Laboratory 5: Solving Differential Equations with MAPLE

1. Find the general solution of the differential equations:

(a)
$$y' = 2x (1 + y^2)$$

(b) $(x^2 - 1) y' + 2xy^2 = 0$
(c) $2x^2y' = x^2 + y^2$
(d) $y' = -\frac{x+y}{y}$
(e) $y' + y \operatorname{tg} x = \frac{1}{\cos x}$
(f) $y' + \frac{2}{x}y = x^3$
(g) $y'' + y = \sin x + \cos x$
(h) $y'' - y = e^{2x}$
(i) $y'' + 4y = \frac{1}{\cos 2x}$
(j) $y'' - y' = \frac{1}{1+e^x}$

2. Solve the following IVPs and draw the solution graph:

(a)
$$y' = 1 + y^2$$
, $y(0) = 1$
(b) $y' = \frac{1}{1-x^2}y + 1 + x$, $y(0) = 0$
(c) $y' - 2y = -x^2$, $y(0) = \frac{1}{4}$
(d) $y'' - 5y' + 4y = 0$, $y(0) = 5$, $y'(0) = 8$;
(e) $y'' - 4y' + 5y = 2x^2e^x$, $y(0) = 2$, $y'(0) = 3$;
(f) $y'' + 4y = 4 (\sin 2x + \cos 2x)$, $y(\pi) = y'(\pi) = 2\pi$;

3. Consider the differential equation

$$y'(x) + \frac{k}{x}y(x) = x^3,$$

where $k \in \mathbb{R}$. Find the general solution

- (a) Find the general solution
- (b) For k = 1 draw the solution curves

(c) For
$$k = 1$$
 solve the IVP $\begin{cases} y'(x) + \frac{k}{x}y(x) = x^3 \\ y(1) = 0 \end{cases}$ and draw the graph of solution

(d) Use animate command to see the dependence of the solution with respect to the parameter k.