Laboratory 9: Mathematical Models for Interacting Populations

1. Consider the basic 2-species Lotka-Volterra competition model with each species x_{1} and x_{2} having logistic growth in the absence of the other:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=r_{1} x_{1}(t)\left(1-\frac{x_{1}(t)}{K_{1}}\right)-b_{12} x_{1}(t) x_{2}(t) \\
x_{2}^{\prime}(t)=r_{2} x_{2}(t)\left(1-\frac{x_{2}(t)}{K_{2}}\right)-b_{21} x_{1}(t) x_{2}(t)
\end{array}\right.
$$

where $r_{1}, K_{1}, r_{2}, K_{2}, b_{12}$ and b_{21} are all positive constants and, the r 's are the linear birth rates and the K 's are the carrying capacities. The b_{12} and b_{21} measure the competitive effect of x_{2} on x_{1} and x_{1} on x_{2} respectively: they are generally not equal.
(a) Find the equilibrium points;
(b) Study the linearized stability;
(c) Draw the phase portrait and find numerical solution for different initial conditions in the case of $r_{1}=r_{2}=0.5, K_{1}=1, K_{2}=2, b_{12}=\frac{1}{12}, b_{21}=\frac{1}{6}$.
2. Let's consider the following predator-prey model with child care of J. M. A. Danby. Suppose that the prey $x(t)$ is divided into two classes, $x_{1}(t)$ and $x_{2}(t)$, of young and adults. Suppose that the young are protected from predators $y(t)$. Assume that the young increase in proportion to the number of adults and decrease due to death or to moving into the adult class. Then

$$
x_{1}^{\prime}(t)=a \cdot x_{2}(t)-b \cdot x_{1}(t)-c \cdot x_{1}(t)
$$

The number of adults is increased by the young growing up and decreased by natural death and predation, so that we model

$$
x_{2}^{\prime}(t)=b \cdot x_{1}(t)-d \cdot x_{2}(t)-e \cdot x_{2}(t) y(t)
$$

Finally, for the predators, we take

$$
y^{\prime}(t)=-f \cdot y(t)+g \cdot x_{2}(t) y(t) .
$$

(a) Find the equilibrium points;
(b) Study the linearized stability;
(c) Draw the phase portrait and find numerical solution for different initial conditions in the case of $a=2, b=c=d=\frac{1}{2}$ and $e=f=g=1$.

