
Approximating Solutions of Differential Equations 
 

Semi-analitical solutions 
By a semi-analitical method we understand the method when an exact solution ( )y x  is approximated by 

another function ( x ), We present two methods: Picard Iteration Method and Taylor Series Method. 
 
Iteration method 
Let consider the following IVP 

 
which is equivalent with the following Volterra integral equation 

 
Starting from this integral equation we can construct the Picard sequence (succesive approximation 
sequence) 

 

for a starting function choosen. The -th interate will be the approximating solution. n
Example 1. 

 
 
The Picard sequence has the following form in this case is 

 

Let's calculate the Picard sequence for  
> restart: 
> f:=(x,y)->y; 

:= f ( ),x y y  

> y[0]:=x->1; 
:= y

0
1  

> n:=5; 
:= n 5  

>  
> for i from 1 to n do 
y[i]:=unapply(simplify((1+int(f(s,y[i-1](s)),s=0..x))),x) 
od; 

:= y
1

x 1 x  

 1



 := y
2

x  1 x
1
2

x2  

 := y
3

x   1 x
1
2

x2 1
6

x3  

 := y
4

x    1 x
1
2

x2 1
6

x3 1
24

x4  

 := y
5

x     1 x
1
2

x2 1
6

x3 1
24

x4 1
120

x5  

Therefore the -th iterate is an approximation of exact solution. n
Let's calculate the exact solution 
> diff_eq:=diff(yy(x),x)=yy(x); 

 := diff_eq 
d
d
x

( )yy x ( )yy x  

> in_c:=yy(0)=1; 
:= in_c ( )yy 0 1  

> y_ex:=unapply(rhs(dsolve({diff_eq,in_c},yy(x))),x); 
:= y_ex exp  

> plot([y_ex(x),y[n](x)],x=0..5,color=[red,blue]); 

 
In the graph we can see the difference between the exact solution y_ex(x) and the n-th interate, y[n](x). 
 
 
Taylor Series Method 

This method consist in finding an approximating solution as a Taylor expansion around the point  

 

thus we need to find the values of the derivatives of the unkown function  in y , for this we will use the 
differential equation. 
We denote by  

, j  .. 0 n  
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> restart; 
The procedure derivs computes the derivatives of the function (f , )x ( )y x  with respect to x  in whichiti is 
made the substitution y ' ( x ) = (f , )x ( )y x  and it has the inputs the function f  and the derivation order  . n
> derivs:=proc(f,n) 
option remember; 
if n=1 then f(x,y(x)) 
else 
  subs(diff(y(x),x)=f(x,y(x)),diff(derivs(f,n-1),x)) 
fi; 
end: 
The procedure coef computes the values of the coefficients , j=0..n. The inputs for this procedure are the 

function 

a
j

f , the order  of the Taylor polynomial, the point n x
0  and the value . y0

> coef:=proc(f,n,x0,y0) 
 local d; 
if n=0 then y0 
else 
 d:=unapply(derivs(f,n),x): 
 subs(y(x0)=y0,d(x0)) 
fi; 
end: 
Let's apply this method for the IVP for Example1   
> f:=(x,y)->y; 

:= f ( ),x y y  

> x0:=0;y0:=1; 
:= x0 0  

:= y0 1  

> n:=5; 
:= n 5  

> for j from 0 to n do 
 a[j]:=1/j!*coef(f,j,x0,y0) 
od; 

:= a
0

1  

:= a
1

1  

 := a
2

1
2  

 := a
3

1
6  

 := a
4

1
24  

 := a
5

1
120  
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> y1:=sum('a[j]*(x-x0)^j','j'=0..n); 

 := y1     1 x
1
2

x2 1
6

x3 1
24

x4 1
120

x5  

> y_app:=unapply(y1,x); 

 := y_app x     1 x
1
2

x2 1
6

x3 1
24

x4 1
120

x5  

Therefore the y_app is an approximation of the exact solution. 
Let's calculate the exact solution 
> d_eq:=diff(yy(x),x)=yy(x); 

 := d_eq 
d
d
x

( )yy x ( )yy x  

> in_c:=yy(0)=1; 
:= in_c ( )yy 0 1  

> y_ex:=unapply(rhs(dsolve({d_eq,in_c},yy(x))),x); 
:= y_ex exp  

> plot([y_ex(x),y_app(x)],x=0..5,color=[red,blue]); 

 

 

Numerical methods 

A numerical method approximate the value of exact solution y(x) in the points from the 

interval [a;b] with  

,  k  .. 0 n
 
Euler method 

In Euler method are calculated using the formula 

 
where h is the step 

 
Let's apply this method for our Example 1 on interval [0;5]. First we calculate the exact solution  
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> restart; 
> d_eq:=diff(yy(x),x)=yy(x); 

