Difference Equations

Difference equation is a recurrence relation between the terms of some sequence. Let (a_{n}) be a real numbers sequence.
First oder difference equation: $a_{n+1}=\mathrm{f}\left(a_{n}\right)$
Second order difference equation: $a_{n+2}=\mathrm{f}\left(a_{n}, a_{n+1}\right)$
k-order difference equation: $a_{n+k}=f\left(a_{n}, a_{n+1}, \ldots, a_{n+k-1}\right)$
Difference equations generate dynamical systems.

Long term behaviour of $a_{n+1}=r a_{n}$ for r constant

For the linear difference equation $a_{n+1}=r a_{n}$, let's consider some significant values of r.
If $r=0$ then $a_{n}=0$ (except possibly a[0]) for all $\mathrm{n}>0$, so there is no need for further investigation.
If $r=1$ then $a_{n+1}=a_{n}=a_{0}$, in this case we have a constant sequence.
What happens for some other values?
Let's cosider $a_{n+1}=r a_{n}$, for $r=.5$ and $a_{0}=3$
> a[0]:=3; r:=0.5;

$$
\begin{aligned}
& a_{0}:=3 \\
& r:=0.5
\end{aligned}
$$

>for i from 0 to 9 do a[i+1]:=r*a[i]
end do:
> plot ([[n, a[n]]\$n=0..10], style=point, symbol=circle);

For this example we notice that the terms of the sequence are decreasing and it seems that a_{n} tends to 0 .

Let's cosider $a_{n+1}=r a_{n}$, for $r=1.02$ and $a_{0}=3$
$>\mathrm{a}[0]:=3 ; r:=1.02$;
$>$ for i from 0 to 19 do
$a[i+1]:=r * a[i]$
end do:
$a_{0}:=3$
$r:=1.02$
> plot([[n,a[n]]\$n=0..20], style=point, symbol=circle);

For this example we notice that the terms of the sequence are increasing unbounded.

Let's cosider $a_{n+1}=r a_{n}$, for $r=-.8$ and $a_{0}=3$
$>a[0]:=3 ; r:=-0.8$;
>for i from 0 to 19 do
$a[i+1]:=r * a[i]$
end do:
> plot([[n,a[n]]\$n=0..20], style=point, symbol=circle);

$$
\begin{gathered}
a_{0}:=3 \\
r:=-0.8
\end{gathered}
$$

In this case the terms of the sequence oscilate and it seems that a_{n} tends to 0 .

Let's cosider $a_{n+1}=r a_{n}$, for $r=-1.08$ and $a_{0}=3$
> a[0]:=3;r:=-1.08;

$$
a_{0}:=3
$$

$$
r:=-1.08
$$

```
> for i from 0 to 19 do
    a[i+1]:=r*a[i]
end do:
> plot([[n,a[n]]$n=0..20],style=point, symbol=circle);
```


In this case the terms of the sequence oscilate and it seems that the oscilations growth.

In fact, if we start with some initial data a_{0} we have:

$$
\begin{aligned}
& a_{1}=r a_{0} \\
& a_{2}=r a_{1}=r^{2} a_{0}
\end{aligned}
$$

$$
a_{n}=r a_{n-1}=r^{n} a_{0}
$$

Therefore, the behaviour is given by the value of r. The expression $a_{n}=r^{n} a_{0}$ represent the solution of the difference equation. Thus, we have:
I. if $|r|<1$ then a_{n} tends to 0 for all initial data a_{0}
II. if $r>1$ then a_{n} tends to $\operatorname{sign}\left(a_{0}\right) \infty$ without oscillations
III. if $r<-1$ then $\left|a_{n}\right|$ tends to $+\infty$ and the terms of the sequence alternate the sign.

