
Solving Difference equations with MAPLE 
MAPLE can solve some difference equations using rsolve command. The command structure  is 
rsolve(eqns, fcns) 
where 

 The function rsolve attempts to solve the recurrence relation(s) specified in eqns for the functions in 
fcns, returning an expression for the general term of the function.  

 The first argument should be a single recurrence relation or a set of recurrence relations and boundary 
conditions. Any expressions in eqns which are not equations will be understood to be equal to zero.  

 The second argument fcns indicates the functions that rsolve should solve for. A function may be 
represented by a name or an unevaluated function call whose argument is a name. If the function is 
represented by a name, the index variable for the solution is deduced from the recurrence equations. If 
the function is represented by an unevaluated function call, the argument name is used as the solution 
index. If the solution index differs from the index name in a recurrence equation, then the equation 
must be independent of the solution index.  

 If fcns is a set, the solution is returned as a set of equations. The left hand side of each equation will be 
the function name. Otherwise, an expression for the solution is returned.  

 The procedure rsolve can currently solve linear recurrences with constant coefficients, systems of 
linear recurrences with constant coefficients, divide and conquer recurrences with constant 
coefficients, many first order linear recurrences, and some nonlinear first order recurrences.  

 If insufficient boundary conditions are given, rsolve uses symbolic function names as default values.  

For linear recurrences with constant coefficients and systems of linear recurrences with constant 
coefficients, if no boundary conditions are given, symbolic function calls starting with index 0 are used.  

 Boundary conditions for linear recurrences with constant coefficients and systems of linear 
recurrences with constant coefficients may be specified in one of three ways:  

            t(a)=c,        t(a..b)=c,        t(k=a..b)=f(k), 
where a and b are integers, c is a constant with respect to the index variable for the sequence, k is a name, 
and f(k) is an expression of k. The boundary condition t(a..b)=c is equivalent to t(a)=t(a+1)=...=t(b)=c 
and the condition t(k=a..b)=f(k) is equivalent to t(a)=f(a), t(a+1)=f(a+1), ..., t(b)=f(b), 
 
 

First order  linear difference equations 
y n 1

a y
n

b
n   nonhomogeneous first order difference equation 

 
y n 1

a y
n

0   homogeneous first order difference equation 

 
General solution 
y

n
y_hom

n
y_p

n  

 
where 
y_hom

n  is the general solution of the homogeneous equation 
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y_p
n  is a particular solution of the nonhomogeneous equation 

 
The case of homogeneous equation 
 

y n 1
a y

n
0    

 
If we want to find solution of the form y

n
qn

 then  must be a solution of the equation  q q a 0  

which is called the characteristic equation. The general solution of the homogeneous equation is generated 
by the root of the characteristic equation q a . 
General solution:  y_hom

n
c ( )a n

The constant c can be found from initial condition y
0

  

 
> eq1:=y(n+1)+a*y(n)=0; 

:= eq1 ( )y n 1 a ( )y n 0  

> rsolve(eq1,y(n)); 
( )y 0 ( )a n

 

> rsolve({eq1,y(0)=alpha},y(n)); 
 ( )a n

 

 
The case of nonhomogeneous equation 
General solution 
y

n
y_hom

n
y_p

n  

 
y_hom

n
y

0
( )a n

 is the general solution of the homogeneous equation 

y_p
n , the particular solution of the nonhomogeneous equation, generaly, can be found using the variation 

of the constant method, we try to find a particular solution of the form 
y_p

n
c

n
( )a n

, we try to find the sequence ( ) from the condition that ( ) to be a solution of the 

nonhomogeneous equation 

c
n

y_p
n

 
So,  y_p n 1

a y_p
n

b
n

( )n 1
c n 1

( )a ( )a c
n

( )a n b
n

( )( )n 1

 

c n 1
c

n
( )a b

n  

 
n 0               c

1
c

0
( )a

( )1
b

0
( )2

n 1               c
2

c
1

( )a b
1

................................................ 
n n 2        c n 1

c n 2
( )a

( )( )n 1
b n 2  
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n n 1         c
n

c n 1
( )a

( )n
b n 1

--------------------------------------------------- 

                       c
n

c
0 

k 1

n 1

( )a
( )k

b k 1

choosing , we can write c
0

0

                    c
n 

k 1

n 1

( )a
( )k

b k 1

Thus, the particular solution has the following form 

y_p
n

( )a c
n

n
 = ( )a n 









k 1

n 1

( )a
( )k

b k 1
 

 

y_p
n 

k 1

n 1

( )a
( )n k

b k 1
 

 
> eq1_nonhom:=y(n+1)+a*y(n)=b(n); 