 := d_eq 
d
d
x

( )yy x ( )yy x  

> in_c:=yy(0)=1; 
:= in_c ( )yy 0 1  

> y_ex:=unapply(rhs(dsolve({d_eq,in_c},yy(x))),x); 
:= y_ex exp  

 
> x0:=0;y0:=1;a:=0;b:=5;n:=10; 

:= x0 0  

:= y0 1  

:= a 0  

:= b 5  

:= n 10  

> f:=(x,y)->y; 
:= f ( ),x y y  

> h:=evalf((b-a)/n); 
:= h 0.5000000000  

> x[0]:=x0;y[0]:=y0; 
:= x

0
0  

:= y
0

1  

> for k from 0 to n-1 do 
 x[k+1]:=evalf(x[k]+h): 
 y[k+1]:=evalf(y[k]+h*f(x[k],y[k])): 
od: 
> exact_val:=[ x[j], y_ex(x[j])]$j=0..n; 
exact_val [ ],0 1 [ ],0.5000000000 1.648721271 [ ],1.000000000 2.718281828, , := 

[ ],1.500000000 4.481689070 [ ],2.000000000 7.389056099, ,
[ ],2.500000000 12.18249396 [ ],3.000000000 20.08553692, ,
[ ],3.500000000 33.11545196 [ ],4.000000000 54.59815003, ,
[ ],4.500000000 90.01713130 [ ],5.000000000 148.4131591,

,
 

> app_val:=[ x[j], y[j]]$j=0..n;; 
app_val [ ],0 1 [ ],0.5000000000 1.500000000 [ ],1.000000000 2.250000000, , := 

[ ],1.500000000 3.375000000 [ ],2.000000000 5.062500000, ,
[ ],2.500000000 7.593750000 [ ],3.000000000 11.39062500, ,
[ ],3.500000000 17.08593750 [ ],4.000000000 25.62890625, ,
[ ],4.500000000 38.44335937 [ ],5.000000000 57.66503905,

,
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> plot([[exact_val],[app_val]],style=point,symbol=[circle,cross]); 

 
Exercise: Try to increase , for example take n n 100 . 
 
 
Runge-Kutta Method 
 

We will implement Runge-Kutta method of order 4. The sequence  is calculated using the formula 

 
where 

 
 
> restart; 
> d_eq:=diff(yy(x),x)=yy(x); 

 := d_eq 
d
d
x

( )yy x ( )yy x  

> in_c:=yy(0)=1; 
:= in_c ( )yy 0 1  

> y_ex:=unapply(rhs(dsolve({d_eq,in_c},yy(x))),x); 
:= y_ex exp  

 
> x0:=0;y0:=1;a:=0;b:=5;n:=10; 

:= x0 0  

:= y0 1  

:= a 0  

:= b 5  
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:= n 10  

> f:=(x,y)->y; 
:= f ( ),x y y  

> h:=evalf((b-a)/n); 
:= h 0.5000000000  

> x[0]:=x0;y[0]:=y0; 
:= x

0
0  

:= y
0

1  

> for k from 0 to n-1 do 
 x[k+1]:=evalf(x[k]+h): 
 K1:=f(x[k],y[k]): 
 K2:=f(x[k]+h/2,y[k]+h/2*K1): 
 K3:=f(x[k]+h/2,y[k]+h/2*K2/2): 
 K4:=f(x[k]+h,y[k]+h*K3): 
 y[k+1]:=evalf(y[k]+h*(1/6*K1+2/6*K2+2/6*K3+1/6*K4)): 
od: 
> exact_val:=[ x[j], y_ex(x[j])]$j=0..n; 
exact_val [ ],0 1 [ ],0.5000000000 1.648721271 [ ],1.000000000 2.718281828, , := 

[ ],1.500000000 4.481689070 [ ],2.000000000 7.389056099, ,
[ ],2.500000000 12.18249396 [ ],3.000000000 20.08553692, ,
[ ],3.500000000 33.11545196 [ ],4.000000000 54.59815003, ,
[ ],4.500000000 90.01713130 [ ],5.000000000 148.4131591,

,
 

> app_val:=[ x[j], y[j]]$j=0..n;; 
app_val [ ],0 1 [ ],0.5000000000 1.615885416 [ ],1.000000000 2.611085679, , := 

[ ],1.500000000 4.219215270 [ ],2.000000000 6.817768424, ,
[ ],2.500000000 11.01673257 [ ],3.000000000 17.80177750, ,
[ ],3.500000000 28.76563266 [ ],4.000000000 46.48196631, ,
[ ],4.500000000 75.10953149 [ ],5.000000000 121.3683966,

,
 

> plot([[exact_val],[app_val]],style=point,symbol=[circle,cross]); 
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The Second-Order Boundary Value Problem 
 