Long term behaviour of $a_{n+1}=r a_{n}+b$, where r and b are constants

Exercise: Test the following cases:
$a_{n+1}=.5 a_{n}+.1$, for $a_{0}=.1, a_{0}=.2$ and $a_{0}=.3$
$a_{n+1}=1.01 a_{n}-1000$, for $a_{0}=90000, a_{0}=100000$ and $a_{0}=110000$

If $r=0$ then $a_{n}=b$ for all $\mathrm{n}>0$, so we have a constant sequence (excepting a_{0})

If $r=1$ then $a_{n+1}-a_{n}=b$ for all n, so
$a_{1}-a_{0}=b$
$a_{2}-a_{1}=b$
$a_{n-1}-a_{n-2}=b$
$a_{n}-a_{n-1}=b$
$a_{n}-a_{0}=n b$
The solution is: $a_{n}=n b+a_{0}$, the terms of the solution are on the line $y=b x+a_{0}$

$$
\begin{aligned}
& \text { If } r \neq 1 \text { and } r \neq 0 \text {, then } \\
& \begin{aligned}
a_{1} & =r a_{0}+b \\
a_{2} & =r a_{1}+b=r\left(r a_{0}+b\right)+b=r^{2} a_{0}+b(r+1) \\
a_{3} & =r a_{2}+b=r\left(r^{2} a_{0}+b(r+1)\right)=r^{3} a_{0}+b\left(r^{2}+r+1\right)
\end{aligned}
\end{aligned}
$$

$a_{n}=r^{n} a_{0}+b\left(r^{(n-1)}+\ldots+r+1\right)=r^{n} a_{0}+\frac{b\left(1-r^{n}\right)}{1-r}=r^{n} a_{0}+\frac{b}{1-r}-\frac{b r^{n}}{1-r}$
The solution is $a_{n}=r^{n}\left(a_{0}-\frac{b}{1-r}\right)+\frac{b}{1-r}$

Equilibrium solution. Equilibrium point.
A constant solution $a_{n}=a$, for all n, of the difference equation $a_{n+1}=f\left(a_{n}\right)$ is called an equilibrium solution.
The value a is called the equilibrium point of the difference equation.
Since the equilibrium solution is a constant sequence then the value a is a solution of the equation $a=\mathrm{f}(a)$

For the first order linear difference equation $a_{n+1}=r a_{n}+b$ we have the equilibrium point
$a=r a+b$
So, $a=\frac{b}{1-r}$ if $r \neq 1$
If $r=1$ then the equation has no equilibrium point.
If $r=0$ and $b=0$ then equation has an infinite number of equilibrium points (every initial value is an equilibrium point).

In the case of our examples,
$a_{n+1}=.5 a_{n}+.1$ the equilibrium point is $a=.2$
$a_{n+1}=1.01 a_{n}-1000$ the equilibrium point is $a=100000$

Stability of an equilibrium point

Definition. The equilibrium point a is locally stable equilibrium point if for all solutions (a_{n}) of the difference equation with the initial condition a_{0} near the value a we have that $a_{n} \rightarrow a$ as $n \rightarrow \infty$. If this property holds for any initial condition a_{0} then we say that the equilibrium point is globally stable. If the equilibrium point is not locally stable then we say that is unstable.

In the case of the first order linear difference equation $a_{n+1}=r a_{n}+b$ the solution is $a_{n}=r^{n}\left(a_{0}-\frac{b}{1-r}\right)+\frac{b}{1-r}$
so, we have the following situations
I. If $|r|<1$ then equilibrium point is globally stable
II. If $1<|r|$ then equilibrium point is unstable
III. If $r=1$ then the difference equation has no equilibrium point (the graph is a line)

Nonlinear difference equation $a_{n+1}=\mathrm{f}\left(a_{n}\right)$

Generally, the nonlinear difference equations can not be solved. For these equations it is important to study the behaviour of the solutions with respect to the equilibrium points.

Exercise: Plot the solutions of $a_{n+1}=r\left(1-a_{n}\right) a_{n}$ for the following initial data:

$$
\begin{aligned}
& r=.8, a_{0}=.5 \\
& r=1.5, a_{0}=.1 \\
& r=2.75, a_{0}=.1 \\
& r=3.25, a_{0}=.1 \\
& r=3.525, a_{0}=.1 \\
& r=3.555, a_{0}=.1 \\
& r=3.75, a_{0}=.1 \\
& \text { > a[0]:=0.5;r:=0.8; } \\
& a_{0}:=0.5 \\
& r:=0.8 \\
& \text { >for i from } 0 \text { to } 99 \text { do } \\
& \text { end do: } \\
& \text { > plot([[n,a[n]]\$n=0..100], style=point, symbol=circle); }
\end{aligned}
$$

