Modeling Change

Mathematical models

In modeling our world, we are often interested in predicting the value of a variable at some time in the future.
Model:

- a miniature reprezentation of something
- a pattern of something to be made
- an example for imitation or emulation
- a description or analogy used to help visualize something that cannot be directly observed

Mathematical Model: a representation in mathematical terms of the behaviour of a real devices or phenomena.

Often a mathematical model can help us understand a behaviour better or aid us in planning for the future. Let's think of a mathematical model as a mathematical construct designed to study a particular real-world system or behaviour of interest. The model allow us to reach mathematical conclusion about the behaviour. These coclusions can be interpreted to help a decision maker plan for the future.

Modeling change with difference equations

Example 1: Testing for proportionality

Definition: Two variables y and x are proportional if one is always a constant multiple of the other, that is $y=k x$ for some nonzero constant k.

Consider a spring-mass system and measure the strech of the spring as a function of the mass placed on the spring. We have the following data:

Mass	Elongation
50	1.000
100	1.875
150	2.750
200	3.250
250	4.375
300	4.875
350	5.675
400	6.500
450	7.250
500	8.000
550	8.750

Let introduce the mass data as a sequence
$>$ mass: $=[50,100,150,200,250,300,350,400,450,500,550]$;
mass $:=[50,100,150,200,250,300,350,400,450,500,550]$
> mass[4];
or we construct the mass sequence using the seq command
> mass:=[seq(i*50,i=1..11)];
mass $:=[50,100,150,200,250,300,350,400,450,500,550]$
>mass[7];
350
>elong: $=[1,1.875,2.75,3.25,4.375,4.875,5.675,6.5,7.25,8,8.75]$; elong := [1, 1.875, 2.75, 3.25, 4.375, 4.875, 5.675, 6.5, 7.25, 8, 8.75]
> elong[11];
8.75
$>$
> plot([[mass[i],elong[i]]\$i=1..11], style=point, symbol=circle);

We want to find (aproximate) the proportionality constant k such that elong $_{i}=k$ mass $_{i}$
To estimate the slope k we need to use two data $P_{1}\left(m_{1}, e_{1}\right)$ and $P_{2}\left(m_{2}, e_{2}\right)$ and we have slope $=k=\frac{e_{2}-e_{1}}{m_{2}-m_{1}}$
Lets pick the second point $(100,1.875)$ and $6^{\text {th }}$ point, $(300,4.875)$
>k:=(elong[6]-elong[2])/(mass[6]-mass[2]);
$k:=0.01500000000$
> real_data:=[[mass[i],elong[i]]\$i=1..11]; real_data := [[50, 1], [100, 1.875], [150, 2.75], [200, 3.25], [250, 4.375], [300, 4.875],
[350, 5.675], [400, 6.5], [450, 7.25], [500, 8], [550, 8.75]]

```
>est_data:=[[mass[i],k*mass[i]]$i=1..11];
    est_data := [[50, 0.7500000000], [100, 1.500000000], [150, 2.250000000],
    [200, 3.000000000], [ 250, 3.750000000], [300, 4.500000000], [350, 5.250000000],
    [400, 6.000000000], [450, 6.750000000], [500, 7.500000000], [550, 8.250000000]]
> plot([real_data,est_data],style=point,symbol=[circle,cross]);
```


Exercise: Try to find a better choice.
(Below you can find the result in the case of $4^{\text {th }}$ point and $6^{\text {th }}$ point) >k:=(elong[6]-elong[4])/(mass[6]-mass[4]);
$k:=0.01625000000$
>est_data:=[[mass[i],k*mass[i]]\$i=1..11];
> plot([real_data,est_data],style=point, symbol=[circle,cross]); est_data := [[50, 0.8125000000], [100, 1.625000000], [150, 2.437500000],
[200, 3.250000000], [250, 4.062500000], [300, 4.875000000], [350, 5.687500000],
[400, 6.500000000], [450, 7.312500000], [500, 8.125000000], [550, 8.937500000]]

Modeling Change

The law of modeling change is
future_value = present_value + change

Often, we wish to predict the future on what we know now, in the present, and add the change that has been carefully observed. In such cases, we begin by studing the change itsself according to the formula
change $=$ future_value - present_value
By collecting data over a period of time and plotting that data, we often can discern the paterns to model the trend of change. If the behavior is takeing over discrete time periods, that leads us to a difference equation. If the behavior is takeing place continuously with respect to time then the construct leead us to a differential equation.

