Laboratory 7: Modelling with first order differential equations

1. Find the decay constant for a radioactive substance for the given half-life value
(a) $T_{1 / 2}=5730$ years for C^{14}
(b) $T_{1 / 2}=4,468 \cdot 10^{9}$ years for U^{238}
(c) $T_{1 / 2}=706 \cdot 10^{6}$ years for U^{235}
2. In two years 3 g of radioisotope decay to $0,9 \mathrm{~g}$. Find the half-life and the decay constant.
3. (Carbon dating of Shroud from Turin) In 1988 three independent dating tests reveald that the quantity of C^{14} in the shroud was between 91.57% and 93.021%. Using the decay constant for C^{14} found it in the previous exercise determine when shroud was made.
4. Suppose that in the case of a crime the victim body was descovered at 11.00 o'clock. The legist medic arrives at 11.30 and measures the victim body tenperature and he gets $34.22^{\circ} \mathrm{C}$. An hour later, he takes, again, the body temperature and he gets $34.11^{\circ} \mathrm{C}$. Supposing that the room temperature is $21^{\circ} \mathrm{C}$ estimate the time of the death.
5. Find room temperature variation in a summer day knowing that the outside temperature variation is given by the function $T_{\text {out }}(t)=35 \cdot e^{-\frac{(t-12)^{2}}{74}}$ (the time variable is measured in hours, $t=0$ means the midnight, notice that at $t=12$, the midday, we have the highest outside temperature of $35^{\circ} \mathrm{C}$ and at the midnight we have the lowest outside temperature, aprox. $5^{\circ} \mathrm{C}$). Suppose that the initial room temperature at $t=0$ is $T_{0}=15^{\circ} \mathrm{C}$ and the room thermic coeficient is $k=0.2 \cdot$ hours $^{-1}$. Plot the solution on a day interval $[0 ; 24]$ and estimate the time when the room temperature is highest.
