Laboratory 7: Modelling with first order differential equations

- 1. Find the decay constant for a radioactive substance for the given half-life value
 - (a) $T_{1/2} = 5730$ years for C^{14}
 - (b) $T_{1/2} = 4,468 \cdot 10^9$ years for U^{238}
 - (c) $T_{1/2} = 706 \cdot 10^6$ years for U^{235}
- 2. In two years 3 g of radioisotope decay to 0, 9 g. Find the half-life and the decay constant.
- 3. (Carbon dating of Shroud from Turin) In 1988 three independent dating tests reveald that the quantity of C^{14} in the shroud was between 91.57% and 93.021%. Using the decay constant for C^{14} found it in the previous exercise determine when shroud was made.
- 4. Suppose that in the case of a crime the victim body was descovered at 11.00 o'clock. The legist medic arrives at 11.30 and measures the victim body temperature and he gets 34.22°C. An hour later, he takes, again, the body temperature and he gets 34.11°C. Supposing that the room temperature is 21°C estimate the time of the death.
- 5. Find room temperature variation in a summer day knowing that the outside temperature variation is given by the function $T_{out}(t) = 35 \cdot e^{-\frac{(t-12)^2}{74}}$ (the time variable is measured in hours, t = 0 means the midnight, notice that at t = 12, the midday, we have the highest outside temperature of $35^{\circ}C$ and at the midnight we have the lowest outside temperature, aprox. $5^{\circ}C$). Suppose that the initial room temperature at t = 0 is $T_0 = 15^{\circ}C$ and the room thermic coefficient is $k = 0.2 \cdot hours^{-1}$. Plot the solution on a day interval [0; 24] and estimate the time when the room temperature is highest.