nonlinear, so, we have to solve numericaly this equation and the solution will be an
approximating value for the good slope, therefore appears some differences between the shooting solution
and the exact solution of the BVP.

 10

	Approximating Solutions of Differential Equations
	Semi-analitical solutions
	Numerical methods
	The Second-Order Boundary Value Problem