> a[0]:=0.1; r:=1.5;

$$
\begin{aligned}
a_{0} & :=0.1 \\
r & :=1.5
\end{aligned}
$$

>for i from 0 to 99 do a[i+1]:=r*(1-a[i])*a[i]
end do:
> plot([[n,a[n]]\$n=0..100], style=point, symbol=circle);

> r:=2.75;
$r:=2.75$
>for i from 0 to 99 do a[i+1]:=r*(1-a[i])*a[i]
end do:
> plot([[n,a[n]]\$n=0..100], style=point, symbol=circle);

>r:=3.25;

$$
r:=3.25
$$

>for i from 0 to 99 do a[i+1]:=r*(1-a[i])*a[i]
end do:
> plot([[n,a[n]]\$n=0..100], style=point, symbol=circle);

> r:=3.525;

$$
r:=3.525
$$

>for i from 0 to 99 do
$a[i+1]:=r *(1-a[i]) * a[i]$
end do:
> plot([[n,a[n]]\$n=0..100], style=point, symbol=circle);
>r:=3.555;

>for i from 0 to 99 do a[i+1]:=r*(1-a[i])*a[i]
end do:
> plot([[n,a[n]]\$n=0..100], style=point, symbol=circle);

>r:=3.75;

$$
r:=3.75
$$

>for i from 0 to 99 do a[i+1]:=r*(1-a[i])*a[i]
end do:
> plot([[n,a[n]]\$n=0..100], style=point, symbol=circle);

Theorem (Stability in the first approximation)

Let's consider the difference equation $a_{n+1}=\mathrm{f}\left(a_{n}\right)$. Suppose that a is an equilibrium point, i.e. $a=\mathrm{f}(a)$, and $f^{\prime}(a)$ is not 0 . Then
(i) if $\left|f^{\prime}(a)\right|<1$ then a is locally stable;
(ii) if $\left|f^{\prime}(a)\right|>1$ then a is unstable.

Exercise: Using the Theorem of Stability in the first approximation study the difference equation $a_{n+1}=r\left(1-a_{n}\right) a_{n}$.

The Stair Step (Cobweb) Diagrams

Given a_{0}, we pinpoint the value $a_{1}=\mathrm{f}\left(a_{0}\right)$ by drawing a vertical line through a_{0} so that it also intersects the graph of f at $\left(a_{0}, a_{1}\right)$. Next, draw a horizontal line from $\left(a_{0}, a_{1}\right)$ to meet the diagonal line $\mathrm{y}=\mathrm{x}$ at the point (a_{1}, a_{1}). A vertical line drawn from the point (a_{1}, a_{1}) will meet the graph of f at the point $\left(a_{1}, a_{2}\right)$. Continuing this process, one may find a_{n} for all $\mathrm{n}>0$.

```
> with(plots):
```

Warning, the name changecoords has been redefined
> a[0]:=0.5;r:=0.8;N:=100;

$$
\begin{aligned}
a_{0} & :=0.5 \\
r & :=0.8 \\
N & :=100
\end{aligned}
$$

>f:=x->r*(1-x)*x;

$$
f:=x \rightarrow r(1-x) x
$$

$>$ for i from 0 to $\mathrm{N}-1$ do $a[i+1]:=f(a[i])$
end do:
> plot([[n,a[n]]\$n=0..N], style=point, symbol=circle);

>for i from 1 to N do a[i]:=f(a[i-1]):
lp[2*i-1]:=[a[i-1],a[i-1]];
lp[2*i]:=[a[i-1],a[i]];
end:
> g1:=plot([lp[j]\$j=1..2*N], style=line, color=black):
> g2: $=p l o t([f(x), x], x=0 . .1):$
> display(g1,g2);

> cobweb: =proc (f,xmin, xmax, a0, n)
local i,j,x,a,l,g1,g2;
a[0]:=a0;
for i from 1 to n do
a[i]:=f(a[i-1]):
1[2*i-1]:=[a[i-1],a[i-1]]:
1[2*i]:=[a[i-1],a[i]]:
end:
g1:=plot([f(x),x],x=xmin..xmax):
g2: =plot([l[j]\$j=1..2*n], style=line, color=black):
display(g1,g2);
end:
> cobweb(f, 0, 1, a[0],N);

> a[0]:=0.1;r:=1.5;

$$
\begin{aligned}
a_{0} & :=0.1 \\
r & :=1.5
\end{aligned}
$$

> cobweb(f,0,1,a[0],N);