:= eq1_nonhom ( )y n 1 a ( )y n ( )b n  

> rsolve(eq1_nonhom,y(n)); 

( )y 0 ( )a n 









n0 1

n

( )a
( )n n0

( )b n0 1  

  
Particular cases for ( ) b

n

 
1.  for all n b

n
b

> eq1_nonhom:=y(n+1)+a*y(n)=b; 
:= eq1_nonhom ( )y n 1 a ( )y n b  

> rsolve(eq1_nonhom,y(n)); 

 ( )y 0 ( )a n b ( )a n

1 a
b
1 a  

 
 
2. b

n
( )P

m
n   - polinomial of degree  with respect to  m n

> eq1_nonhom:=y(n+1)+a*y(n)=n^2+n; 
 := eq1_nonhom ( )y n 1 a ( )y n n2 n  

> rsolve(eq1_nonhom,y(n)); 
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( )y 0 ( )a n 2

  1 3 a2 a3 3 a

2 ( )n 1 







n
2

1

1 a
( ) 2 a 4 ( )n 1

( )1 a 2  

2 a ( )a n

  1 3 a2 a3 3 a


 

 
3.   - exponential multiplied with a polinomial of degree  with respect to  b

n
qn ( )P

m
n m n

if  we have q a
> eq1_nonhom:=y(n+1)+a*y(n)=q^n*n; 

 := eq1_nonhom ( )y n 1 a ( )y n qn n  

> rsolve(eq1_nonhom,y(n)); 

  ( )y 0 ( )a n q ( )a n

( )q a 2

( )a 2 q qn

 q2 2 a q a2

( )n 1 qn

q a
 

 
if  we have q a
> eq1_nonhom:=y(n+1)+a*y(n)=(-a)^n*n; 

 := eq1_nonhom ( )y n 1 a ( )y n ( )a n n  

> rsolve(eq1_nonhom,y(n)); 

  ( )y 0 ( )a n ( )a n

a

( )n 1 







n
2

1 ( )a n

a
2 ( )n 1 ( )a n

a

 

Applications of the first order linear difference equation 
1. Interest 
A sum of money that is lent to a bank earns interest. Let us denote the amount of deposit after  time 
periods by . The interest is denoted by 

n
S

n
I

n . The relation between  and S
n

I
n  is given by 

    S n 1 = S
n + I

n  

This formula states that the amount on deposit after n periods is equal to the sum of the amount on deposit 
after the previous period plus the interest earned. The question now is how the interest I

n  is related to 

. S
n

 
Simple Interest. A simple way of offering interest is given by the option that the interest is proportional to 
the initial sum S

0  deposited, called the principal, 

   I
n

p S
0  

Here,  is the constant interest rate (for example example, p = 0.05 means that there is an interest rate of 
5%). Using this relation it  results in the following first order difference equation  

p

for  (n = 0, 1, ...), S
n

   S n 1 = S
n + p S

0  
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This equation represents a specific case of the first order difference equation where a 1  and 
.  b

n
p S0

 
> int_eq:=S(n+1)=S(n)+p*S0; 

:= int_eq ( )S n 1 ( )S n p S0  

> rsolve({int_eq,S(0)=S0},S(n)); 
 S0 p S0 ( )n 1 p S0  

> simplify(%); 
S0 p S0 n  

> factor(%); 
S0 ( )1 p n  

This formula is called the simple interest formula. According to this option, the amount on deposit after 
riods is a linear function of the principal 

n  
pe S

0 .  is assumed that n refers to the number of years.  It

 
Exercise: We are interested to know the number k of years needed to double any initial sum S

0  in the 

case of simple interest. 
> sol:=rsolve({int_eq,S(0)=S0},S(n)); 