Definition: For a sequence of numbers a_{n} the nth first difference is
$\Delta a_{n}=a_{n+1}-a_{n}$
The first difference represents the rise or fall between two consecutive values of the sequence, that is the vertical change in the graph of the sequence.

Example 2: A Savings Certificate

Consider the value of a savings certificate initially worth 1000 . The interest paid each month is 1% per month. The following sequence of numbers represents the value of the certificate month by month 1000, 1010, 1020.10, 1030.30, ...

The first differences are
$\Delta a_{0}=a_{1}-a_{0}=1010-1000=10$
$\Delta a_{1}=a_{2}-a_{1}=1020.20-1010=10.10$
$\Delta a_{2}=a_{3}-a_{2}=1030.30-1020.20=10.20$
Note that the first difference represent the change in the sequence during one time period. Also, we can see that the law of change is given by the relation

$$
\Delta a_{n}=a_{n+1}-a_{n}=\frac{1 a_{n}}{100}
$$

or

$$
a_{n+1}=a_{n}+\frac{1 a_{n}}{100}
$$

this expresion is called a difference equation and

$$
a_{n+1}=1.01 a_{n}, \quad a_{0}=1000
$$

gives us the mathematical model or the (discrete) dynamical system model.
Exercise: Lets find the certificate value after the 60 month

```
> a[0]:=1000;
```

$$
a_{0}:=1000
$$

```
> for i from 0 to 59 do
    a[i+1]:=1.01*a[i]
end do:
> a[60] ;
1816.696698
```

```
> seq(a[i],i=0..60);
```

> seq(a[i],i=0..60);
1000, 1010.00, 1020.1000, 1030.301000, 1040.604010, 1051.010050, 1061.520150,
1000, 1010.00, 1020.1000, 1030.301000, 1040.604010, 1051.010050, 1061.520150,
1072.135352, 1082.856706, 1093.685273, 1104.622126, 1115.668347, 1126.825030,
1138.093280, 1149.474213, 1160.968955, 1172.578645, 1184.304431, 1196.147475,
1208.108950, 1220.190040, 1232.391940, 1244.715859, 1257.163018, 1269.734648,
1282.431994, 1295.256314, 1308.208877, 1321.290966, 1334.503876, 1347.848915,
1361.327404, 1374.940678, 1388.690085, 1402.576986, 1416.602756, 1430.768784,
1445.076472, 1459.527237, 1474.122509, 1488.863734, 1503.752371, 1518.789895,
1533.977794, 1549.317572, 1564.810748, 1580.458855, 1596.263444, 1612.226078,
1628.348339, 1644.631822, 1661.078140, 1677.688921, 1694.465810, 1711.410468,
1728.524573, 1745.809819, 1763.267917, 1780.900596, 1798.709602, 1816.696698
> plot([[n,a[n]]\$n=1..60],style=point,symbol=circle);

```


In general, discrete mathematical model are given by
change \(=\Delta a_{n}=\mathrm{f}(\) terms_of_sequence, external_terms \()\)
Modeling the change in this way becomes a problem of determining or approximating function \(f\) that represent the change.

\section*{Example 3: Mortgaging a Home}

6 years ago you purchased a home by finacing 80000 for 20 years paying monthly payments of 880.87 with a monthly interest of \(1 \%\). You made 72 payments and you wish to know the remaining value of the mortgage.

The change in the amount for each period increases by the amount of interest and decreses by the amount of the payment. So, we have
\[
\Delta b_{n}=b_{n+1}-b_{n}=\frac{1 b_{n}}{100}-880.87
\]

Solving for \(\mathrm{b}[\mathrm{n}+1]\) and incorporate the initial condition we get the following dynamical system
\[
\begin{aligned}
& b_{n+1}=b_{n}+\frac{1 b_{n}}{100}-880.87, \quad b_{0}=80000 \\
& \text { >b [0]:=80000; } \\
& b_{0}:=80000 \\
& \text { > paym:=880.87; } \\
& \text { раут := } 880.87 \\
& \text { > for i from } 0 \text { to } 71 \text { do } \\
& \text { b[i+1]:=1.01*b[i]-paym } \\
& \text { end do: } \\
& \text { >b[72]; }
\end{aligned}
\]

\section*{Approximating Change with Difference Equations}

In most examples, describing the change mathematically will not be as precise procedure as in the cases of previous examples. Tyically, we must plot the change, observe a patern and approximate the change to complete the expresion
\[
\text { change }=\Delta a_{n}=\text { some_function_f }
\]

\section*{Example 4: Growth of a Yeast Culture}

The followin data was collected from an experiment measuring the growth of yeast culture:
\begin{tabular}{cc}
\begin{tabular}{c} 
Time \\
in hours
\end{tabular} & \begin{tabular}{l} 
Observed \\
yeast biomass
\end{tabular} \\
0 & 9.6 \\
1 & 18.3 \\
2 & 29 \\
3 & 47.2 \\
4 & 71.1 \\
5 & 119.1 \\
6 & 174.6 \\
7 & 257.3
\end{tabular}

First we plot the change of the biomass with respect to the biomass
```

