Laboratory 5: Solving Differential Equations with MAPLE

1. Find the general solution of the differential equations:
(a) $y^{\prime}=2 x\left(1+y^{2}\right)$
(b) $\left(x^{2}-1\right) y^{\prime}+2 x y^{2}=0$
(c) $2 x^{2} y^{\prime}=x^{2}+y^{2}$
(d) $y^{\prime}=-\frac{x+y}{y}$
(e) $y^{\prime}+y \operatorname{tg} x=\frac{1}{\cos x}$
(f) $y^{\prime}+\frac{2}{x} y=x^{3}$
(g) $y^{\prime \prime}+y=\sin x+\cos x$
(h) $y^{\prime \prime}-y=e^{2 x}$
(i) $y^{\prime \prime}+4 y=\frac{1}{\cos 2 x}$
(j) $y^{\prime \prime}-y^{\prime}=\frac{1}{1+e^{x}}$
2. Solve the following IVPs and draw the solution graph:
(a) $y^{\prime}=1+y^{2}, y(0)=1$
(b) $y^{\prime}=\frac{1}{1-x^{2}} y+1+x, y(0)=0$
(c) $y^{\prime}-2 y=-x^{2}, y(0)=\frac{1}{4}$
(d) $y^{\prime \prime}-5 y^{\prime}+4 y=0, y(0)=5, y^{\prime}(0)=8$;
(e) $y^{\prime \prime}-4 y^{\prime}+5 y=2 x^{2} e^{x}, y(0)=2, y^{\prime}(0)=3$;
(f) $y^{\prime \prime}+4 y=4(\sin 2 x+\cos 2 x), y(\pi)=y^{\prime}(\pi)=2 \pi$;
3. Consider the differential equation

$$
y^{\prime}(x)+\frac{k}{x} y(x)=x^{3},
$$

where $k \in \mathbb{R}$. Find the general solution
(a) Find the general solution
(b) For $k=1$ draw the solution curves
(c) For $k=1$ solve the IVP $\left\{\begin{array}{c}y^{\prime}(x)+\frac{k}{x} y(x)=x^{3} \\ y(1)=0\end{array}\right.$ and draw the graph of solution
(d) Use animate command to see the dependence of the solution with respect to the parameter k.