:= sol  S0 p S0 ( )n 1 p S0  

> s:=unapply(sol,n,S0); 
 := s ( ),n S0  S0 p S0 ( )n 1 p S0  

> eq:=2*S0=s(k,S0); 
:= eq 2 S0  S0 p S0 ( )k 1 p S0  

> solve(eq,k); 
1
p

 

 
 
Compound Interest. Another type of interest is given if interest is added to the principal at regular 
intervals, which are called conversion periods. For this case, the interest formula is given by 

    I
n

p S
n

r
 

Here, r  refers to the number of conversion periods per year, this means r = 12 corresponds to a 
conversion period of one month, and r = 4 corresponds to a conversion period of one quarter. For this 
interest option, the difference equation for S[n] is given by (n = 0, 1, ...), 

    S n 1
S

n

p S
n

r
  = 






1

p
r

S
n  

This equation is an homogeneous first order linear difference equation, a 1
p
r

 and b
n

0  for all n.  

> int_eq_c:=S(n+1)=S(n)+p/r*S(n); 
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 := int_eq_c ( )S n 1 ( )S n
p ( )S n

r
 

> sol:=rsolve({int_eq_c,S(0)=S0},S(n)); 

 := sol S0 







r p
r

n

 

 
Exercise: We are interested to know the number k of years needed to double any initial sum S

0  in the 

case of compound interest. 
 
> int_eq_c:=S(n+1)=S(n)+p/r*S(n); 

 := int_eq_c ( )S n 1 ( )S n
p ( )S n

r
 

> sol:=rsolve({int_eq_c,S(0)=S0},S(n)); 

 := sol S0 







r p
r

n

 

> s:=unapply(sol,n,S0); 

 := s ( ),n S0 S0 







r p
r

n

 

> eq:=2*S0=s(k,S0); 

 := eq 2 S0 S0 







r p
r

k

 

> solve(eq,k); 
( )ln 2







ln

r p
r

 

 
2. Loan Repayments 
Loan repayments can be studied in a corresponding way. Let us consider the repayment of a housing loan 
that required any initial debt S

0  (the amount borrowed from a financial institution). The debt changes due 

to  
(i) repayments at regular intervals made to reduce the debt, and  
(ii) interest that has to be paid on the amount still owing.  
By considering a compound interest, the debt S n 1  after n 1  payments is given by the following 

formula 

S n 1







1

p
r

S
n

R  

Here, S n 1  and S
n  are the debt after n 1  and  payments, respectively, and n R  is the constant 
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repayment. The term involving  
p
r

  refers to the compound interest option. 

Thus we get a nonhomogeneous first order difference equation with a 1
p
r

 and b
n

R   for all n. 

> LR_eq:=S(n+1)= (1+p/r)*S(n)-R; 

 := LR_eq ( )S n 1 





1

p
r

( )S n R  

> sol:=rsolve({LR_eq,S(0)=S0},S(n)); 

 := sol  S0 







r p
r

n r R 







r p
r

n

p
r R
p

 

 
The number k of conversion periods required to repay the debt can be calculated for this case on the basis 
of the solution formula. 
 
> s:=unapply(sol,n,S0,R); 

 := s ( ), ,n S0 R  S0 







r p
r

n r R 







r p
r

n

p
r R
p

 

> eq:=s(k,S0,R)=0; 

 := eq  S0 







r p
r

k r R 







r p
r

k

p
r R
p

0  

> T:=solve(eq,k); 

 := T







ln

r R
 p S0 r R







ln

r p
r

 

 
3. The Pielou Logistic Equation (Riccati type) 
 

                    x n 1

 x
n

1  x
n

 

 
 
 
> P_eq:=x(n+1)=alpha*x(n)/(1+beta*x(n)); 

 := P_eq ( )x n 1
 ( )x n
1  ( )x n
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> sol:=rsolve({P_eq,x(0)=x0},x(n)); 

 := sol 





rsolve ,{ },( )x n 1

 ( )x n
1  ( )x n

( )x 0 x0 ( )x n  

> eq1:=subs(x(n)=1/y(n),x(n+1)=1/y(n+1),P_eq); 

 := eq1 
1 

 
( )y n 1

( )y n 





1


( )y n

> lin_eq:=y(n+1)=solve(eq1,y(n+1)); 

 := lin_eq ( )y n 1
( )y n 
  

> sol:=rsolve({lin_eq,y(0)=1/x0},y(n)); 