> restart;with(DEtools): 
The second-order boundary value problem (BVP) consists of the second-order ODE  
                        F(y(x), y'(x), y''(x), x) = 0 
and appropriate conditions at the two ends of an interval [a, b]. Foe the second order differential equation we 
can consider different types of boundary conditions, such as 
- nonhomogeneous Dirichlet conditions would be 
                             y(a) = A, y(b) = B 
- nonhomogeneous Neumann conditions would be 
                         y'(a) = , y'(b) =   
- nonhomogeneous Robin conditions would be 
                      y(a) +  y'(a) =  

a


a

                       y(b) +  y'(b) =  
b


b

- most general linear boundary conditions for a second-order BVP would be 
          y(a) +  y'(a) +  y(b) +  y'(b) = a

11
a

12
b

11
b

12
B

1  

          y(a) +  y'(a) +  y(b) +  y'(b) = a
21

a
22

b
21

b
22

B
2  

 
Not every BVP has a solution, and not every BVP that has a solution has a unique solution.  Hence, a BVP 
can have no solution, one solution, or an infinite number of solutions. 
 
The Shooting Method 
The basic idea behind the shooting method is to convert a boundary value problem (BVP) into an initial 
value problem (IVP).  It is easily motivated by an examination of a field of solutions that satisfy the left-hand 
boundary condition. For example, let's consider the following BVP 

    







d

d2

x2 ( )y x 4 





d

d
x

( )y x 4 ( )y x 9 ex  

      ( )y 0 2
      ( )y ( )ln 2 0
The exact solution can be found using dsolve: 
 
> d_eq:=diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=9*exp(x); 

 := d_eq  







d

d2

x2 ( )y x 4 





d

d
x

( )y x 4 ( )y x 9 ex  

> bc:=y(0)=2,y(ln(2))=0; 
:= bc ,( )y 0 2 ( )y ( )ln 2 0  

> y_sol:=unapply(rhs(dsolve({d_eq,bc},y(x))),x); 

 := y_sol x  e
( )2 x 9 e

( )2 x
x

( )ln 2
ex  
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> plot(y_sol(x),x=0..ln(2)); 

 
> DEplot(d_eq, y(x), x=0..ln(2), [seq([y(0)=2,D(y)(0)=-k],k=1..20)], 
arrows=none, linecolor=red); 

 
Not every solution starting at  (0, 2) passes through ( ln(2), 0). In fact, only one solution passes through both 
points.  The other solutions have different slopes at x = 0.  Just the one solution of the BVP passing through 
both points has the "right" initial slope to rise from (0, 2) and fall to ( ln(2), 0).  Hence, the solution of the 
BVP must be "launched" from the initial point with the correct slope in order for it to reach the target point at 
the right end of the interval.  The similarity to launching a projectile leads to the name Shooting Method for 
the numeric solution of the BVP. 
 
The shooting method is quite general. Here it will be demonstrated only for two second-order linear two-
point boundary value problems of the form 

      







d

d2

x2 ( )y x ( )p x 





d

d
x

( )y x ( )q x ( )y x ( )f x  

        ( )y a r  
         ( )y b s
   The IVP that will be used as the basis for the shooting method is 

       







d

d2

x2 ( )y x ( )p x 





d

d
x

( )y x ( )q x ( )y x ( )f x                                             

          y(a) = r 
          y'(a) =  
 where   is the unknown parameter. Call the solution to this IVP  y . The goal is to find   such that  
    (b) =  y s
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> a:=0;b:=ln(2); 
:= a 0  

:= b ( )ln 2  

 
> ic1 := y(a)=2, D(y)(a)=alpha; 

:= ic1 ,( )y 0 2 ( )( )D y 0   

> y_alpha:=unapply(rhs(dsolve({d_eq,ic1},y(x))),x,alpha); 

 := y_alpha ( ),x   e
( )2 x

e
( )2 x

x ( ) 1 ex  

Now, we have to find the value of  such that  ( )y_alpha ,( )ln 2  0 .  
> eq:=y_alpha(ln(2),alpha) = 0; 

 := eq 
9
4

1
4

( )ln 2 ( )1  0  

> alpha1:=solve(eq,alpha); 

 :=  
9 (ln 2

( )ln 2
)

 

Let's compare the exact solution and the approximating solution from the shooting method 
 
> plot([y_sol(x),y_alpha(x,alpha1)],x=a..b,color=[red,blue]); 

 
In this case, we found the exact slope for the shooting solution such that it coincides with the exact solution 
of the BVP. Not always the algebraic equation in   is so simple (in this case is linear), in general, this 
equation is nonlinear, so, we have to solve numericaly this equation and the solution will be an 
approximating value for the good slope, therefore appears some differences between the shooting solution 
and the exact solution of the BVP. 
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