> p:=[9.6,18.3,29,47.2,71.1,119.1,174.6,257.3];
p:= [9.6, 18.3, 29, 47.2, 71.1, 119.1, 174.6, 257.3]
> for i from 1 to 7 do
delta_p[i]:=p[i+1]-p[i]
end do;

```
\[
\begin{aligned}
& \text { delta_p } p_{1}:=8.7 \\
& \text { delta_p }_{2}:=10.7 \\
& \text { delta_p } p_{3}:=18.2 \\
& \text { delta_p } p_{4}:=23.9 \\
& \text { delta_p } p_{5}:=48.0 \\
& \text { delta_p } p_{6}:=55.5 \\
& \text { delta_p } p_{7}:=82.7
\end{aligned}
\]
```

>
plot([[p[n],delta_p[n]]\$n=1..7],style=point,symbol=circle,labels=[Bio
mass, Change_of_biomass],labeldirections=[HORIZONTAL, VERTICAL]);

```


Analyzing the graph it seems to have some proportionality between biomass and the change of biomass, so
\(\Delta p_{n}=k p_{n}\)
Now we have to find the proportionality constant. We apply the same method as in Example 1: Testing the proportionality. We use two data to find an approximating value for \(k\) (we use 4th and 6th point of the graph).
\[
\begin{aligned}
& k=\frac{\Delta p_{6}-\Delta p_{4}}{p_{6}-p_{4}} \\
& >\mathrm{k}:=(\text { delta } \quad \mathrm{p}[6]-\text { delta } \mathbf{p}[4]) /(\mathrm{p}[6]-\mathrm{p}[4]) ; \\
& k:=0.4394993046
\end{aligned}
\]

Thus we get the following growth model
\[
\begin{aligned}
& p_{n+1}=(1+k) p_{n}, \quad p_{0}=9.6 \\
& >p_{\_} \text {est }[1]:=\mathrm{p}[1] ; \\
& >\text { for } i \text { from } 1 \text { to } 7 \text { do } \\
& \text { p_est }[\mathbf{i}+1]:=(1+\mathrm{k})^{*} \text { p_est }[i] \\
& \text { end do; }
\end{aligned}
\]
\[
\begin{aligned}
& \text { p_est }_{2}:=13.81919333 \\
& \text { p_est }_{3}:=19.89271919 \\
& \text { p_est }_{4}:=28.63555545 \\
& \text { p_est }_{5}:=41.22086217 \\
& \text { p_est }_{6}:=59.33740245 \\
& \text { p_est }_{7}:=85.41614959 \\
& \text { p_est }_{8}:=122.9564880
\end{aligned}
\]

Lets compare graphically the real date with the estimated data
```