 := sol  









1


n

x0


 1 

 







1


n

 1 
 

> xx:=unapply(1/sol,n,alpha,beta,x0); 

 := xx ( ), , ,n   x0
1

 









1


n

x0


 1 

 







1


n

 1 

 

> plot([[j,xx(j,3,1,0.5)]$j=0..30],style=point,symbol=circle); 

 
> alpha:=1; 

:=  1  

> rsolve(lin_eq,y(n)); 
 ( )y 0  ( )n 1   

> sol:=rsolve({lin_eq,y(0)=1/x0},y(n)); 

 := sol  
1
x0

 ( )n 1   
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> xx:=unapply(1/sol,n,beta,x0); 

 := xx ( ), ,n  x0
1

 
1
x0

 ( )n 1 
 

> plot([[j,xx(j,2,1)]$j=0..100],style=point,symbol=circle); 

 
> alpha:='alpha'; 

:=    

 

Linear second order difference equation 
 

 y n 2
A y n 1

B y
n

b
n   nonhomogeneous second order difference equation 

 
 y n 2

A y n 1
B y

n
0   homogeneous second order difference equation 

 
General solution 
y

n
c y_hom

n
y_p

n  

 
where 
y_hom

n  is the general solution of the homogeneous equation 

y_p
n  is a particular solution of the nonhomogeneous equation 

 
The case of homogeneous equation 
 

 y n 2
A y n 1

By
n

0    

 
If we want to find solution of the form y

n
qn

 then  must be a solution of the equation q

     q2 A q B 0
 
which is called the characteristic equation. The general solution of the homogeneous equation is generated 
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by the roots of the characteristic equation. 
I. If ,  are real distinct roots then q

1 2

y_hom c q
n

c q
n

q

       
n 1 1 2 2

n 1 2

1

 
II. If  =  double root then q q

1 2

y_hom ( )c c n qn

q

       

 
III. If q r ( )( )cos  i ( )sin  , q

2
r ( )( )cos  i ( )sin   are conjugated complex roots, written in the 

trigonometric form, then 
       y_hom rn ( )c ( )cos n  c ( )sin n

n 1 2
  

 
Coefficients  and  can be determined from initial conditions c

1 2
c y

0
 ,  y 

1

n n n

n

n

 
The case of nonhomogeneous equation 
General solution 
y y_hom y_p  

 
y_hom  is the general solution of the homogeneous equation  

y_p
n , the particular solution of the nonhomogeneous equation, generaly, can be found only in some 

pariticular cases of  as in the case of the first order linear difference equation b

 
Examples: 
a)  y 5 y 6 y 0  n 2 n 1 n

b)  y 4 y 4 y 0  n 2 n 1 n

c)  y 5 y 6 y 4 n 2  n 2 n 1 n

d)  y 5 y 6 y 4n ( )a n bn 2 n 1 n

:= eq_a

 

 
> eq_a:=y(n+2)-5*y(n+1)+6*y(n)=0; 

 ( )y n 2 5 ( )y n 1 6 ( )y n 0

 := ch_eq

 

> ch_eq:=q^2-5*q+6=0; 
  q 5 q 6 0

,3 2

2
 

> solve(ch_eq,q); 
 

> rsolve(eq_a,y(n)); 
 ( ) n2 ( )y 0 ( )y 1 3 ( )  n3 ( )y 0 ( )y 1 2

:= eq_b

 

> eq_b:=y(n+2)-4*y(n+1)+4*y(n)=0; 
 ( )y n 2 4 ( )y n 1 4 ( )y n 0  

> ch_eq:=q^2-4*q+4=0; 

 10



 := ch_eq  q2 4 q 4 0  

> solve(ch_eq,q); 
,2 2  

> rsolve(eq_b,y(n)); 

 







1
2

( )y 1 2 ( )y 0 2n 





 ( )y 0

1
2

( )y 1 ( )n 1 2n  

> eq_c:=y(n+2)-5*y(n+1)+6*y(n)=4*n-2; 
 := eq_c  ( )y n 2 5 ( )y n 1 6 ( )y n 4 n 2  