>r:=2.75;cobweb(f, 0, 1, a[0],N);

$$
r:=2.75
$$

$>r:=3.25 ; \operatorname{cobweb}(f, 0,1, a[0], N)$;

$$
r:=3.25
$$

> r:=3.525; cobweb(f, 0, 1, a[0],N);

$$
r:=3.525
$$

> r:=3.555; cobweb(f, 0, 1, a[0],N);

$$
r:=3.555
$$

>r:=3.75;cobweb(f, 0, 1, a[0],N);

$$
r:=3.75
$$

Periodic Points and Cycles

Definition. Let b be in the domain of f. Then:
(i) b is called a periodic point of f if for some positive integer $k, f^{k}(\mathrm{~b})=\mathrm{b}$. Hence a point is k-periodic if it is a fixed point of f^{k}, that
is, if it is an equilibrium point of the difference equation
$a_{n+1}=\mathrm{g}\left(a_{n}\right)$, where $g=f^{k}$.
The periodic orbit of $\mathrm{b}, \mathrm{O}(\mathrm{b})=\left\{\mathrm{b}, f(\mathrm{~b}), f^{2}\right.$ (b), $\ldots, f^{(k-1)}$ (b) $\}$, is often called a k-cycle.
(ii) b is called eventually k-periodic if for some positive integer m, f^{m} (b) is a k-periodic point. In other words, b is eventually k -periodic if

$$
\begin{array}{lr}
f^{(m+k)}(\mathrm{b})=f^{m}(\mathrm{~b}) . & r:=r \\
>\mathrm{r}:=\mathrm{r}^{\prime} ; & \\
>\mathrm{f}:=\mathrm{x}->\mathrm{r} *(1-\mathrm{x}){ }^{*} \mathrm{x} ; & f:=x \rightarrow r(1-x) x \\
>\mathrm{g}:=\mathrm{x}->\mathrm{f}(\mathrm{f}(\mathrm{x})) ; & g:=x \rightarrow \mathrm{f}(\mathrm{f}(\mathrm{x})) \\
>\mathrm{r}:=3.25 ; & r:=3.25
\end{array}
$$

$>$ solve($g(x)=x, x)$;
0., 0.6923076923, 0.8124271394, 0.4952651682
> a[0]:=0.1; N:=100;

$$
\begin{aligned}
& a_{0}:=0.1 \\
& N:=100
\end{aligned}
$$

$>$ cobweb ($\mathrm{g}, 0,1, \mathrm{a}[0], \mathrm{N})$;

> g2:=x->(f@@4)(x);

$$
g 2:=f^{(4)}
$$

>r:=3.525;

$$
r:=3.525
$$

$>\operatorname{plot}([g 2(x), x], x=0 . .1)$;

> solve(g2(x)=x, x) ;
0., $0.04878127727-0.02298727936$ I, $0.04878127727+0.02298727936$ I,
$0.1654285294-0.07312465033 I, 0.1654285294+0.07312465033 I, 0.3709072463$, $0.4232189694,0.5055172382-0.1724812237 I, 0.5055172382+0.1724812237 I$, $0.5146141230,0.7163120567,0.8225060896,0.8604689738,0.8804971565$, $0.9860106474-0.006708920926$ I, $0.9860106474+0.006708920926$ I
> cobweb(g2, 0, 1, a[0], N);

Theorem. (Stability of k-cycle)
Let $\mathrm{O}(\mathrm{b})=\left\{\mathrm{b}=a_{0}, f(\mathrm{~b}), f^{2}(\mathrm{~b}), \ldots, f^{(k-1)}\right.$ (b) $\}$ be a k-cycle of a continuously differentiable function f.
Then the following statements hold:
(i) The k-cycle $\mathrm{O}(\mathrm{b})$ is asymptotically stable if
$\mid f$ ' $\left(a_{0}\right) f^{\prime}\left(a_{1}\right) \ldots f^{\prime}\left(a_{k-1}\right) \mid<1$
(ii) The k-cycle $\mathrm{O}(\mathrm{b})$ is unstable if $\left|f^{\prime}\left(a_{0}\right) f^{\prime}\left(a_{1}\right) \ldots f^{\prime}\left(a_{k-1}\right)\right|>1$