> real_data:=[[n,p[n]]$n=1..8]:
> est_data:=[[n,p_est[n]]$n=1..8]:
> plot([real_data,est_data],style=point,symbol=[circle,cross]);
>

```


Analyzing the graph we notice a considerable difference between estimated data and real data, which implies that our assumption, the change of biomass is proportional with the biomass, is not very good. In order to improve the model we need to increase the number of observations in the experiment. Let consider the following data:
```

Time Observed
in hours yeast biomass
9.6
18.3
29
4 7 . 2
71.1
119.1
174.6
257.3
350.7
441
513.3
559.7
594.8
6 2 9 . 4
6 4 0 . 8
6 5 1 . 1
655.9
6 5 9 . 6
6 6 1 . 8
>
p:=[9.6,18.3,29,47.2,71.1,119.1,174.6,257.3,350.7,441,513.3,559.7,594
.8,629.4,640.8,651.1,655.9,659.6,661.8];
p := [9.6, 18.3, 29, 47.2, 71.1, 119.1, 174.6, 257.3, 350.7, 441, 513.3, 559.7, 594.8, 629.4,
640.8, 651.1, 655.9, 659.6, 661.8]
> for i from 1 to 18 do
delta_p[i]:=p[i+1]-p[i]
end do;

$$
\begin{aligned}
& \text { delta_p }:=8.7 \\
& \text { delta_p }_{2}:=10.7 \\
& \text { delta_p }_{3}:=18.2 \\
& \text { delta_p }_{4}:=23.9 \\
& \text { delta_p }_{5}:=48.0 \\
& \text { delta_p }_{6}:=55.5 \\
& \text { delta_p } \\
& \text { delta_p }:=82.7 \\
& \text { delta_p }:=93.4 \\
& \text { delta_p }:=90.3 \\
& 10
\end{aligned}
$$

```
\[
\begin{aligned}
\text { delta_p }_{11} & :=46.4 \\
\text { delta_p } p_{12} & :=35.1 \\
\text { delta_p } p_{13} & :=34.6 \\
\text { delta_p }_{14} & :=11.4 \\
\text { delta_p } p_{15} & :=10.3 \\
\text { delta_p } p_{16} & :=4.8 \\
\text { delta_p } p_{17} & :=3.7 \\
\text { delta_p } p_{18} & :=2.2
\end{aligned}
\]

From the first difference sequence we notice that the change decreases as the biomass increases, this happens because of the restricted area in which the yeast culture grows. Lest plot the real data
```

> real_data:=[[n,p[n]]\$n=1..19]:
> plot(real_data,style=point,symbol=circle);

```


From the graph of population versus time, the population appears to be approaching to a limiting value (carrying capacity). Based on our graph we estimate that the carrying capacity is 670 . As \(p_{n}\) approaches to 670 the change slows considerable, this shows us that the change depends on \(670-p_{n}\) and, also, on the biomass \(p_{n}\). Lets plot the change of biomass versus \(\left(670-p_{n}\right) p_{n}\)
```

>
plot([[(670-p[n])*p[n],delta_p[n]]\$n=1..18],style=point,symbol=circle
,labels=["(670-p[n])*p[n]",
Change_of_biomass],labeldirections=[HORIZONTAL, VERTICAL]);

```


It seems to have some proportionality here, so
\[
\Delta p_{n}=k\left(670-p_{n}\right) p_{n}
\]

Now, we find the value of \(k\) using two data (11th and 13th point of the graph)
\(>k:=\left(d e l t a \_p[13]-d e l t a \_p[11]\right) /((670-p[13]) * p[13]-(670-p[11]) * p[11])\);
\(k:=0.0003304845379\)
Now we have the mathematical model
\[
\begin{aligned}
& p_{n+1}=p_{n}+k\left(670-p_{n}\right) p_{n}, p_{0}=9.6 \\
& >\text { p_est [1]: }=\mathbf{p}[1] ;
\end{aligned}
\]
\[
p_{\_} \text {est } t_{1}:=9.6
\]
>for i from 1 to 19 do
p_est[i+1]:=p[i]+k*(670-p_est[i])*p_est[i]
end do:
>est_data:=[[n,p_est[n]]\$n=1..19]:
> plot([real_data, est_data], style=point, symbol=[circle,cross]);


In this case, we get a better estimated data compared with the real data.```