> sol:=rsolve(eq_c,y(n)); 
 := sol     ( )2 ( )y 0 ( )y 1 3n ( ) 3 ( )y 0 ( )y 1 2n 2 n 2 2 2n

 

> sol:=rsolve({eq_c,y(0)=0,y(1)=1},y(n)); 
 := sol   3n 3 2n 2 n 2  

> eq_d:=y(n+2)-5*y(n+1)+6*y(n)=4^n*(a*n+b); 
 := eq_d  ( )y n 2 5 ( )y n 1 6 ( )y n 4n ( )2 n 4  

> sol:=rsolve(eq_d,y(n)); 
 := sol     ( )2 ( )y 0 ( )y 1 3n ( ) 3 ( )y 0 ( )y 1 2n 4 3n 5 4n ( )n 1 4n

 

> a:=2;b:=4; 
:= a 2  

:= b 4  

> sol:=rsolve({eq_c,y(0)=1,y(1)=0},y(n)); 
 := sol   2n 2 3n 2 n 2  

 

Applications of the linear second order difference equations 
 
1. The Fibonacci Sequence (The Rabbit Problem) 
This problem first appeared in 1202, in Liber abaci, a book about the abacus, written by the famous Italian 
mathematician Leonardo di Pisa, better known as Fibonacci. The problem may be stated as follows:  
How many pairs of rabbits will there be after one year if starting with one pair of mature rabbits, if each 
pair of rabbits gives birth to a new pair each month starting when it reaches its maturity age of two 
months? 
 
If F(n) is the number of pairs of rabbits at the end of n months, then the recurrence relation that represents 
this model is given by the second-order linear difference equation 
 

( )F n 2 ( )F n 1 (F n ) , ( )F 0 1 , ( )F 1 2  
 
> Fib_eq:=F(n+2) = F(n+1)+F(n); 

:= Fib_eq ( )F n 2 ( )F n 1 (F n )  
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> sol_Fib:=rsolve({Fib_eq,F(0)=1,F(1)=2},F(n)); 

 := sol_Fib 







3 5
10

1
2









1
2

5
2

n








1
2

3 5
10









1
2

5
2

n
 

> Fib_seq:=unapply(sol_Fib,n); 

 := Fib_seq n 







3 5
10

1
2









1
2

5
2

n








1
2

3 5
10









1
2

5
2

n
 

> Fib_seq(6); 









3 5
10

1
2









1
2

5
2

6








1
2

3 5
10









1
2

5
2

6

 

> expand(%); 
21  

> Fib_seq(12); 









3 5
10

1
2









1
2

5
2

12








1
2

3 5
10









1
2

5
2

12

 

> expand(%); 
377  

The Fibonacci sequence has many properties. One is lim
n 

( )F n 1
( )F n

1 5
2

, this number is called the 

golden mean, which supposedly 
represents the ratio of the sides of a rectangle that is most pleasing to the eye. 
 
> gm:=limit(Fib_seq(n+1)/Fib_seq(n),n=infinity); 

 := gm 
1
2

5
2

 

2. National Income Model 
The national income represents a measure for the total level of economic activity within a country during 
a certain period of time. The economic activity of a country determines the living standard of people: a 
recession decreases and a boom increases the living standard. Thus, there is a great interest in the 
variations of the national income to understand, for example, the effect of factors that influence the 
national income. There is a variety of possibilities to define the national income and its influence factors. 
Here, we will focus on a relatively simple model pioneered by the American economist P. A. Samuelson 
(1939). Samuelson's model describes the national income  of a country during an accounting period n = 

0, 1, 2,..., (n may refer to one year) as a sum of three contributions, 

y
n

   y
n

 C
n

Inv
n

G
n  

C
n  is the amount spent on consumer goods (food, housing, clothing,...) during the accounting period. 

Inv
n  is the induced private investment (the amount invested in new machinery, equipment,...). G

n  is the 

amount spent by the government (social security, health, education, infrastructure investments, research 
spending,...). To calculate  it is needed to relate y

n
C

n , Inv
n , and G

n  to . The consumption y
n
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expenditure C
n  may be ex cted to be proportiona  th tional ome

increase in the living standard leads to an increase in consumption), 
   

pe l to e na inc  of the preceding period (an 

C
n

 y n 1  

He are, the co t of proportionality 0   and  1nst n  is called the marginal propensity to consume.  
The induced private investment Inv

n  modeled in several ways. One possible assumption (whichc

 is th

an be  is 

called the acceleration principle) at Inv
n  is proportional to the increase in consumption of the period 

considered over the preceding period (an increasing living standard over the previous period leads to 
increased investments to offer additional goods), 
   Inv

n
 ( )C

n
C n 1  =   ( )y n 1

y n 2  

wh ter ere the model parame . Samuelson considered variations 0  0   and  4 . 
Finally, a simple model for the government expenditure G

n  is that G
n  is constant 

    G
n

  

Ac  cording t  three assumptions, Samuelson’s national income model reads 

s 

o the

( )

    y
n

  y n 1
  ( )y n 1

y n 2
  

thu
   y

n
  1 y n 1
  y n 2

  

or 
y n 2

  ( ) y n 1
  y

n
1     

 
 Nat_Inc_eq:=y(n+2)=alpha*(1+beta)*y(n+1)-alpha*beta*y(n)+gamma; >  

 := Nat_Inc_eq ( )y n 2   ( )1  ( )y n 1   ( )y n 

> Nat_Inc_seq:=rsolve(Nat_Inc_eq,y(n)): 
ta=0; > char_eq:=q^2-alpha*(1+beta)*q+alpha*be

 q2  ( )1  q   := char_eq 0  

>  solve(char_eq,q);

, 

2

 
2

 2 2 2   2 2 4  
2

 

2

 
2

  2 2 2  2 2 4  
2

 

The particular solution is a constant sequence (since b
n

  for all n), so y_p
n

C , the value of C is the 

 eq:=C=alpha*(1+beta)*C-alpha*beta*C+gamma; 

solution of the equation  
C  ( )1  C   C

 
  

>
:= eq C   ( )1  C   C   

> y_p:=solve(eq,C); 

 := y_p 

 1

 

 

 

 13



3.
T

 Propagation of Annual Plants 
he material of this section comes from Edelstein–Keshet of plant propagation. Our objective here is to 

 
 after which they die. Furthermore, only a fraction of these seeds 

 May, 

If 

ere 
 =  the number of one-year-old seeds in April 

tion may be written as 
l number of seeds in April) 

here 
 =  the number of one-year-old not germinated seeds left in May 

r plant, 

develop a mathematical model that 
describes the number of plants in any desired generation. It is known that plants produce seeds at the end
of their growth season (say August),
survive the winter, and those that survive germinate at the beginning of the season (say May), giving rise 
to a new generation of plants. Let 
  = number of seeds produced per plant in August, 
  = fraction of one-year-old seeds that germinate in May, 

 = fraction of two-year-old seeds that germinate in
  = fraction of seeds that survive a given winter. 

p  denotes the number of plants in generation n, then n

p     s1
n

s2
n  n

wh
  s1

n

s2   = the number of two-year-old seeds in April n

Observe that the number of seeds left after germina
  seeds left = (fraction of not germinated) x (origina
thus 
  ss1

n
( )1  s1

n  

   ss2
n

( )1  s2
n

w
  ss1

n

ss2   = the number of two-year-old not germinated seeds left in May n

New seeds s0
n  (0-year-old) are produced in August at the rate of   pe

  s0
n

 p
n  

A r, fter winte seeds  that were new in generation n will be one year old in the next generation n+1, and  s0
n

thema fraction  s0
n  of  will survive. Hence 

   s1 n 1
 s0  n

or 
   s1 n 1

  p
n  

Si
  

mlarly, 

ds 

s2  ss1
n  n

hich yielw
  s2 n 1

 ( )1  s1
n  

  s2 2
n 1

 ( )1   p 1  n

Substituting for  in expressions of  gives s1
n , s2

n
p

n

  n n

p

p  s1  s2
n  

  n
   p n 1
 2 ( )1   p n 2  

or 
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p n 2
   p n 1
 2 ( )1   p

n     

 
> char_eq:=q^2-alpha*sigma*gamma*q-beta*sigma^2*(1-alpha)*gamma=0; 

 := char_eq  q2    q  2 ( )  1  0  

> solve(char_eq,q); 
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,



 
 


 
2

 2 2 4    4  



2 







 
2

 2 2 4    4  
2



 

>  
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